
ADAPTIVE RESOURCE MANAGEMENT OF A 
VIRTUAL CALL CENTER USING A PEER-TO­
PEER APPROACH 

Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman 
Applied Research, Telcordia Technologies Inc 
445 South Street 
Morristown, New Jersey 07960, USA 
{munir, namon, hyongsop, erics}@research.telcordia.com 

Abstract: As the number and diversity of end user increase, services 
should be able to dynamically adapt to available resources in a given 
environment. In this paper, we present the concepts of migratory services and 
peer-to-peer connections as the means of facilitating adaptive service and 
resource management in distributed and heterogeneous environments. Our 
approach has been realized using object-oriented principles in Adaptive 
Communicating Applications Platform (ACAP). The architectural design and 
implementation of a real-life high-level service, Virtual Call Center (VCC), 
are used to illustrate issues in adaptive service and management issues and 
discuss in detail our approach in ACAP. 

Key words: Adaptive and Distributed Service and Resource Management, Peer-to-Peer 
Application, Service Platform, and Virtual Call Center 

1. INTRODUCTION 

With the increasing availability of network connectivity and network-enabled 
devices at work, at home, and on the road, users will require that services be 
adaptive to their environments and devices. Already, some popular services, such as 
email and instant messaging, are available on PCs, PDAs, and cell phones. 

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35674-7_66

© IFIP International Federation for Information Processing 2003
G. Goldszmidt et al. (eds.), Integrated Network Management VIII

http://dx.doi.org/10.1007/978-0-387-35674-7_66


426 Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman 

be able to dynamically adapt to available resources and capabilities in diverse 
environments. Thus a mechanism is needed that allows service providers to 
effectively deliver and manage services in different environments 

In this paper, we describe a peer-to-peer approach for managing end user 
environments and resources in a scalable and flexible manner. An environment 
mainly refers to a computing/communication platform from which the user accesses 
their services, and a resource refers to a specific hardware device or application tool 
used in a service. In our approach, each environment manages its own resources and 
is aware of their capabilities, and services negotiate with a given environment for 
required resources at runtime. An environment could be a home network, an ISP or a 
provider network. The approach is peer-to-peer in that once a service is activated in 
an environment, service endpoints communicate with the environment for resource 
requests. Subsequently, service endpoints share data and resources directly among 
themselves. Any accounting and state update information at the end of a service 
session is relayed to the service provider on an as-needed basis. 

Since each environment is self-managed, the load increase on service providers 
needed to support new environments is incremental compared to a centralized 
approach, in which service providers manage all the environments and resources 
themselves. This helps increase the scalability of services and allows for rapid 
introduction and management of new services Our approach is also adaptive in that 
resource availability can be locally maintained and environment management can be 
tailored to the specific characteristics and requirements of individual environments. 

Our approach has been incorporated in a prototype platform, called Adaptive 
Communicating Applications Platform (ACAP) [1]. ACAP takes an object-oriented 
approach to managing services and resources. Specifically, in ACAP, services 
specify resource requirements, and environments provide resources that match the 
requirements--multiple resources may match specific requirements. Services 
dynamically execute in diverse environments by adapting to available resources by 
migrating and requesting available resources from environments at runtime. 
Migratory services are facilitated by use of migratory objects. 

ACAP is a working prototype and has been used to develop a number of 
applications to show the viability of our approach to service and resource 
management. In this paper, we present one such application, Virtual Call Center 
(VCC), to illustrate service and resource management issues in distributed and 
heterogeneous environments. We also describe in detail how ACAP is used for the 
development of the VCC application. Note that ACAP is a general-purpose 
platform that can be used for any application that requires integrated service and 
resource management in distributed environments. 

The rest of the paper is organized as follows. Section 2 describes VCC and its 
service and resource management issues. Section 3 provides an overview of ACAP. 
Section 4 describe and discuss in detail the use of ACAP for VCC. Section 5 
discusses related work of ACAP with emphasis on industry efforts on service 
management. Section 6 describes future work and concludes the paper. 



