
AUTO-DISCOVERY AT THE NETWORK AND 
SERVICE MANAGEMENT LA YER 

Alexander Clemm, Anil Bansal 
Cisco Systems, Inc. 
170 West Tasman Drive, San Jose, CA 95134, USA 
{alex, abansalj@cisco.com 

Abstract: Auto-discovery capabilities of management systems typically pertain to net­
work elements as a whole, i.e., the ability to automatically detect which net­
work elements are connected to a network and to discover their type and 
physical and logical configuration. Service- and network-layer information, 
on the other hand, is in general not discovered but provisioned and provided 
by the organization operating the network and services. There are however 
scenarios in which the ability to auto-discover such information provides a lot 
of value. This paper describes the challenges that we encountered, the ap­
proach we took, and the lessons we learned in providing auto-discovery capa­
bilities beyond the network element layer in the context of packet telephony 
and of metro Ethernet. We believe that these experiences will also be applica­
ble to other contexts. 

Key words: Network management, service management, auto-discovery, VoIP. 

1. INTRODUCTION 

A common function of element-layer management systems, as well as systems 
used for monitoring purposes, is auto-discovery. Auto-discovery is an overloaded 
term used in different contexts that can hence mean different things, but in general it 
refers to the ability of a management system to extract on its own certain informa­
tion about what it is that needs to be managed, rather than requiring users to popu­
late that information. When it comes to network and service layer management, 

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35674-7_66

© IFIP International Federation for Information Processing 2003
G. Goldszmidt et al. (eds.), Integrated Network Management VIII

http://dx.doi.org/10.1007/978-0-387-35674-7_66


366 Alexander Clemm, Anil Bansal 

instantiation of a service for a given subscriber of that service, i.e., a service in­
stance, not the service offering). The provider of a service uses service provisioning 
systems to drive the network configurations required to support the services into the 
network. Hence, any service information is assumed to be known a priori, not in 
need of being auto-discovered - the master of this information is the service pro­
vider, not the network. This service information is also used as the basis for aspects 
such as service level agreements (SLAs) or billing [8]. To verify that a service is 
provisioned correctly, it is always possible to check whether the current configura­
tion in the network corresponds to the configuration it is supposed to have in support 
of the service, i.e., whether the network configuration "as built" corresponds to the 
network configuration "as planned". 

In many cases, this is completely adequate. Nevertheless, there are situations in 
which it would be desirable to be able to discover network ,and service configura­
tions from the network directly, rather than depending on service-related informa­
tion from other sources. Reasons for this include: 

• A service management and service provisioning system gets deployed at a 
later stage, after initial network deployment. A service provider would like 
to be able to see and automatically retrieve what services had earlier al­
ready been configured on the network. 

• A service provider has maintained poor service records and reason to be­
lieve that its service records are not up to date. This scenario can occur 
specifically where service related configurations are not directly associated 
with specific end subscribers. An example would be a wireless service 
provider who needs to provide certain service capacity in a certain area, for 
instance a certain number of channels for GSM, TDMA, and data traffic for 
base station traffic. 

• Operations personnel within a service provider's organization have gone 
around service provisioning systems and provisioned service instances "by 
hand", resulting in certain network-layer configuration mismatches that are 
hard to troubleshoot. 

We have found such scenarios to be applicable for instance in the context of 
packet telephony management or management of metro Ethernet services, for which 
we hence encountered the requirement to include the ability to auto-discover net­
work and service layer information as part of the management solution. In this pa­
per, we will discuss the challenges that must be addressed when attempting to pro­
vide network and service layer auto-discovery, and an approach and design pattern 
that deals with those challenges. Our experiences are based on systems that we built 
for the management of packet telephony (Cisco Packet Telephony Center - PTC) 
and of metro Ethernets (Cisco IP Solution Center - ISC), and which incorporate the 
concepts described. However, no inferences should be made about Cisco product 
features or product direction. We expect our experiences to be not unique to those 
particular services but transferable to other service domains. 

The remainder of this paper is structured as follows. What we mean by service 
layer auto-discovery and some background are discussed in Section 2. Section 3 
dives into the challenges and considerations for service-layer auto-discovery. A 
design pattern that we have devised to tackle those challenges is subsequently intro-



Auto-Discovery at the Network and Service Management Layer 361 

duced in Section 4. Two applications of this design pattern that have been realized 
in actual systems, one concerning packet telephony, the other metro Ethernet, are 
presented in Section 5. Finally, Section 6 offers some conclusions. 

