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Abstract Knowing the QoS requirement for each link involved in a multicast con­
nection, such that overall QoS requirement is satisfied, would greatly 
assist both QoS-based multicast routing and resource reservation pro­
cesses. In the case of delay, the question of what delay requirements 
should be imposed on each link of a source-based multicast tree, such 
that the overall source-to-destination delay and inter-destination delay 
variation requirements are satisfied at minimumtotal tree cost, is the 
focal point of this paper. A major contribution of this paper is the 
development of a nurober of heuristic algorithms for (near-)optimal al­
location of delay requirements using Genetic Algorithms (GAs). Initial 
tests, with multicast trees of different sizes (10- and 30-node trees), con­
figurations (in terms of number of destinations and destination distribu­
tion), and overall delay requirements, show the ability of the algorithms 
in providing good solutions within a reasonable amount of time. 

Keywords: Multicasting, QoS, resource allocation, source-to-destination delay, inter­
destination delay variation, Genetic Algorithms, Mixed integer pro­
gramming. 

1. lntroduction 
QoS-based multicast routing has attracted a Iot of interest due to in­

creasing demandin group-based real-time applications that require strin­
gent quality of service constraints, such as teleconferencing and distance 
learning. For applications involving group communication, multicasting 
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is more efficient than unicasting as it allows for transmission of a single 
copy of data to a group of destinations instead of sending a separate 
copy to each destination as in unicast routing. 

As far as real-time applications are concerned, delay is one of the most 
important QoS parameters. Commonly, the delay from a source to all 
destinations should be bounded [Kompella et al., 1993][Salama et al., 
1997][Rouskas and Baldin, 1997][Wang and Hou, 2000][Ergun et al., 
2000][Lorenz et al., 2000][Lorenz and Orda, 2002]. In addition, the need 
for an upper bound on inter-destination delay variation ( the maximum 
time difference between delay values from the source to different desti­
nations) also arises for applications that require a certain Ievel of group 
synchronization among various destinations [Akyildiz and Yen, 1996] 
[Rouskas and Baldin, 1997]. In exchange for having a delay bounded 
connection, the users must incur a connection cost and minimizing this 
cost is an important issue. This paper deals with the problern of opti­
mal allocation of delay requirements over a source-based multicast tree 
given upper bounds on source-to-destination delay and inter-destination 
delay variation, and under the assumption that link cost function is non­
increasing and (weakly) convex with delay requirements allocated to the 
link. 

The rest of the paper is organized as follows. Section 1.2 describes 
models for link delays and link costs, and formally states the delay re­
quirement allocation problem. Related work is provided in Section 1.3. 
The mathematical basis and three heuristic algorithms are presented in 
Section 1.4. Section 1.5 discusses the test results for the algorithms on 
a number of different test trees and different overall delay requirements. 
Section 1.6 concludes the paper. 

2. Problem Formulation 
A source-based multicast tree is represented as a directed tree T = 

{V, E} rooted at a source node s, where V and E represent the set of 
nodes and the set of directed links in the tree. M is the set of destinations 
(M V - { s}). In the tree T, a unique path from a node u to a node 
v, if one exists, is denoted by Puv· A node v is defined as a downstream 
node of a node u if u E Psvi in that case, u is the upstream node of v. 
A branch point between Psu and Psv, denoted by B(u, v), is defined as 
a node t on the two paths of which all the downstream nodes lying on 
this path must not be on the other path. A destination node having no 
upstream destination nodes is said to be the multicast branch root of a 
multicast subgroup that consists of the branch root and all of the branch 
root's downstream destination nodes. The subtree ofT rooted at the 



Near-Optimal Allocation of Delay Requirements on Multicast Trees 327 

branch root u spanning the multicast subgroup is defi.ned as a multicast 
branch and denoted by Tu. Set of all branch roots in T is denoted by 
R. The i-th branch root is R(i). The number of multicast branches in 
the tree T is denoted by b (i.e., IRI == b). 