Adaptive, P2P Resource Management of a Virtual Call Center 

2. VIRTUAL CALL CENTER: A MOTIVATING 
EXAMPLE 

427 

A virtual call center (VeC) consists of operators who are geographically 
distributed, and on duty at different times. When a customer calls, vee's call 
processing/scheduling engine determines an operator and routes the call to the 
operator. In this paper, we show the call processing/scheduling engine as a 
centralized dispatcher. Dispatching functionality can be distributed across 
environments or implemented in distributed databases such as in 800 call routing 
[10]. Either ofthese mechanisms could easily be incorporated into our approach. 

One critical issue in increasing the effectiveness of the vee (or a regular call 
center) is state transfer. A typical user experience with a call center is that the 
customer often has to repeat relevant information while being transferred from one 
operator to another. This problem is even more prevalent with the advent of the 
Web, where users often perform a lot of "work" before calling the vee, e.g., 
putting potential purchases into online shopping carts, filling out electronic order 
forms, and registering with merchant sites. 

vee can allow operators to effectively determine what callers are trying to do 
without requiring further, duplicate information by seamlessly transferring caller 
registration, history, state, and other information. This dramatically enhances the 
quality of user experience and increases the likelihood of turning users into 
customers. Furthermore, a centralized approach of having server components 
always manage state transfer and update transactions would not scale to a large 
number of callers and any server failure may disrupt the services of all callers, which 
would significantly degrade the effectiveness of the overall system. Thus, a 
distributed approach is needed that efficiently allows for scalable, robust, and fast 
state transfer. In this paper, we describe a peer-to-peer approach, in which server 
components "get out of the way" once an operator is connected to a caller, and the 
operator is responsible for updating the state information of the caller at the vee 
once the call is complete or on an as-needed basis. 

Another issue involves the means by which vee operators and callers 
communicate and exchange information. Different callers may have different 
preferences for how to communicate with the operator. Some may prefer text-based 
instant messages, while others may prefer more interactive, real-time 
communications. In the latter case, the caller preference may range from a 
telephone/cell phone to a VoIP call to a multimedia call that includes voice, video, 
and documents. In order to accommodate diverse caller preferences, the 
communication mechanism used by the vee should be adaptive to end user 
environments and available resources. At the same time, it is unreasonable to expect 
that the vee would/could pre-provision all the computing/network environments of 
distributed operators to meet all caller requirements; doing so would be prohibitively 
expensive. Therefore, an efficient mechanism is needed to dynamically discover 
and adapt to available resources, and their capabilities in diverse operator 
environments. We use the concept of migratory services to address this issue. 
Specifically, calls are represented as services that can dynamically move to operator 
and caller environments and execute using locally available or preferred resources. 



428 Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman 

3. ACAP 

Adaptive Communicating Applications Platform (ACAP) is an object-oriented 
service platform that provides support for developing and managing high-level 
services in a distributed and peer-to-peer manner. In this section, we provide a high­
level overview of its basic constructs: services and environments. In Section 4, we 
describe in detail how the VCC system is built using these constructs. 

The main objective of ACAP is to provide support for adaptive services. An 
adaptive service can change the way it operates, depending on available resources in 
environments. To illustrate, a two-party voice call service can be made adaptive by 
facilitating the parties involved to use the communication devices of their choice, 
e.g., a regular phone for the caller and a PC-based phone for the called party. In 
ACAP, the concept of a migratory service is the main means by which adaptive 
services are realized. The basic mode of operation in ACAP is that a service 
endpoint first moves to an environment, negotiates for the available resources in the 
environment, and then executes using the negotiated resources. This way, services 
adapt to environments in a distributed manner, in which much processing occurs at 
or near endpoints. This reduces processing overhead on servers, which, in turn, 
helps increase the scalability of services. To facilitate migratory services, ACAP 
uses migratory objects. Specifically, a service is modeled as a collection of service 
objects that can move based on user request and system resource availability. A 
service object implements service logic, maintains service state, and specifies a 
resource requirement for the service. A service is a special service object that also 
functions as a container of other service objects. A service may be contained in 
other service containers, thus fonning a hierarchy of services. Henceforth, the 
terms, service and service object, are used interchangeably, unless a distinction 
needs to be made. 