2. SERVICE LAYER AUTO-DISCOVERY 

Auto-discovery is often encountered in the network element management con­
text. It concerns the ability of a management system to automatically discover in­
formation about the network, specifically to discover what devices are in the net­
work, what type of device they are, what their physical configuration is and how 
they have been logically configured. Frequently auto-discovery occurs by a man­
agement application pinging a range of IP addresses specified by the user. Upon 
receiving a response, the device's entity MIB is queried to identify device type and 
physical configuration. Subsequently, the device can be displayed on a topology 
map and is available for monitoring, MIB browsing and other management pur­
poses. This way, auto-discovery obviates the need for management systems to be 
populated with this information by the user or obtain it through seed files or other 
systems. It allows the management system to obtain an accurate picture of the de­
vices that are actually deployed in the network. 

The situation is different as far as services are concerned. Management informa­
tion about services is not discovered. Instead, the master of service management 
information is the service provider that provisions them respectively its operations 
support system, not the network. A service provisioning system is used to drive the 
required device configurations to support the services into the network, with the 
service provider keeping track of what services are provisioned. The provisioned 
services can be verified by checking whether the actual network configuration corre­
sponds to how it was supposed to be provisioned, comparing whether the network 
configuration "as built" corresponds to the network configuration "as planned". 
(Please note that throughout this paper, we refer with service auto-discovery to the 
automatic discovery of management information that represents instances of ser­
vices. This is not to be confused with auto-discovery of services themselves, e.g., 
through advertising of services by application servers in a network, e.g., [6,9].) 

The following are some examples of network and service layer concepts that 
would generally be provisioned but not auto-discovered by service providers: 

• An H.323 zone in a VolP (Voice over IP) network 
• An instance of a residential ETTH (Ethernet To The Home) data service 
• An instance of a transparent LAN service (TLS) in a metro Ethernet setting 

Not having the capability to automatically discover network and service layer 
management information is completely adequate in many cases. However, as men­
tioned in the introduction, in practice scenarios can be encountered where service 
instances are not necessarily completely known and a capability to automatically 
discover them is desirable. For example, in packet telephony management, the sce­
nario can occur where a network and service management system encounters an 
existing deployment when it is introduced. To be useful, this system needs to be 
populated with service-layer managed objects ("service MOs"), such as information 



368 Alexander Clemm, Anil Bansal 

on H.323 zones. Entering this information is a tedious and redundant exercise; after 
all, the network had already been provisioned earlier with those services. Likewise, 
even with a network and service management system in place, provisioning can 
sometimes occur working around it and configuring network elements directly (e.g., 
through the devices' command line interface - eLI). This leads to network-layer 
concepts and instances of services being introduced through the back door, without 
the management system knowing about them and without proper service MOs being 
created. This is a problem where network layer integrity might be violated without 
the management system knowing about it. Also, without service MOs being cre­
ated, there is no way for an Operations Support System (OSS) to subsequently refer 
to the network and service layer concepts that have been introduced. In some cases, 
records of what services have actually been provisioned in the network do not exist 
due to poor operational practices at a service provider, resulting in a network that is 
overall poorly planned and resources in the network being tied up without generat­
ing revenue. In each case, it would be desirable to have a capability to auto-discover 
services (and network-layer concepts such as connections, which we include in our 
discussion without each time explicitly referring to them separately). 

So what do we mean by service auto-discovery? We refer to it as the ability of 
a management system to automatically detect what service instances of a given type 
of service are present in a network, without requiring the user or an OSS to "tell" the 
system about those instances. In general, this involves the ability to derive service 
information from network element level management information ("NE MOs") , 
such as information on the logical configuration of network devices. To provision a 
service, configurations need to be applied and driven down into the network, often 
several devices. Hence the service instances present in the network can be "reverse 
engineered", respectively derived from the network configuration. Service auto­
discovery assumes that information about the network elements is already known to 
the management system and in place, as it is a prerequisite. That information could 
be known as the result of (network element) auto-discovery and device configura­
tion discovery that has taken place earlier. Figure 1 depicts the relationship between 
service auto-discovery and service provisioning. 