In a real network, packets traversing a link l experience 3 types of 
delay: propagation delay, queueing delay, and transmission delay. Prop­
agation delay for a given link l is constant, and is denoted by ö,. Queue­
ing and transmission delays may vary from time to time as they depend 
on network Ioad. Assuming that it is possible to impose on a link l a 
delay requirement dt, then all packets traversing the link would take no 
more than dt time. Hence, dt may be considered as the maximum delay 
of a link l. Furthermore, in order to account for the variation of packet 
delay across the link l, we define a delay variation bound Az: packets will 
take no less than dt- Az time to traverse link l. It is also assumed that 
the value of At for a given link l is constant during the time of interest 
(i.e., At may have a different value at some other time). In our model, 
all delays are assumed to take integral values only. A delay partition is 
defi.ned as S = {dzheE· 

The delay requirement from a node u to a downstream node v is 
simply DPuv = ElEPuv dz. Delay variation bound of Puv is computed by 

= ElEPuv Instantaneous delay of a path p is guaranteed to 
be within the range [Dp- A Iongest path, p*, in the tree T is 
defined as a path from the source to a destination that has the largest 
maximum delay, i.e. p* = Psv suchthat Dp.v Dp•v' (Vv' E M). 

Given source-to-destination delay bound ne, and inter-destination 
variation delay bound Di, a feasible delay partition, Svev• = {dtheE, is 
a set of delay requirements allocated to the links of the multicast tree T 
such that: 

DP•u De Vu E M (1) 

DPtu- (DPtv- Di Vu,v E M,t = B(u,v) (2) 
Öz + At dz Vl E E (3) 

The constraints above have the following interpretation: ( 1) requires 
that the delay from the source to a destination must not exceed the 
source-to-destination delay bound, (2) ensures that the difference in de­
lays from the source to any pair of destinations will not be greater than 
the inter-destination delay variation bound, (3) simply requires that the 
delay requirement allocated to a link is feasible. 

Total cost of the multicast tree T for a given S ve v• is defined by 
c(Svev•) = EteE cz(dz) where c,(dz) is the cost for imposing a delay 
requirement dt on a link l. We assume that cz(dt) is a non-increasing 
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convex function (i.e., the link cost for a smaller bound is higher than the 
cost for a larger bound and cost savings due to requesting larger bound 
will diminish as the bound increases). 

The problern of optimal delay allocation over a source-based multicast 
tree (MODA) can be formally stated as follows: 

Problem MODA. Given a multicast tree T = (V, E) rooted at s, 
{ 8t, ßt, ct(dt)}lEE, a set of destinations M V - { s }, a source-to­
destination delay bound De 1 and an inter-destination delay Variation 
bound Di, find a feasible partition S'iJ•Di suchthat c(S'iJ.v;) $ c(Sv•vi) 
for all ( other) feasible partition S v• Di. 

3. Related Work 
The problern of partitioning end-to-end QoS requirements on uni­

cast paths and multicast trees has been investigated in [Lorenz and 
Orda, 1998][Ergun et al., 2000][Lorenz et al., 2000][Lorenz and Orda, 
2002]. Exact and approximate algorithms have been developed. Among 
those, [Lorenz and Orda, 2002]is most relevant to our problem, hence, 
we present a brief overview of their problern in this section. 

Several assumptions , which are similar to ours, were made: 1) addi­
tive QoS; 2) integer QoS; 3) convex cost functions (link cost increases 
with level of QoS imposed on the link). 

The problems of optimally partitioning QoS over a unicast path and a 
multicast tree are defined below. Piease note that although [Lorenz and 
Orda, 2002]considers general additive QoS, in our discussion, we assume 
that the QoS is delay, which makes the following discussion more relevant 
to our problern without loss of generality. 

Problem 0 PQ (Optimal Partition of QoS). Given a path p and an end­
to-end delay requirement D, find a feasible partition S*(p) = {di}tEp 1 

suchthat c(S*(.p)) $ c(S(p)) for all feasible partitions S(p), where a fea­
sible partition is a partition for which l:tEp dt $ D. 

Problem MOPQ (Multicast OPQ). Given a multicast tree T rooted at 
s spanning a group of destinations M and an end-to-end delay require­
ment D, find a feasible partition S*(T), such that c(S*(T)) $ c(S(T)) 
for all feasible partitions S(T), where a feasible partition is a partition 
for which l:tEpsv dt $ D (Vv E M). 