Services and their service objects always maintain their containment 
relationships, even when they are at different locations. When a service moves, only 
those objects that are co-located with the service also move. In ACAP, we use 
remote references to represent inter-object relationships. A remote reference is 
similar to an ordinary object reference, except that (1) when a remote reference is 
serialized, it does not serialize the referee, and (2) when a serialized remote 
reference is recreated, it points to the original referee, even if the recreation is on a 
different machine. Remote references are used for passing objects in (possibly 
remote) method invocations and also allow migratory service objects to maintain 
their links to other service objects. 

In ACAP, environments are modeled in terms of available resources and their 
capabilities. For example, a PSTN phone is modeled as a resource capable of audio 
communication with a certain bandwidth requirement. An environment is modeled 
as a resource, which in turn, is a collection of other resource objects. In this way, 
the entire environment, including the network, can be modeled hierarchically. It 
also allows us to efficiently compute and manage the state of an environment and by 
induction, the state of any service or system. 

Each environment can independently administer its own resources. Policies may 
be used for security and/or enforcing user preferences. This allows us to efficiently 



Adaptive, P2P Resource Management of a Virtual Call Center 429 

and independently represent and introduce new resources into the system without 
central administration and provisioning. Rapid introduction of new resources 
requires that new devices and services are deployable by multiple third party 
providers. 

When a service enters an environment, ACAP binds each service object with a 
resource object that can meet its requirements. For example, a call service object 
may require resources for inputting and outputting audio, for which ACAP may bind 
a resource object that represents a regular phone, an IP phone or a PC audio system 
to the call service object. The decision as to which resource objects are bound to 
service objects depends on resource availability in a given environment and user 
preferences. 

In our current implementation, resource requirements are hard requirements. If 
no resource is available, then the service will not be able to execute. We already 
have the notion of service adaptation to equivalent resources such as different types 
of phones. We are designing mechanisms for services to adapt to degraded 
resources such as insufficient bandwidth for video streaming. We can easily adapt 
to degraded resources using service specific logic such as the designer of the service 
replacing streaming with periodic still images. We are currently exploring 
generalized mechanisms for resource degradation (non-availability is the worst kind 
of degradation). 

4. ACAP AND VCC 

VCC makes use of ACAP support for adaptive services to provide scalable and 
adaptive call center services. Specifically, VCC models a call as an adaptive service 
that can dynamically move to the environment of the VCC operator who gets 
assigned to the call. By executing the received call, the operator can retrieve 
registration, history, current state, and any other relevant information of the caller 
and establish a peer-to-peer communication channel with the caller. In fact, a call is 
a container object that has other objects with caller information and VCC call 
service logic. In this section, we describe and discuss in detail use of ACAP in the 
development of the VCC application. 

4.1 Architecture 

Figure 1 graphically shows an architectural overview of the VCC in relation to 
ACAP. VCC DISPATCHER is the central administrative hub for the system. It 
maintains a database of customer registration information, operator information 
(e.g., their schedules, locations, and state), and other system resources. It also 
handles all the incoming calls and assigns them to appropriate and available 
operators, the process of which is described shortly. 

In Figure 1, VCC OPERATOR is an ACAP-based tool that implements the VCC 
application logic for VCC operators. It provides a notification service that alerts the 
operator. Furthermore, it can interact with the tools and resources that are available 



430 Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman 

VCC DISPATCHER 

ACAP 

VCC OPERATOR 

ACAPPROXY 

INCOMING 

CALLS 

VCCCALLER 

Figure 1. Architectural Overview of the VCC Using ACAP 

in the operator's environment via the ACAP Resource Manager (RM) , which is 
described shortly. 