I 
rvice Se 

provisi oning 

I 
NE 

provisi oning 

ServiceMOs I 

NEMOs 

Servi 
disco 

ce-level 
very 

I 
disco very 

I Network Element I 
Figure 1: Relationship between provisioning and discovery 



Auto-Discovery at the Network and Service Management Layer 369 

The need to auto-discover management information applies also to the network 
management layer. An example are connections in an ATM network. For the pur­
poses of this paper, we treat network and service level auto-discovery jointly, and 
our concepts apply to both. MOs at the network management layer and at the ser­
vice management layer are referred to collectively as "service MOs". 

Management information constitutes the starting point for our considerations on 
service discovery. Service (and network) management .layer information builds and 
depends on information at the network element layer, aggregating and abstracting 
information from it. Hence the mapping of service and network layer concepts onto 
information concerning individual network elements is reflected by the relationships 
between NE MOs and service MOs that express these dependencies (figure 2). 

NE MOs 
(represel/t what 's in the 

lIe/lllorkJ 

NEMOs 

Service MOs 

Service MOs 
(aggregate/abstract illformation 

I from NE MOs; drive configurations i 'mo ,od ,,=, 'h, "-") 

NEMOs 
(represent what's in the 

network) 

NEMOs 

Figure 2: Dependencies between NE and service MOs 

The knowledge of these relationships is essential for service auto-discovery. 
One focus for service auto-discovery is hence to identify and be on the lookout for 
NE MOs of certain classes that are capable of maintaining relationships with service 
MOs, respectively that service MOs usually are dependent upon. The presence of 
such an NE MO is then an indication that a service MO may also be present. For 
example, an NE MO representing the endpoint of a connection is an indication for a 
corresponding MO representing the connection itself. Another trickier example 
would be an NE MO representing a DSO port which mayor may not be assigned to a 
service (and hence related to a service MO). Because service MOs usually aggre­
gate and abstract information from several NE MOs, possibly spanning across mul­
tiple NEs, part of service auto-discovery concerns also identifying the various NE 
MOs that go together and collectively support a service MO. In the connection ex­
ample, this would involve another NE MO that represents the other connection end­
point. In the port example, it might involve a set of other MOs representing connec­
tion endpoints, cross connects (relating the port to the connection represented by the 
connection endpoints), and service features on a feature service that refer to that 
particular port that jointly together with the port make up a residential subscriber 
service. Accordingly, the following are key aspects for service auto-discovery: 

• Identification of NE MOs of classes that service MOs usually depend on 
• Identifying which NE MOs would match up to relate to the same service 

instance 



370 Alexander Clemm, Anil Bansal 

• Creation of service objects based on aggregate NE MO information 
In addition to service information that can be derived from the network, there 

can be certain aspects about service objects that cannot be derived, as they concern 
service layer aspects that are not represented in the network elements but are main­
tained by the service provider. An example for this would be the customer informa­
tion about who subscribes to a given service instance. This type of business infor­
mation is not part of the network configuration and its automatic discovery from the 
network would require clairvoyant capabilities. Clearly, there may be information 
in a business management system that might be associated with the network infor­
mation. However, this is not the emphasis of this paper and would be subject to 
further work; we assume that this type of information will still need to be associated 
by the service provider. 

3. SERVICE LAYER AUTO-DISCOVERY CHALLENGES 

As indicated, key to our approach to service-layer auto-discovery is the identifi­
cation of NE MOs that service MOs could be related to and that hence indicate their 
possible presence, and derivation of service-layer information from those NE MOs. 
This sounds reasonably straightforward, although as so often the devil is in the de­
tails. The following are some of the aspects that need to be considered. 

Multiple ways to instantiate a service. There can be different ways in which 
the same instance of a service can be instantiated. This means that in general, we 
need to know about different possible mappings, so we know what things to look 
for. Of interest are not so much the differences and variation in actual provisioning 
steps taken, but different ways in which the same service can be reflected in the re­
sulting network configurations. 

