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Abstract The compactness of trajectories of solutions to various phase-field mo­
dels is proved. In some cases, the convergence of any strong solution to 
a single stationary state is also established. 

1. Introduction 

The aim of this note is to survey results on convergence of solutions 
of phase-field models to the stationary states, using a generalization of 
the Lojasiewicz theorem. We will consider models proposed by Cagi­
nalp [5], where the time evolution of the phase variable X(t, x) and the 
temperature {)(t, x) is governed by the system of differential equations: 

TatX = W, 

at ({) + ),(X)) + div q = 0, 

where the so called chemical potential w is given by 

w = - W'(X) + ),'(X){) 

(1) 

(2) 

Wand), are given functions, W is typically a double-well potential, and 
q denotes the heat flux. We shall also consider the conserved phase-field 
model, where (1) is replaced by 
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TOtX = -e i::lw 

We shall treat the classical case 

q = -kJ \1{} 

(3) 

and also the linearized Coleman-Gurtin [6] constitutive relation, where 
q is determined by 

q = -kJ \1{} - k * \1{}, (4) 

involving the memory effects, where the constant kJ > 0 is the instan­
taneous heat conductivity, k is a suitable dissipative kernel, and the 
symbol * denotes the time convolution: 

k * v(t) = 1000 k(s)v(t - s) ds. 

The material occupies a bounded regular domain n c R3 and the sys­
tem (1)-(2) is complemented by the homogeneous Neumann boundary 
condition for X, while {} obeys the homogeneous Dirichlet condition. 

\1X' nlan = 0, 19lon = o. (5) 

In the conserved model, we require Neumann boundary conditions for 
both X, 19 and also for the chemical potential w which can be expressed 
by 

\119· nlon = \1X' nlon = \1(i::lx) . nlon 
with n the outer normal vector. (6) 

For the sake of simplicity, we set the constants T, representing a 
relaxation time and a correlation length, respectively, equal to l. 

Systems of the same or similar type have been recently studied by 
many authors.(see Colli et al. [7], Giorgi et al. [11], Novick-Cohen 
[17] etc). The questions of well-posedness and existence of finite dimen­
sional attractors for the conserved model were discussed by Grasselli 
et al. [12], and the dissipativity of the respective system was studied 
by Vegni [20]. In particular, the long-time behavior of solutions seems 
to be well understood and the equilibrium (stationary) solutions have 
been identified as the only candidates to belong to the w-limit set of 
each individual trajectory. If the stationary problem admits only a finite 
number of solutions, then any solution X(t), 19(t) converges as t ---+ 00 to 
a single stationary state. However, the structure of the set of stationary 
solutions for a general domain may be quite complicated, in particular, 
the set in question may contain a continuum of nonradial solutions if 
n is a ball or an annulus. If this is· the case, it seems highly nontrivial 
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to decide whether or not the solutions converge to a single stationary 
state. It is well-known that the convergence of any trajectory might not 
happen even for finite-dimensional dynamical systems (cf. Aulbach [4]), 
and similar examples for semilinear parabolic equations were derived by 
Polacik and Rybakowski [18]. In 1983, Simon [19] developed a method to 
study the long-time behaviour of gradient-like dynamical systems based 
on deep results from the theory of analytic functions of several variables 
due to Lojasiewicz [16]. Roughly speaking, an analytic function behaves 
like a polynomial (of a sufficiently high degree) in a neighbourhood of 
any point where its gradient vanishes (critical points). More specifically, 
the following assertion holds (see [16, Theorem 4, page 88]): 

Proposition 1.1 Let G : U (a) C be a real analytic function defined 
on an open neighbourhood U (a) of a point a E Rn. Then there exist 
e E and D > ° such that 

IVG(z)l2: IG(z) - G(a)1 1- B for all z ERn, Iz - al < D. 