VCC CALLER is an ACAP-based tool that enables the caller to interface with 
the assigned operator. It establishes a peer-to-peer communication channel with the 
VCC OPERATOR of the operator and creates collaboration/communication sessions 
between the caller and operator on an as-needed basis. Currently, it is assumed that 
the VCC CALLER is pre-installed and configured in callers' environments, say, as 
part of creating a subscription with a service provider. However, it could also be 
provided as an applet that can dynamically be downloaded via a Web browser and 
installed and configured for the caller's environment when a call is made. 

Callers may use regular or cell phones to contact the VCC. In such a case, the 
VCC OPERATOR connects to the ACAP PROXY to establish a voice channel 
between the caller's phone and the operator's device for voice communication. 
ACAP PROXY is a logical entity that may include PSTNlVoIP gateways to allow 
use of SIP phones or VoIP application tools. ACAP PROXY keeps track of the 
capacity and current usage state of its PSTNlVoIP gateways. VCC may have 
multiple instances of ACAP PROXY, in which case the VCC DISPATCHER may 
dynamically determine a particular instance to be used based on the caller phone 
number and the location of the assigned operator. 

In Figure 1, the flow is from a caller to the dispatcher, which migrates the call to 
the appropriate operator so that the operator can communicate directly with the 
caller. Resources are allocated to the call once it migrates to the environment of the 
assigned operator. In the next sub-sections, details of interactions among various 
components are described. 



Adaptive, P2P Resource Management of a Virtual Call Center 431 

4.2 ACAP Resource Manager (RM) 

In ACAP, Resource Manager (RM) manages devices, application tools, and 
other resources that are available in a given environment. Typically, RM runs in the 
same environment as the one whose resources it manages (as is the case for the VCC 
system). However, if infeasible to do so, RM can also run at a remote location. 

Resources are associated with a hierarchical, ACAP-defined type system. Figure 
2 shows a partial resource type hierarchy and example resource instances for a 
typical VCC operator environment based on a networked desktop computer. Each 
resource type has a set of attributes that describe capabilities and other properties. 
For example, the resource.comm.audio.ip type represents resources for VoIP 
communication and has properties, in and out, which represent audio input and 
output resources/devices respectively. The same resource type hierarchy is used by 
ACAP services to specify required resources. 

Figure 2. A Partial Resource Type Hierarchy and Example Resource Instances for a vee 
operator environment. A resource type is a rectangular box, and a resource instance is a 

circular box. 



432 Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman 

Part of the VCC OPERATOR/CALLER installation and configuration process is 
to construct a resource hierarchy for an environment, most of which can 
automatically be deduced from the local (file type tool) association settings. 
Multiple instances may exist for a given resource type, e.g., 
resource.comm.audio.ip and resource.comm.data.html.browser in Figure 2, in 
which case the operator/caller is prompted to specify preferences. 

When a service enters an environment, each of its contained service objects 
makes a request to the RM for a required resource. If the requested resource is 
available, the RM returns the corresponding resource object. The resource object is 
a proxy for the real device or application tool and provides an interface through 
which the service object can control, communicate, and manage the device or 
application tool. Communication between a resource object and the corresponding 
device or application tool is device or application-dependent. For example, the 
resource object for Microsoft NetMeeting may use a COM interface of this tool that 
allows other applications to control it programmatically. This way, existing tools 
and devices can easily be integrated with an ACAP environment, which in turn helps 
reduce the "learning curve" both for VCC operators and callers. 

4.3 Handling Incoming Calls 

Upon receiving a call, VCC DISPATCHER performs the following tasks: 

Retrieve the caller history (based on caller id), current state (e.g., URL history), 
address, and preferred method of communication of the caller. 
Create a CALL service object, which is a topmost container that represents the 
current call and contains USER, CONTEXT, and COMM service objects. The 
USER object stores any registration information of the caller, the CONTEXT 
object any received state information, and the COMM object the caller's current 
location and preferred methods of communication in terms of resource types. 
Each of these service objects has an application-specific interface. 
Create and store a copy of the CALL object for record keeping and persistence. 
This is the primary copy and holds the true state of the call if the information is 
lost in transit. 
Select an operator and put the CALL object in the QUEUE of the selected 
operator. QUEUE represents a communication channel between the VCC 
DISPATCHER and VCC OPERATOR of the selected operator. The exact 
operator scheduling and selection criteria may be policy-dependent and are 
beyond the scope of this paper. 