Identification of "matching" NE MOs. Generally, a service MO does not map 
one-to-one on an NE MO but is distributed over several MOs. This raises the ques­
tion how we can find out which NE MOs "match", respectively would be related to 
the same service MO. How can we tell whether they potentially belong to the same 
service MO, or whether they would belong to different ones? In many cases, NE 
MOs related to a service MO contain information about other NE MOs to which 
they are related. An example are NE MOs that represent connection endpoints and 
contain information about the IP and port addresses that help identify the corre­
sponding endpoint on the other side. (That MO in turn contains the first MO's NE's 
IP address information.) In some cases, only some of the NE MOs related to the 
same service object may have information about their relationship to the other NE 
MOs. An example is a DSO port MO, cross-connect MO, and connection endpoint 
MO on the same network element that are all related to the same subscriber service. 
The cross connect MO may contain information relating it to the DSO port and to the 
connection endpoint, but the connection endpoint MO may not be aware of it relat­
ing to either cross connect or DSO port (see figure 3). 

For such cases, service discovery generally needs to focus on the NE MOs that 
would have information allowing to identify other NE MOs related to the same ser­
vice MO first. Only subsequently the discovery will expand to try to find the other 



Auto-Discovery at the Network and Service Management Layer 371 

NE MOs that contain no such information but that were in part identified by the NE 
MOs found earlier. 

Dealing with rainy day scenarios. Service instances may have been miscon­
figured. For example, referential integrity problems may exist. An example con­
cerns signaling backhaul in packet telephony, where a media gateway controller 
might have been provisioned to backhaul signaling to a certain media gateway, but 
the media gateway expecting signaling backhaul to occur between it and a different 
media gateway controller. The way management information is represented must 
account for this possibility. It needs to be able to represent network and service 
layer information "as built", which includes a lot more possibilities compared to a 
representation of management information "as planned" that does not need to ac­
count for all the things that can possibly go wrong. Information models that repre­
sent services typically model services only "as planned", as indicated for instance in 
the cardinality of relationships. For instance, modeling of a point-to-point connec­
tion always involves two endpoints. How would the same information model repre­
sent a connection that was "broken" because the endpoints don't match up, violating 
referential integrity? The model needs to be capable to represent both, the network 
and services "as planned" with all their constraints, and the network and services "as 
built", with possible violations of planned constraints. Alternatively, two parallel 
models need to be maintained. In any event, we need to be able to deal with the 
world the way it is, not the way we wish it would be. A related question concerns 
how rainy and sunny day scenarios can even be distinguished. For example, if an 
NE MO is missing, it might be because truly a misconfiguration has taken place, or 
because the other NE MO has simply not yet been identified or discovered. 

Note: 
Arrows indicate which 
MOs maintain relationship 
information to other MOs 

Figure 3: NE MOs involved in providing a residential subscriber service 

Incremental discovery. In general, it is unacceptable having to wait for a long 
period of time, until all network information is precisely known (which might never 
fully be the case due to the constant changes occurring in real-life networks), to start 
discovering service MO. Service auto-discovery needs to be able to cope with in­
complete information about the network, filling in missing pieces as it goes along 
and able to indicate to users the status of the discovery process. This is also related 
to the previous point. 



372 Alexander Clemm, Anil Bansal 

Obtaining accurate NE information: Information has to reflect the current in­
formation in the network, requiring periodic synchronization of the NE information 
that service-layer auto-discovery is based on. This is associated with the usual chal­
lenges of keeping a management cache from going stale, nothing unique to service 
layer auto-discovery but nevertheless worth to be mentioned. Periodic upload and 
synchronization can be complex if the network or the EMS does not have the ability 
to provide only the changed information. If the complete network information is 
uploaded every time, the onus lies on the NMS to find out the deltas that changed 
since the last upload and update its information accordingly. Event based mecha­
nism can be challenging if either the configuration change events do not carry 
enough configuration information, if there are too many of them, or if they are not 
delivered in a reliable manner. 

Model "as-planned" 
stringent COllstraints, 
e . 1-1 cardinaLi 

mismatch! 
theoreticaL constraints 
ma be broken 

Figure 4: Rainy day scenarios - discrepancies between "as built" and "as planned" 

4. AN APPROACH FOR NETWORK AND SERVICE 
LAYER AUTO-DISCOVERY 

The following outlines our approach to discover service MOs from the network. 
It has been applied in the context of packet telephony networks as well as Metro 
Ethernet networks and expect that it can be applied also to other domains. 

