
POLICY-BASED COOPERATION OF SERVICES 
IN UBIQUITOUS ENVIRONMENTS 

Tosbio Tonouchi, Tomohiro Igakura, Naoto Maeda, Yasuyuki Beppu, and 
Y osbiaki Kiriha 
Network Laboratories, NEe 

Abstract: Various kinds of nodes, including cellular phones and information appliances. 
are to become popular and are expected to provide a variety of services. 
Cooperation of these services will result in more convenient services than 
keeping them isolated would. A ubiquitous network is characterized by 
changeable system configurations. Because of this and the fact that a node is 
so frequently connected to and disconnected from the network. the global 
cooperation of services is difficult to describe in flow languages such as Web 
Services Flow Language (WSFL). One of the solutions to this problem is a 
policy technology. A policy attached to a node can be added or removed when 
the node is connected or disconnected. The policies can re-configure a 
changed system. 

Keywords: Management of Grid Computing. Clusters, Peer-to-Peer Applications. and 
Ubiquitous Computing Environments. Policy. Message-oriented system 

1. INTRODUCTION 

The ubiquitous network environment is maturing. Cellular phones with Internet 
access, personal data assistants (PDAs), and wireless local area networks (LANs) 
are becoming more and more popular. About 10 years ago, Weiser developed an 
original PDA called 'Tab' and invented a proprietary protocol for wireless 
communication [1]. 

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35674-7_66

© IFIP International Federation for Information Processing 2003
G. Goldszmidt et al. (eds.), Integrated Network Management VIII

http://dx.doi.org/10.1007/978-0-387-35674-7_66


140 Toshio Tonouchi et al 

with a global positioning system (GPS) can automatically give the location of the 
user to the network-connected air conditioner, which is automatically set to tum on 
when the user (e.g. Tom) comes near his house. 

One of the characteristics of ubiquitous networks is that some of the ubiquitous 
nodes constituting the systems are not always operational. A cellular phone may be 
off when the battery is dead or the network-connected air conditioner breaks down. 
We call this characteristic fickle. A fickle node may suddenly disappear, and the 
system suddenly stops due to this. For example, when the air conditioner breaks 
down, the cellular phone cannot communicate with the air conditioner. A fan should 
work instead of the air conditioner when the air conditioner breaks down. 

We propose a policy-controlled message-oriented system that overcomes the 
fickle-node problem. 

2. RELATED WORK 

A partial solution to the fickle-node problem is a publisher-subscriber system[2]. 
A publisher-subscriber system has a message router that automatically forwards a 
message to some of the nodes registered with the message router. Stopped and 
disconnected nodes will be manually unregistered. They can forward a message to 
adequate nodes in normal cases but they cannot handle the message when an error 
occurs. It is, therefore, difficult for the publisher-subscriber system to realize the 
example of the broken air-conditioner, which replies an error message. 

Web Services Flow Language (WSFL[3]) and XLANG[4] were interesting trials 
for specifying the workflow among Web services. However, these technologies 
encounter the fickle-node problem because the description in the control flow 
languages requires deterministic routing information. The unplanned appearance 
and disappearance of nodes totally affects the workflow. The programmer therefore 
must rewrite the workflow. 

3. ARCHITECTURE 

Our architecture is basically the same as that for publisher-subscriber systems. 
The architecture is shown in Figure 1. A message router called the distributor is 
connected to a network. All the messages that the ubiquitous nodes (e.g., personal 
computers, PDAs, and cellular phones) send go through the distributor. The 
distributor determines where the messages go next. 

Just as for the publisher-subscriber message-oriented systems, nodes that receive 
messages must be registered with the distributor a priori. In our system, policies 
describing which messages the joined nodes accept are also registered with the 
distributor. 



Policy-based Cooperation of Services in Ubiquitous Environments 141 

ellular Phone PC PDA Information appliance 

Figure 1. Architecture 

Policies are the key to our architecture. We give an example of policies in 
Figure 2 (a). A policy is composed of a matcher (before "I") and a generator (after 
"I"). A matcher specifies what kind of message a node accepts. PI and P2 accept 
any message because the matcher does not specify any condition. PI and P2 could 
even accept the same message. However, the distributor non-deterministically 
chooses one of them. 

The interesting syntax of our policy language is the generator. Generator "*,, 
creates a copy of an accepted message and distributes it to the other policies. 
Suppose that PI accepts a message. PI forwards it to Node NI. PI then generates an 
internal message copied from the original message with attribute "after=PI". An 
internal message is a pseudo message that is used to explain the behavior of the 
policy processing of the distributor. Policy P2 accepts the generated internal 
message because PI has already been used and only P2 can be matched with the 
internal message. Next, suppose that P2 is matched earlier than PI' PI will match 
the message generated by P2. In either case, NI and N2 are chosen in the case of the 
example in Figure 2 (a). 

N3 is a 'fickle' backup server, whose policy, P3, accepts messages that include 
"after=P2". This means that a message to Node N2 is copied to the backup server. 
NI and N2 work well even if fickle node N3 is removed. Only the backup function 
does not work. However, the backup of N2 will work automatically when N3 is 
connected to the distributor with Policy P3. This shows that our policy approach 
solves the fickle-node problem. 



142 Toshio Tonouchi et al 

Three nodes (Nt. N2, and N3) Pais connected to the air-conditioner 
are connected to Policies Ph and Pf is a policy to the fan. 
P2, andP3• Pa:= sender=tom's-phone 
PI:= I * after=PI distance =10? 
P2:= I * after=P2 Pc := message=error 
Pa:= after=P2 I * receivers=air-conditioner 

(a) Back-up service (b) Air conditioner and fan 

Figure 2. Examples of policies 

Figure 2 (b) shows the policies of the example in Section 1. Policy Pais fired 
when the distance between Tom's cellular phone and his house is less than 110 
meters and more than 100 meters ("distance=10?"). If the air conditioner is broken, 
the error message is issued. The Pr is fired because it matches the error message. 
Notice that both Pa and Pr have no generator. These do not generate internal 
messages, and no more policy is fired. 

4. CONCLUSION 

We proposed a policy-based message system. We showed, using the examples, 
that this system solves the fickle-node problem. Nevertheless, the syntax and 
semantics of our policy language are inadequate. We are trying to improve the 
policy language without losing its simplicity. Another challenge is the effectiveness 
of policy processing. A distributor may have to handle a lot of ubiquitous nodes. In 
such a situation, fast policy processing is required. Therefore, we are now studying 
an optimization method for policy processing. The correctness of the optimization 
method is proved based on the operational semantics of our policy language. 

REFERENCES 

[1] Weiser, M.: Some Computer Science Issues in Ubiquitous Computing, Communication 
of the ACM, Vol. 36, No.7, pp.74-84, July 1993 

[2] Sun Microsystems, Inc: Java Message Service, 1999 
[3] Leymann, F.: Web Services Flow Language (WSFL Ver 1.0), May 2001 

[4] Thatta, S.: XLANG - Web Services/or Business Process Design, 2001 


	19
POLICY-BASED COOPERATION OF SERVICESIN UBIQUITOUS ENVIRONMENTS
	1. INTRODUCTION
	2. RELATED WORK
	3. ARCHITECTURE
	4. CONCLUSION
	REFERENCES