When the CALL object arrives at the operator site, ACAP notifies the operator­
end of the QUEUE, which, in turn, notifies the VCC OPERATOR. VCC 
OPERATOR starts or activates the new CALL and alerts the operator of its arrival. 
When the operator wishes to communicate with the caller, the VCC OPERATOR 
makes a request to the COMM service object, which first asks the ACAP RM for a 
communication resource of the same type as that of the caller's top preference. 
When the RM returns a resource object (see Section 4.2), the COMM creates two 



Adaptive, P2P Resource Management of a Virtual Call Center 433 

ACAP Endpoint objects. Each Endpoint is a service object that represents an end 
point of a "call" of a specific type and is to be bound to a resource object for a 
device or application tool used for the call. Binding an Endpoint to a resource object 
may involve starting an application tool and retrieving its address information, e.g., 
the IP address and port of the host computer, on which the application tool is 
running. In ACAP, this address information is called the resource address of the 
Endpoint. Subsequently, the COMM asks the RM to bind the operator Endpoint to 
the returned resource object and then sends the other Endpoint to the caller. 

On the caller's side, the VCC CALLER receives and starts the caller Endpoint 
object, at which point the Endpoint asks the RM in the caller's environment for a 
communication resource of its type. When the RM returns a resource object, the 
Endpoint object binds to it and alerts its counterpart at the operator's site of its 
resource address information. Subsequently, the operator's Endpoint makes a 
request to its resource object to initiate a communication session, passing it the 
resource address of the caller Endpoint. In turn, the resource object instructs its 
application tool or device to "call" the specified destination. 

Figure 3 graphically illustrates the architecture of an example communication 
session between the VCC operator and caller, the set-up process of which is just 
described. This architecture applies to all types of communication in ACAP. The 
operator and caller Endpoints may continue to exchange information even after a 
communication session has been established. For example, in a collaborative Web 
Browsing session, the operator Endpoint may send to the caller Endpoint the URLs 
of the Web pages that the caller's Web browser should display and vice versa. For 
"multimedia" sessions, ACAP allows multiple pairs of operator caller 
Endpoints to exist and operate at the same time. 

Note in Figure 3 that the resource objects do not have to run on the same host as 
their application tools or devices. This design is critical in increasing ACAP's 
ability to adapt to the preferred or available resources. To illustrate, consider a case 
where the operator and caller wish to have a voice communication, and one or both 
of the parties wish to use a regular phone. Here, the resource object cannot control 
the phone directly. Instead, it interfaces with a gateway to the phone network, 
which most likely is located at a remote site, and control the phone via this gateway. 
Furthermore, the operator/caller may be on a device with limited resources or 
capability, e.g., a phone. ACAP can still accommodate such a case by running the 
resource and Endpoint objects on a proxy host. Also note in Figure 3 that the 
COMM object on the operator site still contains the caller Endpoint object, even 
after it has moved to the caller's site. This way, the COMM object can still maintain 
context across contained objects in presence of the mobility. 

When the call is complete, the VCC OPERATOR requests that the CALL 
release all the allocated resources. Furthermore, it notifies the VCC DISPATCHER 
of the call completion and sends it any state updates by sending the CALL and its 
contained objects back. Subsequently, the VCC DISPATCHER updates its database 
with any updated information from the received CALL. It may be possible that the 
connection between the VCC OPERATOR and DISPATCHER may fail while the 
operator and caller communicate. In such a case, the VCC OPERATOR locally 
stores the CALL and its contained objects until the connection is restored. The state 



434 Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman 

of the call is contained within the object and can be updated in the future, even in 
batch mode, if desired. 