4.1 Initial analysis 

We start with an analysis of the model of the management information that is 
involved. We assume that a model representing management information from the 
NEs, i.e., containing the NE MOs, will already be in place. (As mentioned earlier, 
as a prerequisite for service auto-discovery we assume that NE MOs have been dis­
covered already, so they need to populate some model.) Certain categories of NE 
MOs will typically be part of (or referenced by) a service MO. We will refer to those 
NE MOs as "service-supporting NE MOs". For example, a termination point will 
be indicative of a connection. 

If we do not have one already, we define a model of the network and service 
layer concepts that need to be discovered. This model can be arbitrarily defined; it 
can even include new services that were not known at the time when the NE MOs 
were originally defined. As far as the service MOs aggregate and abstract informa-



Auto-Discovery at the Network and Service Management Layer 373 

tion originating from the network, they have dependencies on NE MOs. We need to 
explicitly identify these dependencies respectively relationships between service 
MOs and service-supporting NE MOs. Service-supporting NE MOs generally main­
tain relationships with other service-supporting NE MOs, jointly serving to support 
the higher-layer abstraction represented by the service MO. In many cases, the NE 
MOs will contain information that points to the other NE MOs that they are in rela­
tionship with. For example, an NE MO representing a termination point may in­
clude the IP address and port number of the remote end. 

Knowledge of these relationships and dependencies is the basis on which the 
rules can be defined according to which discovery takes place. Some of these rules 
will be "triggering rules", which provide the conditions under which a service object 
will be created. The trigger generally identifies certain service-supporting NE MOs, 
which we will call "master NE MOs", that are a certain indication that a service MO 
is present. It is important that master NE MOs are defined such that there is only 
one master NE MO per service MO, so not to inadvertently introduce too many ser­
vice MOs. Redundant service MOs would be difficult to match and eliminate later. 
In many cases, there are different possible candidates that could serve as a master 
NE MO. Often, information models are "symmetrical" in that for instance all the 
service-supporting NE MOs are of the same type. In this case, a master NE MO can 
be identified not by the NE MO type but by another distinction, for instance through 
the system it is contained in. In the packet telephony case, the call controller is gen­
erally considered key to the configuration, accordingly the service-supporting NE 
MOs of the media gateway controller are considered the "master". In peer-to-peer 
cases, a convention which of the service-supporting NE MOs should serve as the 
master NE MO could be the NE MO whose NE's IP address is lower than that of the 
other NEs to which it points. 

Other rules will be "completion rules", which identify other dependencies of the 
service object, i.e., the other service-supporting NE MOs that must be in place for a 
service object to be "complete", or consistent. When a service MO is first created, it 
is only related to the master NE MO that triggered its creation. Since other NE MOs 
typically support this service MO, the information contained in it is incomplete. 
Hence we also introduce a state concept to indicate the status of discovery, termed 
the "discovery state". When initially created, a service MO will typically have a 
discovery state of "incomplete". It moves to a completed state once the completion 
rules have been satisfied, respectively all NE MOs that the service MO depends on 
identified. The discovery state also helps deal with cases where services were mis­
configured, for example where referential integrity is violated and other NE MOs 
that are needed for the service to be consistent and complete cannot be found. An 
incomplete discovery state can be an indication for such situations. 

Finally, aggregation rules will define the computation of any derived attributes. 
All those rules could conceivably be specified separately and processed by a discov­
ery inference engine. However, in our case we chose to simply encode those rules 
in the respective discovery algorithms of the systems that we implemented. 



314 Alexander Clemm, Anil Bansal 

4.2 Steps during runtime 

The steps that occur during service layer auto-discovery are accordingly as fol­
lows: 

The first step is really outside the scope of service layer auto-discovery itself and 
is a prerequisite for the auto-discovery of service MOs that follows. It involves dis­
covery of the NE MOs. This means management information is uploaded from the 
underlying element management system or network element, as part of initial upload 
or (later) of synchronization. (The network elements will generally be auto­
discovered themselves; however, it is not a prerequisite as this information could 
also be populated using some other mechanism.) Internally, MOs representing those 
NE resources are created. This includes physical aspects (cards, ports) as well as 
logical aspects (protocol entities, termination points, etc.). 