L. Simon succeeded in proving a generalized version of the above the­
orem applicable to analytic functionals on Banach spaces. Later on, 
Jendoubi [15], and Haraux and Jendoubi [13] simplified considerably Si­
mon's original approach making it accessible for application to a broad 
class of semilinear problems with a variational structure. Related results 
in this direction were also obtained by Feireisl and Takac [10], Hoffmann 
and Rybka [14] etc. 

In some cases, Simon's approach can be used to deal with problems 
with only a partial variational structure. A typical example could be 
the system(l), (2) with the memory term omitted in (4) (i.e., for k = 0). 
Indeed the" elliptic" part of (1) is the variational derivative of the free 
energy functional with respect to X while (2) is not. Since the tempe­
rature tends to zero when time is large, it is possible to modify Simon's 
method to prove convergence of the phase variable X to a single station­
ary state, i.e. a solution of the problem 

tlXoo - W'(Xoo) = 0, VXoo· nlan = 0, 1Joo = 0, (7) 

under fairly general conditions imposed on >. and W. In the conserved 
case, the temperature satisfying the Neumann boundary conditions (6) 
also tends to zero provided that it has zero mean. Considering the model 
(3), (2), with>' linear and the boundary conditions (6), the quantities 
In x(t)dx and In 1J(t)dx, are conserved, so we can normalize the initial 
functions X(O), 1J(0) such that In x(O)dx = 0, In 1J(O)dx = ° which leads 
to the convergence X Xoo, 1J 1Joo , where 
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or 1J 00 = const in the general case. 
Using the summed past history of 1J, introduced by Dafermos, we can 

obtain similar results when the memory effects are taken into account 
in (4), both for the conserved and non-conserved models. 

We conclude this contribution with a priori estimates that imply com­
pactness of trajectories of solutions of the most general conserved model 
with memory term and a nonlinear A. These estimates can be used 
to prove the existence of strong global solutions emanating from suffi­
ciently smooth data as well as the convergence of solutions satisfying the 
Poincare inequality. The existence of global weak solutions vanishing on 
a nontrivial (positive measure) part of the boundary of D and, therefore, 
satisfying the Poincare inequality is stated in [12]. 

2. Main results 

In this section, we present a synthesis of some convergence results 
from the papers [1], [2], [3], [8]. 

Theorem 2.1 Let Dc R3 be a bounded domain of class C2+J.l, J-l> 0. 
Suppose, moreover, that the nonlinearities A, W satisfy the following 
hypotheses: 

The function A is of class Cl+J.l(R), A(O)=O, 1A'(z)I:S;A, zER; 
The "free energy" function W is real analytic on R. (9) 

In addition, we assume that the instantaneous heat conductivity kJ > ° 
is strictly positive and the kernel k satisfies: 

k E L1(0, 00), k is convex on (0,00), 
dk'(s) + 5k'(s) ds 2: ° for a certain 5 > 0. 

(10) 

Let X, 1J be a globally defined strong solution of the problem (1), (2), (4), 
(5) such that 

sup (sup(lx(t, x)1 + 11J(t, x)l) < 00. 
t>O xED 

(11) 

Then there exists Xoo - a solution of the stationary problem (7) such that 

x(t) -+ Xoo, 1J(t) -+ ° in C(D) as t -+ 00. 

Theorem 2.2 Let the assumptions of the Theorem 1 be satisfied and 

A(Z) = cz for some real c. 
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Let X, 1J be a globally defined strong solution of the problem (3), (2), (4), 
(6) satisfying (11). Then there exists Xoo - a solution of the stationary 
problem (8) such that 

X(t) ---t Xoo, 1J(t) ---t const in C(D) as t ---t 00. 

In the proof, using the fact that the integral means In x(t, x)dx, 
In 1J(t, x)dx are conserved quantities, we normalize the initial functions 
X(O), 1J(0) to be of zero mean and work in the corresponding spaces, 
where the solution of the problem 

-L1v = g (in) D, \lv· n = 0 on aD, k vdx = 0 

is uniquely defined and denoted by v = - [9 J. In this space, the 
Poincare inequality takes place. See [8J for the proof of Theorem 2.2 
when k = 0 and [3J when the memory is included. 