Agent Site Caller Site 

Figure 3. Example Architecture for Operator and Caller Communication 

5. RELATED WORK 

To our knowledge, ACAP is the first adaptive services platform that uses the 
concept of migratory services and peer-to-peer connections as the main means of 
developing and managing high-level services. However, the idea of adapting 
services to available resources in end user environments has been receiving an 
increasing amount of attention. For example, Open Services Gateway Initiative 
(OSGi) [2] is an industry consortium that specifies an object-oriented framework for 
remotely delivering and managing services. The OSGi framework provides a 
common life-cycle management service and allows services from different vendors 
not only to co-exist in the same environment but also dynamically discover and 
make use of each other. In addition, it allows a variety of end user devices to be 
represented and integrated with other services. 

Note that the OSGi framework does not specify the mechanics of service 
operation, whereas ACAP specifies a model of service operation using migratory 
objects. This makes ACAP and OSGi complimentary to each other. For example, 
ACAP can use the service/device management facilities of the OSGi framework in 
implementing its Virtual Call Center (VCC) application as follows. ACAP 
Resource Manager can be implemented as an OSGi service bundle. This bundle 



Adaptive, P2P Resource Management of a Virtual Call Center 435 

can be downloaded and installed on the OSGi framework of a call center operator, at 
which the Resource Manager, once activated, can discover communication and other 
resources of the operator's environment. The ACAP call service can also be 
implemented as an OSGi service bundle, which can dynamically be downloaded and 
activated and discover the local Resource Manager. Integration with the OSGi 
framework is part of the future work. 

Telecommunications Information Networking Architecture (TINA) [3] is an 
example of high-level service deployment and management platform that takes a 
client-server approach. Mainly developed from the viewpoint of service providers, 
TINA specifies a set of architectural principles and object-oriented information 
models for next generation multimedia telephony services. TINA takes a client­
server view of how services should be provided in that every aspect of managing a 
service involves server components "running in the network." For example, in 
TINA, creating end-to-end communication channels involves a Communication 
Session Manager (CSM), which is mainly responsible for collecting and distributing 
the address information of end user devices to be used. 

In contrast, ACAP is inherently peer-to-peer. In ACAP, the basic model of 
communication is to create and send peer service objects to communicating 
endpoints. Once in place, these objects connect to each other directly. This way, 
much processing of the application logic of a service can take place directly in end 
user environments, and server components mostly perform administrative tasks such 
as billing and subscriber management. Thus we argue that ACAP provides better 
support for scalable service environments than TINA. 

Object mobility has received a lot of attention in the literature. One of the main 
applications of object mobility has been in localizing access to distributed objects in 
order to increase system performance. The main idea is to move an object to where 
it is needed, which makes accessing the object not much more expensive than local 
method calls. In order to automate the decision as to when and where to move 
objects, a variety of system- or language-level support is provided. For example, 
Kan [4] extends the Java language to include Kan-specific keywords and constructs 
for asynchronous method calls and transactions and keeps track of read/write access 
patterns on Kan objects. When a Kan object is write-accessed one thread at a time, 
it migrates. Otherwise, the object is replicated to where read requests are issued, 
and write requests are sent to its home site. StratOSphere [5] allows migratory 
objects to adapt to the available resources of new sites by enabling them to adopt the 
local implementations of their methods. The Aleph toolkit system [6] facilitates 
efficient location of migratory objects via its Arrow distributed directory protocol. 
Migratory objects, in the form of mobile operators, have also been used in the area 
of active messaging, e.g. [7]. 

In ACAP, migratory objects do not contain any "intelligence." Rather, they are 
used in designing and managing migratory and adaptive services in a distributed 
environment. Specifically, they are mainly used as the means of transporting 
application code and data to end user environments and establishing peer-to-peer 
connections between communicating endpoints. 