Next, NE MOs are scanned to identify service-supporting NE MOs, for instance 
NE MOs of certain classes. Examples are termination points (indicative of a con­
nection), trunk group controls in a call agent (indicative of a trunk group), a cross­
connect in an edge device that relates a DSO with a trail termination point connect­
ing to an aggregation device (indicative of a residential subscriber service, as per the 
earlier depicted example). A matching NE MO will in all likelihood exist on an­
other NE, e.g., a matching termination point in the case of the connection or a DS 1 
in case of the trunk group control. If a matching NE MO is found, a service MO 
with those NE MOs should be created. 

Master NE MOs are identified. For each master NE MO, a service MO is cre­
ated as a result. This can occur before a matching counter piece is found. In the 
MGCP-based packet telephony case, the media gateway controller is generally con­
sidered key to the configuration, accordingly the service-supporting NE MOs of the 
media gateway controller are considered the "master". The service MO will be 
marked as "incomplete", as not all NE MOs that the network/service layer concept is 
composed of are identified. However, the service MO will have enough information 
to locate the "missing" NE MO. For instance, a trunk group control will indicate the 
port number, slot number and shelf name of the DS 1 it is supposed to be controlling, 
or a termination point has the address of its counterpart on the other side. 

Subsequent steps attempt to identify the other NE MOs that support the service 
MOs that have been created. This can be done as NE MOs are discovered, or in an 
extra pass scanning all the NE MOs. Matching NE MOs can be identified through 
the specific semantics of the underlying model. A simple example concerns net­
work connections: a network connection service object could be initially created 
with the information contained in an MO representing a connection endpoint. This 
MO contains the far end's IP address and port number. NE MOs from the far end's 
systems can now be searched for another connection endpoint object, that has as far 
end the initial NE MO's NE's IP address (and corresponding port number). 

As service MOs are "completed", they will be marked with a discovery status of 
"complete". Also, information aggregated and abstracted from the supporting NE 
MOs can be computed. If conflicting information is found between the service sup­
porting NE MOs, the service MO can be marked as "inconsistent". 

Finally, the service provider has the possibility to associate the identified service 



Auto-Discovery at the Network and Service Management Layer 315 

instances with other service-related information from the ass, such as customer 
information. 

The steps can be interleaved. For example, it is possible for NE MO auto­
discovery (or discovery) to take place while auto-discovering service objects, per­
forming analysis of service-supporting NE MOs as things go along. Also, multiple 
passes may be applied. In the first pass, information is extracted from the network 
and raw service MOs, based on master NE MOs are created. In the second pass, 
service MOs are refined and completed. 

Finally, it is possible to discover service MOs on an ongoing basis, even after the 
initial auto-discovery pass. Changes to NE MOs will trigger auto-discovery rules to 
be re-evaluated, based on whether the NE MO was associated with a service MO to 
ensure that service integrity is still met), whether the change should trigger creation 
of a new service MO, or whether the change implies that the NE MO can be newly 
associated with an existing service MO 

To identify network-layer inconsistencies and misconfigured services, a user 
should check for service MOs with a discovery state of incomplete or inconsistent. 
Also, service-supporting NE MOs that are not related to any service MO are indica­
tive of "orphaned" resources in the network that lie idle and should for management 
purposes be garbage collected. 

5. APPLICATION EXAMPLES 

As mentioned earlier, we have realized the presented service and network layer 
auto-discovery concepts in two systems addressing two very different domains. One 
(PTC) concerns the management of packet telephony networks, the other (ISC) 
management of metro Ethernet, specifically Transparent LAN Service (TLS). This 
is an indication to us that the concepts are indeed generic and will be applicable to 
other areas as well. 

Packet telephony. The fundamental ideas underlying the system for packet te­
lephony management have been described in [2]. Central to it is the notion to hide 
the distributed nature of a packet telephony network by projecting virtual entities 
onto it that provide a logical management wrapper around the physical network. 
This greatly simplifies its management, as management complexity that results from 
the distribution is largely abstracted away. Examples for virtual entities are a virtual 
switch that represents a media gateway controller (MGC) and the media gateways 
(MG) that it controls along with the various signaling and control connections be­
tween them in an MGCP network, or a virtual zone representing a gatekeeper and a 
set of associated gateways sharing the same dial prefix in an H.323 network. The 
virtual entities constitute a mix of network and service management layer objects to 
which auto-discovery can be applied. Provisioning of packet telephony networks 
can be fairly error prone, therefore the ability to detect network-layer configuration 
mismatches using auto-discovery of the virtual entities proved to be a very attractive 
side aspect of the system. 