Remark 1. Here a globally defined strong solution means that Xt, 1Jt , 

are in the space Lzoc( 0,00; L2(D)) for any r 2': 1, and the 
boundary conditions are satisfied for all t E (0, (0). Moreover, X(O) is 
supposed to belong to W 2,2(D) and the past values of 1J are given for 
t E (-00,0]' and 111J(t)llw2,2(n) are bounded uniformly for t E (-00, OJ 
and satisfy the boundary conditions (6) when we treat the conserved 
problem with memory. 

Remark 2. A typical example of a kernel k satisfying (10) is k(s) = 
s-ae-{3s, 0 a < 1, f3 > O. 

Remark 3. The assumption that X, 1J is a strong solution of the problem 
is not restrictive. It will be clear from the estimates presented in Section 
3 that any weak solution emanating from smooth initial data will be 
globally defined and regular on the interval (0,00). Moreover, those 
estimates also allow for more general energy functionals W than the 
ones considered in Grasselli, Pata and Vegni [12J and Vegni [20J. 

Sketch of proofs. 

First, we derive necessary a priori estimates to show that the trajecto­
ries Ut2: 11J(t), Ut2:1X(t) are precompact in C(D) and 1J(t) ---t O. From the 
strong maximum principle we deduce that the w-limit set w[xJ is con­
tained in some interval [-L, LJ. Accordingly, since we are interested in 
the w-limit set of one particular trajectory which is uniformly bounded 
with respect to x-component, we are allowed to suppose, without loss 
of generality, that W' has been modified outside of the interval [-2L, 2LJ 
in such a way that 

W'(z) is real analytic on (-L, L); (12) 
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IW//(z)l, IW/(z)1 are uniformly bounded for z E R. (13) 

The next step is to show that Xt E Ll (T, 00; X) where X denotes a 
suitable space. To this end, we apply Simon's method to the functional 

I(v) = k (lY'vI2 + W(v)) dx (14) 

to obtain the following generalization of Proposition 1.1. 

Proposition 2.1 Let W satisfy the hypotheses (12),(13). Let WEWi;p, 

-L < w(x) < L for all x E n. 

Then for any P>O there exist constants BE(O, 1/2), M(P), c(P) such 
that 

II(v) - I(w)1 1- e :::; MII- + W'(v)ll[w;2(D)1* (15) 

holds for any v E such that 

Ilv - wll£2(D) < c, II(v) - I(w)1 < p. (16) 

The proof is identical with [9, Section 6, Proposition 6.1]. 

The energy equality, obtained by multiplying the equation (1) by Xt, 
(2) by f), ((3) by - [Xt] respectively), integrating the resulting ex­
pressions by parts and adding up, reads: 

d [1 1 1 1100 
] -d (-IY'x(tW+-If)(tW+W(x(t))dx+- (-k')(s) 11Y'T)(t, s)lIi2(D)ds 

t D2 2 20 

+11 (( [Xt(t)]lli2(D) + kJ 11Y'f)(t) Ilh(D) (17) 

1000 11Y'T)(t, s)lli2(D) dk'(s) = O. 

Here we used the summed past history of f) defined by 

T)(t, s, x) = it f)(z, x)dz, s 2: 0, 
t-s 

and the relation k (k * f))f) dx = (18) 

[:t 1000 (-k')(s)llTJ(t, s)lli2(D) ds + 1000 (-k)'(s)! 11T)(t, s)lli2(D) dS]. 
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Denoting by E the "total energy" , 

1 r 1 2 
E(t) = "2 in lV'x(t)12 + 2W(X(t)) dx + "2111911£2(n)+ 

100 (-k')(s)IIV'17(t, s)lli2(n) ds, 

and taking into account (10), we have E(t) -+ Eoo as t -+ 00. Moreover, 
we can prove that 

1119(t)IIL2(n) -+ 0 as t -+ 00, (19) 

and 

fooo (-k)'(s)IIV'17(t, s)lli2(n) ds -+ 0 as t -+ 00. (20) 

We have 

I(X(t)) -+ 100 = Eoo = r IV'XooI 2 + 2W(Xoo) dx for any XOO E w[xl· 
2 in 

In particular, the energy of solutions XOO E w[xl equals the same constant 
100 . 