436 Munir Cochinwala, Namon Jackson, Hyong Shim, and Eric Sigman 

6. FUTURE WORK AND CONCLUSION 

ACAP has effectively been used for rapid development of VCC and other 
advanced services, and its capabilities have successfully been used in both internal 
and external demonstrations. However, a number of important issues still remain. 
One such issue is security. Specifically, ACAP dynamically moves among 
communicating endpoints services objects that may contain executable code. This 
raises the issue of how to trust the authenticity and integrity of received service 
objects. On the other hand, service object owners should have control over who has 
access to their objects and where they move. In the former case, a PKI-based 
approach may be used to sign and verify the integrity of migratory service objects. 
In the latter case, we have a capability-based [8] approach, which allows owners to 
keep track of and revoke capabilities even when their objects are at remote locations. 
Fully addressing these and other security issues in ACAP is part of future work. 

Another area of interest is to apply ACAP approach to management of network 
resources. Specifically, our model of individual environments managing their own 
resources can be extended to include network-level resources. That is, when a 
service migrates and asks for resources, the RM can grant or deny requests based on 
both current network conditions and locally available resources. This way, network 
operators/service providers can have fine-grained control over access and utilization 
of their resources. Providers can also implement resource usage-based billing. 

Integrating network resource management with service creation and 
management is an important area for providers. This will allow providers to manage 
and prioritize limited manpower and network resources to revenue generating 
services. We are actively working in this area developing a service model that 
allows service definition across network and service layers. 

In summary, ACAP applies object-oriented principles to managing services and 
environments. In ACAP, services are specified in terms of required resources, and 
environments in terms of available resources. ACAP facilitates services to adapt to 
diverse environments by allowing them to dynamically migrate and discover 
available resources in a given environment. Migratory services are facilitated by use 
of migratory objects in ACAP. In this paper, we have described in detail a Virtual 
Call Center (VCC) system to illustrate adaptive resource management requirements 
for high-level services. Furthermore, we have shown our approach to addressing 
these issues by describing how support for migratory services and peer-to-peer 
connections in ACAP is used in its architecture and implementation. 

REFERENCES 

[1] Alberi, 1., Cochinwala, M., Cohen, E., Jackson, N., Pucci, M., and Sigman, E., "An 
Object-Based Framework for Communication Services," IEEE GlobeCom 2000, 
Workshop on Service Portability and Virtual Customer Environments (SerP-2000), 
December 2000. 

[2] "OSGi's Service Platform Release 2" available at http://www.osgi.org. 



Adaptive, P2P Resource Management of a Virtual Call Center 437 

[3] Abarca, C., et al., "Service Architecture," TINA-C Deliverable available at 
http://www.tinac.comlspecifications/documents/sa50-main.pdf. 

[4] James, J. and Singh, A.K., "Design of the Kan distributed object system," Concurrency: 
Practice and Experience 12(8): 755-797, 2000. 

[5]Wu, D., Agrawal, D., and Abbadi, A.E., "Mobility and Extensibility in the StratOSphere 
Framework," Distributed and Parallel Databases 7(3): 289-317,1999. 

[6] Demmer, M., and Herlihy, M.P., "The Arrow Directory Protocol," Proc. of 12th 
International Symposium on Distributed Computing, September, 1998. 

[7] Okino, C. and Cybenko, G., "Modeling and Analysis of Active Messages in Volatile 
Networks," Proc. of the 37th Allerton Conference on Communications, Control and 
Computing, Monticello, IL, 1999. 

[8] Landwehr, C.E., "Formal Models for Computer Security," ACM Computing Surveys, Vol 
13, No.3, September 1981. 

[9] http://www.recursionsw.comlproducts/voyager/voyager.asp. 
[10] Cochinwala, M., "Database Performance for Next Generation Telecommunications," 

Proceedings ofInternational Conference on Data Engineering 2001: 295-298. 


	ADAPTIVE RESOURCE MANAGEMENT OF AVIRTUAL CALL CENTER USING A PEER-TOPEERAPPROACH
	1. INTRODUCTION
	2. VIRTUAL CALL CENTER: A MOTIVATINGEXAMPLE
	3. ACAP
	4. ACAP AND VCC
	4.1 Architecture
	4.2 ACAP Resource Manager (RM)
	4.3 Handling Incoming Calls

	5. RELATED WORK
	6. FUTURE WORK AND CONCLUSION
	REFERENCES