An analysis of the packet telephony information model [3] yields the service­
supporting NE MOs, basically the NE MOs that the various virtual entity MOs are 



376 Alexander Clemm, Anil Bansal 

related to. Most of the virtual entities are based on "symmetrical" relationships be­
tween a virtual entity (service layer) MO and two NE MOs of the same type. We 
declare the NE MOs contained by the media gateway controller the master NE MOs. 
Key to discovering the various virtual entities is discovering the top-level virtual 
entities, i.e., the virtual entities that contain the other virtual entities, for example the 
virtual switch in an MGCP-based network. The virtual switch can be easily identi­
fied by identifying the MGCP connections, derived from the MGCP termination 
point maintained by a media gateway controller and the MGCP termination point of 
the media gateway that it points to. In a first pass, the virtual switches are identified 
this way. In a second pass, the other virtual entities are identified, i.e., the various 
aspects contained in the virtual switch, such as trunk groups, trunks, or backhaul 
connections. Matching up of the related NE MOs is fairly straightforward once the 
virtual switch itself is known, as it is clear where to look for the counterparts of the 
MGC's NE MOs. 

The algorithm as described is of course somewhat simplistic. In reality, some 
aspects turned out to be quite tricky. For example, there can be multiple MGCP 
associations between an MG and several MGCs in a failover configuration in order 
to provide fault tolerance. At the same time, an MGC can have MGCP associations 
with multiple MGs, for which however the same failover configurations will need to 
apply. This leads to very sophisticated construction principles for the virtual entities 
and to fairly complex configuration constraints whose integrity must not be violated, 
respectively many rainy-day scenarios. Another challenge was the interdependence 
between service layer objects. Service objects representing PRI signaling backhaul, 
trunk groups, and DSx lines are dependent on creation of MGCP association and 
virtual switch objects. Unless MGCP association as well as virtual switch objects are 
discovered first, PRI backhaul and other service objects cannot be discovered be­
cause they use the association knowledge between MG and MGC. Thus the com­
plete discovery process involves multiple phases where the initial phase discovers 
those MOs that have no dependency on other MOs, and subsequent phases discover 
those MOs that are dependent on already discovered MOs. 

Metro Ethernet. Metro Ethernet management [1] deals with Transparent LAN 
Service. TLS could constitute a multipoint to multipoint connection or a single 
point to point connection and is used to transparently connect LANs at multiple cus­
tomer sites as one single LAN. TLS is abstracted as a service object and is formed 
by grouping multiple network layer objects. Refer to Figure 5 for a TLS example. 
In the example, TLS connects three customer sites LANS together to form one vir­
tual LAN. The end user is interested in only the endpoints of the TLS and does not 
care which intermediate nodes the circuit goes through. However, the TLS is com­
prised of multiple segments (6, in this case) at the network layer. As a part of auto­
discovery, the information is read from multiple devices, individual segments are 
formed, and then these segments are grouped together to form a TLS service. 

When the management system is connected to a live network where some TLS 
circuits are already provisioned, the management system auto-discovers all the TLS 
services and makes them visible to the user. This is also useful for further resource 
allocation in the network for the services provisioned later. The management system 



Auto-Discovery at the Network and Service Management Layer 377 

can keep track of resources such as ports, VLAN IDs which have already been used 
by the auto-discovered services and does not let operator use those resources. 

Similar to the case of packet telephony management, auto-discovery can also 
serve to detect network layer inconsistencies. For example, a segment belonging to 
TLS 1 can be misconfigured to belong to TLS2. When NMS uploads the network 
objects from individual devices and correlates these objects, the algorithm can detect 
the inconsistency and flag it to the user through its GUI. 