We integrate (17) with respect to t, and make use of Proposition 2.1 
to conclude that there exists T > 0 such that 

which, together with the compactness of trajectories yields the assertions 
of Theorems 2.1 and 2.2. 

3. A priori estimates 

In this section, we prove a priori estimates for solutions of the problem 
(3), (2), (4) with a nonlinear function>. satisfying 

>. E C3 (R), 1>.'(r)1 A, I>'//(r)I A for a certain A > 0 (21) 

The free energy functional W : R f---> R will be supposed to satisfy the 
following hypotheses: 

• 
W(z) 2:: 0 for all z 2:: 0, (22) 

• 
W'(z)z > 0 for Izl > 1, (23) 

• 
W'(z)z 2:: CIW(Z) - C2 for all Z E R, (24) 
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• 
(25) 

• 

The energy estimate (17) gives 

Lemma 3.1 Under the hypotheses of Theorem 2.2, there exists Eo de­
pending only on the quantities 

such that 

sup IIV'!9(t)IIL2(0), IIVx(0)IIL2(0), IIx(O)IILOO(O) 
tE(-oo,O] 

sup 1I'!9(t) 11£2(0) + sup IIVx(t) 11£2(0) :s; Eo, (27) 
t>O t>O 

Next, we multiply (3) by X to deduce 

:t + + k W"(x)IV xI 2dx = - k 
Consequently, (27), (28), (25) and the Poincare and Young inequalities 
imply 

I t+l 
t dT :s; Eo for any t 2:: 0, (29) 

To improve the estimates on X, we write (3) as an evolutionary equation 

+ = (30) 

Let p be as in (26). We prove first that 

X E LT(t,t+ 1;w2m(n)), t 2:: 0, for any 1:S; r < 00, ql = min{2,6/p}. 

For this, for all 1 < q < 00, we define a linear operator on the 
Banach space Lq(n) by 

= {v E w2,q(n) I Vv· n = 0 on an}, = 

and rewrite (30) in the abstract form 

Xt + 
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From (27), (21), we know that h2 is bounded in Loo(t, t+1; [W2,2(0)]*) 
uniformly for all t 2:: 0. On the other hand, using (27) and the Sobolev 
embedding W1,2(0) C L6(0), we have X E Loo(O, T; L6(0)) for all T > 0. 

6 

From (26) we get W'(X) E Loo(O, T; L"P (0)). 

Also, D..-;/q(D..N,q)f = f - If!. f(x)dx for f E Lq(O). Hence 

= II [W' (X) - A' (X)79] - ,A, k [W' (x) - A' (x)79] dxIlLq(f!.) 

C(IIW'(x)IILq(f!.) + 11 79 I1Lq(f!.))' 

This implies that X E Y(t, t+ 1; W2,ql (0)) where q1 = min{2, r 2:: l. 
Consequently, by the Sobolev embedding theorem. 

X Er (t,t+1;Lq2(0)) with q2= 3q1 if2q1<3, q2=oootherwise. 
3 - 2q1 

Next we argue by induction (bootstrap argument). We deduce from (26) 
that 

r n 
W'(X) E L"P(t,t+ 1;Lp(0)). 

Remark that we have 

q2 6 6 
- - q1 > - - > ° p - p(p - 4) p 

provided p E (4,5), q2 = 00 if p 4. Hence, after a finite number of 
steps we arrive at the estimate 

X E LT(t, t + 1; W2,2(0)) c r(t, t + 1; Loo(O)), t 2:: ° (31) 

for any 1 r < 00. Also, Xt E LT(t, t + 1; [W2,2(0)]*) which implies 

X E C(t, t + 1; (W2,2(0), [W2,2(0)]*)0) , 

with () satisfying > 1-;0, where (X, Y)o denotes the interpolation 
space. As r > 1 is arbitrary, we can choose () such that 
(W2,2(0), [W2,2(0)]*)0 <-t C(O). 

sup IIx(t)lIc(o) Coo. 
t>O 

(32) 

This implies that WI/(X), WII/(X) are bounded, and V'x is bounded 
in Y(t, t + 1; L6(0)) for all r, independently of t > O. Then 

rt+1 . 
it IID..W'(x(s))lIi2(f!.)ds < C for all t > 0. (33) 
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Moreover, by (27), (28), 

'l3ELoo(t, t+l; L2(0)) nL2(t, t+l; W 1,2(0)) '-t U(t, t+l; L3(0)) for s<4. 

By (31), 
(34) 

It follows that \7()'/(X)'I3) E L2(t, t+l; L2(0)) and, by the same reasoning 
as above 

(35) 

This yields 
).(x) E L2(t, t + 1; W 3,2(0)), t 2': o. (36) 

In fact, ).'" (X) is bounded because of (32) and 

b.XEL2(t, t+l; L6(0))nF(t, t+l; L2(0)) ::::} b.XEU(t, t+l; L3(0)), s<4, 

which, together with (34) gives 

l\7x· b.xl E L2(t, t + 1; L2(0)), l\7xl3 E F(t, t + 1; L2(0)). 

Now, we multiply (2) by b.('13 + ).(X)), integrate by parts and use (18) 
with b.'13 in place of '13, to obtain 

:t [11\7('13 + ).(x))lIi2(O) + 1000 (-k')(s)IIb.17(t, s) ds lli2(o)] 

+11b.'I3lli2(O) + In b.'I3b.)'(X)dx + 1000 11b.17(t, s)llhco)dk'(s) = 

In k * \7'13 . \7 b.)'(X)dx. 

If we denote 

employ (10), the Poincare and Young inequalities, we obtain 

d ( 2 2) dtF(t) + aF(t) SCI + 11)'(x(t))llw3,2(O) + k * 11\7'13IIL2(o)(t) , 

for some small a> 0, which yields the estimate 

We thereby arrive at 
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Lemma 3.2 Under the hypotheses of Theorem 2.2, there exists Eo de­
pending only on the quantities SUPtE(_oo,ojll.6.19(t)IIL2(D), lI.6.x(O)II£2(D), 
such that 

sup IIV19(t)II£2(D) :::; Eo, 
t>o I t+l -

t 11.6.19(s)11 2ds :::; Eo for all t O. 

(38) 

(39) 

We continue the bootstraping, and use Lemma 3.2 together with (31) 
and (35) to deduce 

(40) 

By virtue of (33), (40), the phase field variable X satisfies the equation 
(30) with the right hand side bounded in L2(t, t+1; L2(0)) independently 
of t. Therefore, we obtain 

The convolution term in (2) is bounded in L2(0) according to (10), 
(39), and .6.A(X) is bounded in Lr(t, t+1; L2(0)) for any r independently 
of t > 0 by (31), (33). Hence the equation (2) can be written as a 
parabolic equation for e = 19 + A(X) 

with the right-hand side bounded in Lr(t, t+ 1; L2(0)) for any r 1 and 
any t > O. This gives .6.19 E Lr(t, t + 1; L2(0)), and, consequently 

IIXtllu(t,t+lP(D)) :::; C, for any r 1, t> 0, and then also 

II19t ll u (t,t+lP(D)) :::; C, for any r 1, t> 0 

In particular we have obtained the following result: 

Proposition 3.1 Let 0 C R N , N :::; 3 be a bounded domain with boun­
dary of class C2+J.l, fJ, > O. Let A, W E C3+J.l(R) satisfy hypotheses 
(21)-(26). Then for any strong solution X, 19 of the problem (3), (2), 
(4), (6) on the time interval (0, (0), the trajectories U X(t), U 19(t) 

t2:1 t2:1 

are precompact in the space C(O). Moreover, U X(t) is precompact in 
t2:1 
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