It is easy to see that OPQ is, in essence, a resource allocation problem: 
each link of the path can be considered as an "activity" and the end-to-
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end delay requirement can be seen as the available "resource". Hence, 
OPQ can be solved using any of the algorithms for the resource allocation 
problern SCDR described in Chapter 4 of [lbaraki and Katoh, 1998]. A 
greedy algorithm GREEDY-ADO provided in [Lorenz and Orda, 2002]is 
exactly the same as the Algorithm INCREMENT in [Ibaraki and Katoh, 
1998]. 

GREEDY-ADD starts with a partition S(p) = {dt = O}tep, and iter­
atively adds a unit of delay to a link such that the total cost is reduced 
the most at each iteration, until total delay along the path reaches D. 
A faster algorithm, GREEDY-MOVE, starts with any feasible partition 
and gradually changes the current partition (by moving a unit of delay 
from one link to another link such that the cost is reduced the most) un­
til no move could further lower the cost. A truly polynomial algorithm, 
BINARY-OPQ, findsanoptimal partition in truly polynomial time by 
repeatedly executing GREEDY-MOVE with units of delay being halved 
after each iteration until the unit reaches 1. 

Lorenz and Orda showed that MOPQ can also be solved in a greedy 
fashion. Let r denote the only link originating from the source node. 
The branches1 of T are denoted by T = T -- {r }. CT(D) denotes the 
cost of optimally allocating a delay D on a (sub-)tree T. They first 
showed that, for any tree having depth of 2, CT(D) is convex as long as 
D is optimally allocated over T. This property was then proven for a 
tree T of arbitrary depth. They then proved the optimal substructure 
of the problern by showing that the delay partition on each and every 
subtree must be optimal in order for the delay partition on the tree to 
be optimal. Consequently, the optimal delay for link r can be found 
by running the greedy algorithms for the Problem OPQ on the 2-link 
path (r, T), where T is a "link" representing the optimally allocated T 
(because c.r(d) is convex). 

Algorithm TREE-ADD, which performs an augmentation (i.e., opti­
mally adds a unit of delay to a tree) or a removal (i.e., optimally removes 
a unit of delay off a tree) given the current delay partition, was provided. 

Algorithm BALANCE solves MOPQ with the help of TREE-ADD. 
The algorithm starts with any feasible partition. It iteratively moves a 
unit of delay between parts of the tree such that tree cost is maximally re­
duced at each iteration (it uses TREE-ADD to compute the cost changes 
due to augmentation or removal of delay from each subtree). 

1The term branch in this subsection is not the same as the term multicast branch defined 
previously. 
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4. An Optimal Delay Allocation Algorithm 

4.1 Properties of an optimal solution to MODA 
An optimal solution to the Problem MODA possesses several inter­

esting properties as stated in a number of lemmas given below. We shall 
informally prove the Straightforward ones and will provide more formal 
proofs for ones that are less obvious. 

LEMMA 4.1 If there are optimal solutions to MODA, there must be at 
least one optimal solution for which the Iongest path(s) of the tree has a 
maximum total delay of ne' i. e.' n;. = ne. 

We now informally prove this lemma. Let us assume that there is an 
optimal solution for which the Iongest path(s) of the tree is less than 
ne. By adding the same amount of delay to all of the links stemmed 
from the source node suchthat the Iongest path(s) in the tree now has 
a total delay of ne, we shall have another optimal solution that has 
the aforementioned property. The reasons for that are: 1) since the 
Iongest path having total delay of ne, other paths must not have larger 
delay, hence, the source-to-destination delay requirement is satisfied; 2) 
the addition of the same amount of delay to all of the links stemmed 
from the source node does not affect inter-destination delay variation 
between any pair of destinations, hence, inter-destination delay variation 
requirement is also satisfied; 3) adding more delay to those links does 
not increase the total cost as link cost functions are non-increasing. 

LEMMA 4.2 There must be an optimal partition (ij optimal solutions 
exist) jor which the delay requirement from the source node to all the 
leaf nodes within the same multicast branch are the same. 

Assuming there is an optimal solution that does not have that property, 
consider adding more delay to incoming links of every leaf node ( except 
leaf node v currently having the largest total delay from the source), 
such that the total delay from source to every leaf node is the same as 
that from source to node v. The new solution is also optimal because: 
1) source-to-destination delay is satisfied; 2) the inter-destination delay 
variation requirement between leaf nodes on different multicast branches 
is satisfied as delay variation between the branch roots and leaf nodes 
of other multicast branches has not been changed. Inter-destination 
delay variation requirement between leaf nodes on the same multicast 
branch is obviously satisfied; 3) adding more delay to those links does 
not increase the total cost as link cost functions are non-increasing. 
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LEMMA 4.3 Let Ui = R(i)(i E [1, b]). Let Vi E Tu, be the node to which 
the delay from the source is largest compared to other destinations in 
Tu;. The necessary and sufficient condition for S to be feasible is: 

DPsv; $ De 'tfi E [1, b] (4) 

L (dz + ß,) :5 DPu;v; $ min{Di, 

min{DPsv; - Dp'"i - ßPtu; +Dill i b, 
(5) 

Proof: (4) is by definition the necessary and sufficient condition for 
S to meet the source-to-destination delay constraint. 

Let us consider the inter-destination delay variation constraint for 
destinations within a multicast branch Tu; ( Piease note that for all u, v E 
T Uj and t = B ( u, V)' DPsv :5 DPsv; and Dp.u - ßPtu Dp.t DPau;) 

DPtv - (DPtu - ßPtu) :5 Di Vu, V E Tu., u #= v, t = B(u, v) 

Dp,"- (Dp811 - ßPtu) Di Vu,v E Tu;,u #= v,t = B(u,v) 

DPsv; - DPsu; $ Di DPu;v; $ Di (6) 

Now let us consider the delay variation constraint for destinations in 
different multicast branches. 

DPtv - (DPtu - ßPtu) Di 'tfu E Tu,, 't/v ETui' Vi #= j, t = B(u, v) 

DP•v - (Dp, 11 - ßPtu) $ Di 'tfu E Tu., 't/v ETui' Vi #= j, t = B(u, v) 

Dp'"i - (Dvsu; - ßPtu;) $ Di 't/i #= j, t = B{u, v) = B(ui, v;) 

DPsv·- (DPsv·- DPu·v·- ßPtu·) $ Di 't/i =/:- j,t = B(ui,Vj) = B(ui,Uj) 
J • • • • 

Dp,.i"i :5 DP•v; - Dp."j - ßPtu; + Di 't/i =1- j, t = B(ui, u;) (7) 

Remernher that for all v E Tu;, DP•v :5 DP•v; , and the order of nodes on 
path Psu iss -t t -t Ui -tu, hence, Dp.,. - ßp,.1,. Dp,,.1 (Vu E Tu1). 

(6) and (7) hold if and only if (5) holds. The result follows. • 

LEMMA 4.4 Let Ui = R(i). The optimal delay requirement from the 
source node s to any leaf node Vi E Tu; (i E [1, b]), for at least one of 
the optimal solutions (if optimal solutions exist), is either equal to ne 



332 

or bounded by 

ne- Di + L\Ptv; + L 8t n;.v; ne + Di- L\Ptvj - L 8t {8) 
lEPu;v; lEPujvj 

and, I: (L\1 + 81) n;.v; ne {9) 
lEPsv; 

where t is the branch point between path Psu; and a path, Psvi, having 
total delay requirement of ne. 

Proof: Let us consider the optimal solution mentioned in Lemma 4.1. 
lf n;.v; = ne then the lemma holds. Now Iet us assume that n;.v; f. ne. 

From Lemma 4.2, it is clear that n;.v f. ne (Vv E Tu;). Lemma 4.1 
shows that there exists a Vj E T Uj (j I- i) such that v;.v. = ve. Let 

J 

t = B(vi, Vj); it is obvious that t = B(ui, Uj)· From (7}, we have 

" (8 + L\ } < D* < D* - D* - L\ + Di L...,; l l - Pu;v; - Psv; Psvj Ptu; 
IEPv.;v; 

:. ne + L\Ptu;- Di + L (81 + Llt} n;.v; 

lEPu;v; 

... ne - Di + L\Ptv; + L 81 n;.v; 

IEPu;v; 

Similarly, 

" (8 + L\ } < D* < D* - D* - L\ + Di L...,; l l - Pujvj - Psvj Psv; Ptuj 
IEPujvj 

:. n;.v; ne- L\Ptuj + Di- L (8! + Llt) 

lEPujvj 

:. n;.v; ne + Di- L\Ptvj - L 8t 

lEPujvj 

Consequently, {8) holds. In the meantime, {9) obviously holds. • 

4.2 Problem Bounded-MOPQ 
Let Ui = R{i) {i E [1, b]). Let Vi be the node to which delay from the 

source is largest compared to other destinations in the multicast branch 
Tu;· The Problem Bounded-MOPQ (MOPQ-B) is stated as follows. 
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Problem MOPQ-B. Given a tree T rooted at s, { 15,, ß,, c,(d,)}zeE, 
and find S = {dl}leE such that c(S) is 

minimum, subject to: 

DP•v; = Vi E (1, b) 

DPu;v; $ Vi E (1, b] 
c5z + ßz $ d1 Vl E E 

(10) 

(11) 

(12) 

Problem MOPQ-B is different from MOPQ because not only does it 
specifies delay requirements from the source to allleaf nodes but also im­
poses a bound on the delay requirement from the root of each multicast 
branch to the leaf nodes of the branch. 

An exact algorithm for MOPQ-B is given below. Pieasenote that: 1) 
information including branch roots, multicast branches, branch points, 
and the total propagation delay and the total delay variation bound 
from the source to every node in the tree must be determined prior 
to running this algorithm; 2) denotes the (negative) gain in 
the cost of a subtree T 1 stemmed from a link l (including l) due to opti­
mal augmentation of a single unit of delay to the current delay partition. 

Algorithm TREE-INCREMENT 
for each link l E E ( traversing in post-order) 

d1 t- 81 + ßz 
mark l as "not-full" 
compute GA! N;, 

end loop 
if (Dp.v, $ DIJ!': Vi E (1, b]) 

if (Dpu•"• $ Vi E (1, b]) 
if (Dp."i = n;::; for some i E (1, b]) 

mark all links on those Psv, as "full" 
if (DPu·v· = Dpmax for some i E (1, b]) 

I I UiVi 

mark alllinks on those Pu1v, as "full" 
while (not alllinks "full") 

call TREE-AUGMENT f*see below* / 
end while 
return cost of the solution 

end if 
end if 
returninfinite cost 

End. 
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Algorithm TREE-AUGMENT is a modified version of TREE-ADD. 
Different from TREE-ADD, TREE-AUGMENT: 1) marks links that 
have become "full" (i.e., can no Ionger be augmented); 2) considers in­
crement gain of a link as 0 if the link is already "full". 

THEOREM 4.1 TREE-INCREMENT accurately solves Problem MOPQ­
B in O(IEI(maxie[I,bj{D;J!:;- minveT,.; Elep,"(a, + ß,)})) time. 

Proof: The existence of an upper bound on delay requirement from 
a branch root to the leaf nodes in the branch does not affect convex­
ity of the cost of an optimally allocated subtree. A bounded sub­
tree is equivalent to a unbounded subtree with a ( convex) cost func­
tion that is the same as the cost function in the unbounded case for 
delay requirement less than or equal to the bound but remains con­
stant (equal to the cost at the bound) for delay requirement larger 
than the bound. Hence, the greedy algorithm TREE-INCREMENT 
does provide an optimal solution. Since TREE-AUGMENT requires a 
depth-first-search, the computational complexity of TREE-AUGMENT 
is obviously O(IEI). Furthermore, because TREE-AUGMENT is called 
maJtie[I,bj{D;J!:;- minveT,.; Etep,"(dt + ß,)} times before all edges be­
come "full", the result follows. • 

4.3 Heuristic algorithms for MODA 
THEOREM 4.2 Let {S'i.>ev;} denote a set of optimal solutions to the 
Problem MODA having the same {D;,")· .. D;} must also be the set 
of alloptimal solutions the following Problem MOPQ-B with the bounds 
constructed as follows (MOPQ-BE): 

nmax = D* (13) 
Psv; Psv; 

nmax = min{Di min{D* - D* - ß +Dill< i < b 
Pu;v; I Psv; Psvj Ptu; - - 1 

1 j b,i =F j, t = B(ui,u;)}} (14) 

Proof: Since is an optimal solution to the Problem MODA, 
n;," ne ('t/v E M), hence, a feasible Solution to the Problem MOPQ­
BE, which satisfies (10), must satisfy the source-to-destination constraint 
of MODA. In addition, from Lemma 4.3 and by the way that upper 
bounds on delay requirements from Ui to Vi on multicast branches are 
constructed as in (14), a feasible solution to MOPQ-BE also meets inter­
destination delay variation constraint of MODA. Thus, a feasible solu­
tion to MOPQ-BE is a feasible solution to MODA. In other words, a set 
of feasible solutions to MOPQ-BE is a subset of the feasible solution set 
ofMODA. 
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Following the same argument, we could prove that {S'Dev1} is a subset 
of the set of feasible solutions to MOPQ-BE: 1) requirement (10) is 
obviously satisfied; 2) (11) is met due to Lemma 4.3. 

As {S'Dev1} ensure that the tree cost is minimum (as compared to all 
other Svev•), {S'Dev1} must also be the optimal solution set of MOPQ­
BE .• 

Theorem 4.2 implies that Problem MODA can be solved by finding 
the set { Dp."' he[I,b) for which the optimal solution to the correspond­
ing MOPQ-BE (as described in Theorem 4.2) would result in least cost 
compared to other The optimal solutiontothat instance 
of MOPQ-BE is also an optimal solution to MODA. Based on that Ob­
servation, we structure our heuristic algorithm for MODA as below. 

Algorithm MODA 
determine branch roots, branches, branch points of the tree 
compute delay variation bound from the source to every node 
compute propagation delay from the source to every node 
bestCost infinity 
for j = 1 to b do 

set upper and lower bounds on Dp.". to ne 
3 

for all i # j do 
compute upper and lower bounds on DPsv· l*see (8,9)* I • end loop i 

initialize D-GENERATOR with these bounds 
while (D-GENERATOR can still generate {DPsv)ie[l,bJ) 

{ D:J!:;he[l,b) { DP•v; he[l,b) 
compute { he[l,b) /*see (14)* I 

•• cost TREE-INCREMENT( { n;:,::::}, { 
if (cost < bestCost) 

beste ost cost 
save the solution 

end if 
end while 

end loop j 
End. 

In the above algorithm, we make use of a D-GENERATOR. Its task is 
to generate vectors { Dp."' he[I,b) and to terminate the algorithm (by stop 
generating the "next" vector). Basedon the results of Lemmas 4.1, 4.2, 
and 4.4, we Iimit the search space, which the generator will explore, with 
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the lower and upper bounds on { DP•v; he[l,b] and { DPu;v; he[l,b] during 
initialization of the generator. 

This algorithm structure allows us to try different techniques in im­
plementing the D-GENERATOR. A naive generator would enumerate 
all possible combinations {Dp.v)iE(l,b}' which may work for small prob­
lems but will take a prohibitively long time for larger ones. We choose 
to implement a nurober of D-GENERATORs using Genetic Algorithms 
(GAs)2 and a greedy approach. 

In our GA implementation, we use a SIMPLE GA which is simi­
lar to that described in [Goldberg, 1989). In order to code the vector 
{ DP.v; he[l,b] as a binary string, we consider two alternative methods: 1) 
converting each element to a binary nurober, and combining these bi­
nary numbers together to create a binary string; 2) reducing the vector 
to a scalar value, then, converting this scalar value to a binary number. 
Besides, TREE-INCREMENT is used for evaluating of the "fitness" of 
a { DPsv; hE[l,b]· 

Our greedy D-GENERATOR generates 2 vectors. The first vector 
represents a partition for which the delay requirement from the source 
to each destination is at a maximum, whereas the second one represents 
a partition for which the upper bounds on delay requirements along all 
multicast branches are the same (in most cases). 

5. N umerical Results 
We implemented the Algorithm MODA in C++ using the following 

libraries: 1) GAlib (GA component library) [Wall, 1999], 2) Graph Tem­
plate Library (GTL) [Forster et al., 1999], 3) BRITE (topology genera­
tion library) [QNLB, 2001]. Employing the two coding schemes, we built 
two GA-based algorithms, namely, MODA-GA Coding 1 and MODA­
GA Coding 2. MODA-Greedy is an algorithm using the greedy ap­
proach. For benchmarking, we also developed an LP-based algorithm, 
MODA-LP, that uses ILOG™ CPLEX 7.1 LP solver in solving the MIP 
model of the Problem MODA. 

Four randomly generated trees were used for testing: two 10-node 
trees, and two 30-node trees. Propagation delay and delay variation 
bound of each link were assigned random values from 1(ms) to 4(ms) 
and from l(ms) to lO(ms) respectively. Links were randomly assigned a 
cost function from a set of 3 different cost functions. In each tree, the 
root represented the source node and all leaf nodes represented the des-

2For a full account of GAs, the reader is referred to the books by Holland (Holland, 1975Jand 
Goldberg (Goldberg, 1989]. 
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Table 1. Tree cost produced by the MODA algorithms. The percentage shows the 
difference between the cost and the optimal cost. 

7ree Gonfiguration LP Greedy Coding 1 Coding 2 
optimal Best Worst Best Worst 

lVI = 10; IMI =: 4;b = 4 1.89 1.89 1.90 1.91 1.9 1.91 
ne = 300;D' = 30 0.0% 0.0% 0.6% 1.0% 0.4% 1.0% 

IVI-10;IMI = 5;b= 3 1.92 2.18 1.94 2.08 1.92 2.12 
ne = 300;Di = 30 0.0% 13.5% 0.9% 8.2% 0.0% 10.0% 

lVI- 30; IMI.-: 16;b = 7 N/A 4.39 4.79 5.55 4.90 6.53 
ne = 500; D' = 200 

lVI - 30; IMI = 17; b = 5 N/A 4.22 4.54 5.66 4.77 6.29 
De = 500; Di = 200 

tinations. In addition, we also randomly selected other in-tree nodes as 
destinations. The source-destination delay bound and inter-destination 
delay variation bound were chosentobe 300(ms) and 30(ms) for the 10-
node trees and 500(ms) and 200(ms) for the 30-node trees respectively. 

We tested the algorithms with the test trees and settings as described 
above on a Pentium II 550 MHz computer with 384 MB RAM. MODA­
LP was run one for each tree in order to obtain the optimal solution. 
MODA-Greedy was run one, whereas MODA-GA Coding 1 and MODA­
GA Coding 2 were run 5 times alternatively for each tree. The test 
results are summarized in the Table 1. 

For the 10-node trees, MODA-LP took approximately 15 seconds to 
complete while the greedy algorithm took a fraction of a second and 
the two GA-based algorithms took about 10 seconds. As the tree size 
increased to 30 nodes, MODA-LP failed after running for 20 minutes 
(due to memory shortage) whereas the greedy algorithm took about 1 
second and the other two .algorithms needed about 60 seconds in order 
to provide good solutions. 

We also tested our algorithms with a 10-node tree (lVI = 10; IMI = 
5; b = 3; ne = 300) for different value of Di. As the problern became 
infeasible for Di < 19(ms), we varied Di from 19(ms) to 29(ms). The 
costs of the solutions found by the algorithms and the costs after nor­
malization by the MODA-LP (optimal) cost, for different values of Di, 
were shown in Figure 1. 

As can be seen from the test results, GA-based algorithms consis­
tently provided good solutions, whereas, the greedy algorithm was able 
to come up with very good solutions in some cases but provided less 
good solutions in other cases. 
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Figure 1. Costs of the solutions found by the MODA algorithms 

6. Conclusions 
This paper addressed the Problem MODA that effectively extends the 

Problem MOPQ in (Lorenz and Orda, 2002]by adding inter-destination 
delay variation constraint. We derived a number of lemmas and theo­
rems that provide the foundation for the development of two GA-based 
algorithms and a greedy algorithm. Initial test showed that our algo­
rithms are capable of providing good solutions. 

This work is ongoing work. Firstly, although the GA-based algorithms 
could provide good solutions, they may converge too slowly for practical 
use; on the other hand, the greedy algorithm could run very fast but 
may not find feasible solutions in some cases. Hence, other fast heuris­
tics should be developed to further shorten the computation time and 
to increase the chance of finding feasible solutions. Secondly, other algo­
rithms for more complex link delay models could be developed. Thirdly, 
a distributed version of the algorithm needs to be developed as central­
ized algorithms, like ours, generally have scalability problem. Finally, 
the question of how this allocation algorithm could be incorporated into 
QoS routing algorithms also needs to be properly addressed. 
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