Customer ile A 

CLE .. , .•.. 
• Segmontl 

Seg",_nt. 
TLS gmont 

Physical Connection 

Segment3 ... 
••• , CLE 

, . 
Custom.r !:'te C 

Figure 5: TLS in a Metro Ethernet 

6. CONCLUSION 

In general, auto-discovery focuses on the network element management layer. 
However, there are legitimate and important reasons to extend auto-discovery to 
higher management layers as well. The concepts discussed in this paper have been 
utilized by management systems for Open Packet Telephony and for Metro Ethernet, 
with convincing results. The most important aspect perhaps is a side effect of the 
auto-discovery itself, namely the ability to detect network-layer inconsistencies in 
the network where service objects are not able to reach a discovery state that indi­
cates they are consistent and complete. Some of our practical experiences have been 
that service layer auto-discovery is however an expensive operation that should be 
used sparingly. It is applied once during initial cold start of the system and subse­
quently on operator request; essentially in situations where the service provider has 
reason to believe that the service information is no longer accurate. An important 
feature of our systems is the ability to restrict service-layer auto-discovery to a cer­
tain scope, such as in packet telephony an H.323 zone. The scope should of course 
be defined such that the service-layer concepts within it are self-contained, so that 
unnecessary and erroneous flagging of seeming inconsistencies - where service­
layer aspects extend to information outside the scope is avoided. 

Future work could aim at deriving auto-discovery rules automatically from ser­
vice definitions used to provision the network, such as the ones defined in and appli­
cable to systems and methodologies such as the ones described in [4, 5, 7, 10]. An­
other area for further research concerns matching auto-discovered data with infor-



318 Alexander Clemm, Ani! Bansal 

mation contained in the service provider ass. This would allow for instance to 
automatically associate subscriber information with service instances identified in 
the network, so really complete service auto-discovery with service aspects that are 
not to be derived from the network side. 

ACKNOWLEDGMENTS 

The authors would like to thank Prakash Bettadapur, Poon Leung, and Petre Dini 
for fruitful discussions on this subject. 

REFERENCES 

[1] Barry, D.: Metro Ethernet Management. Packet Magazine 312002, softcopy 
at http://www.cisco.comlwru:p/public/784/packet/juI02/p45-cover.htrnl, 
7/2002. 

[2] Clemm, A, P. Bettadapur: Building Management Solutions for Open Packet 
Telephony Networks. IEEE/IFIP 1M 2001, Seattle, WA, 51200l. 

[3] Clemm, A, P. Leung: Model-Driven Open Packet Telephony Management. 
IEEE/IFIP NOMS 2002, Florence, Italy, 412002. 

[4] Dreo Rodosek, G., L. Lewis: Dynamic Service Provisioning: A User Centric 
Approach. IEEEIIFIP DSOM 2001, Nancy, France, 101200l. 

[5] Garschharnmer, M., R. Hauck, B. Kempter, 1. Radisic, H. Rolle, H. Schmidt: 
The MNM Service Model - Refined Views on Generic Service Management. 
Journal of Communications and Networks (JCN) Vol. 3 Nr. 4,1212001. 

[6] Jacob, B.: Service Discovery: Access to Local Resources in a Nomadic Envi­
ronment. OOPSLA'96 Workshop on Object Replication and Mobile Com­
puting, San Jose, CA, 10/1996. 

[7] Kong, Q., I. Rose, D. Cameron: Towards Technology Independent and 
Automated Service Activation and Provisioning. IEEE/IFIP NOMS 2002, 
Florence, Italy, 4/2002. 

[8] Lewis, L: Managing Business and Service Networks. Kluwer Academic 1 
Plenum Publishers, New York, NY, 2001. 

[9] Preuss, S.: JESA Service Discovery Protocol (SDP). Proceedings Networkers 
2002 (Springer), Pisa, Italy, 512002. 

[10] Shen, F., Clemm, A: Profile-Based Subscriber Service Provisioning. 
IEEE/IFIP NOMS 2002, Florence, Italy, 4/2002. 


	AUTO-DISCOVERY AT THE NETWORK ANDSERVICE MANAGEMENT LA YER
	1. INTRODUCTION
	2. SERVICE LAYER AUTO-DISCOVERY
	3. SERVICE LAYER AUTO-DISCOVERY CHALLENGES
	4. AN APPROACH FOR NETWORK AND SERVICELAYER AUTO-DISCOVERY
	4.1 Initial analysis
	4.2 Steps during runtime

	5. APPLICATION EXAMPLES
	6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES




