
Generic Accumulations 

Alberto Pardo 
Instituto de Computaci6n 
Universidad de la Republica 
Montevideo, Uruguay 
pardo@fing.edu.uy 

Abstract Accumulations are recursive functions that keep intermediate results in 
additional parameters which are eventually used in later stages of the 
computation . We present a generic definition of accumulations obtained 
by the introduction of a new recursive operator on inductive types. We 
also show that the notion of downwards accumulation developed by 
Gibbons is subsumed by our notion of accumulation. 

1. Introduction 
Accumulations are recursive functions that keep intermediate results in 
additional parameters often called accumulators [19, 5, 15]. In func­
tional programming, the notion of accumulation is usually associated 
with the so-called accumulation technique [8, 4, 17, 3], which transforms 
recursive definitions by the introduction of additional arguments over 
which intermediate results are computed. The accumulation technique 
is strongly connected with the familiar procedure of generalization for 
induction that arises in the field of theorem proving [7, 1, 26]: A proof 
by induction often fails because the property to be proved is too partic­
ular. Then it is necessary to modify/ generalize the induction hypothesis 
before starting the proof. This situation often appears during program 
verification, for instance, when a given program is proved to satisfy its 
formal specification, a procedure that in general requires induction (see 
e.g. [17, 30]). 

In this paper, we present a generic definition of accumulations that 
works uniformly for any inductive type. The kind of accumulations we 
have in mind are those that pass information down to the recursive 
calls. This paper follows up on an initial proposal presented in [28]. 
A drawback of the version of accumulation given in [28] is that it is 

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2003
J. Gibbons et al. (eds.), Generic Programming

10.1007/978-0-387-35672-3_13

http://dx.doi.org/10.1007/978-0-387-35672-3_13


50 Pardo 

too specific in the form it defines the modification of the accumulating 
parameters. This problem has been eliminated in the present version, 
which shows a higher degree of genericity in addition to being more 
elegant. 

Generic accumulations have already been the subject of study of other 
works in the field of program calculation. Gibbons [15], for example, de­
velops a generic definition of so-called downwards accumulations. These 
are functions that label every node of a tree with a function of its ances­
tors. We show that our notion of accumulation includes that of down­
wards accumulation as a particular case. 

The remainder of the paper is organized as follows . Section 2 intro­
duces the mathematical framework the paper is based on. In Section 3 
we briefly review the definition of functions with constant parameters. 
This section serves as preamble and motivation for the definition of ac­
cumulations presented in Section 4. In fact, our notion of accumulation 
will be obtained by performing a slight modification to that of function 
with parameters. Section 5 is devoted to show that downwards accumu­
lations are a particular case of accumulations. Section 6 concludes the 
paper giving some final remarks. 

2. Mathematical Framework 
Our approach to genericity is based on the category-theoretic modelling 
of types and programs. This representation, by now standard, turns 
out to be an appropriate framework for reasoning algebraically about 
programs and is the basis for current developments in generic program­
ming (see e.g. [2, 18]). In this section we review the relevant concepts 
around the categorical approach to recursive types [23, 25, 21] and its 
application to program calculation [24, 27, 11, 22, 5]. 

The category-theoretic explanation of (recursive) types is based on the 
idea that types constitute objects of a category C, programs are modelled 
by arrows of the category, and type constructors are functors on C. In 
this setting, a datatype Tis understood as a solution (a fixed point) of 
a type equation X F X, for an appropriate endofunctor F : C ---+ C 
that captures the shape (or signature) of the type. 

2.1. Product and Sum 
Throughout we shall assume that C is a category with finite products 
(x, 1) and finite coproducts (+,0), where 0/1 denotes the initial/final 
object of C. The leading example of such a category is Set, the category 
of sets and total functions. 



Generic Accumulations 51 

The unique arrow from A to 1 is written !A : A --. 1. Due to the 
isomorphism between an object A and 1 x A, the application of a function 
f : 1 x A --. B to the unique value of the type 1 and a value a of type A 
will be written as f (a). 

We write 1r1 : A x B --. A and 1r2 : A x B --. B to denote the product 
projections. The pairing of two arrows f : C --. A and g : C --. B is 
denoted by (f, g) : C --. A x B. Product associativity is denoted by 
aA,B,C : A x (B x C) --. (A x B) x C. The coproduct inclusions are 
written inl : A --. A+ B and inr : B --. A+ B. For f : A ---; C and 
g : B --. C, case analysis is the unique morphism [f, g] : A+ B --. C 
such that [j, g] o in I = f and [f, g] o inr = g. In pointwise notation we 
shall often write [f, g](x) as: 

case x of inl(a)---; f(a); inr(b)--. g(b) 

Product and coproduct can be made into bifunctors e x e ---; e by 
defining their action on arrows (see e.g. [5]). It is also straightforward 
to obtain their generalizations to n components. 

Along the paper we will assume that the underlying category e is 
distributive. This means that product distributes over coproduct in 
the following sense: For any A, B and C , the arrow 

[inl x ide, inr x ide]: Ax C + B x C--. (A+ B) x C 

is a natural isomorphism with inverse: 

dA,B,C : (A+ B) X c ---; A X c + B X c 
There are plenty of examples of distributive categories, since every carte­
sian closed category with coproducts is a distributive category. Typical 
examples are the category Set of sets and total functions and the cat­
egory Cpo of complete partial orders (not necessarily having a bottom 
element) and continuous functions. 

2.2. Polynomial functors 

We consider datatypes with signatures given by so-called polynomial 
functors. The following is an inductive definition of this class of functors: 

F ::=I I An I nr I X I + I F(F, ... 'F) 

I : e --. e stands for the identity functor. An : en --. e denotes the 
n-ary constant functor, which maps n-tuples of objects to the object A; 
when n = 1 we simply write A. nr : en --. e (with n 2) denotes the 
i-th projection functor from a n-ary product category. F(G1, ... , Gn) 
(or F(Gi) for short) denotes the composition ofF : en ---; e with the 



52 Pardo 

functors G1, . . . , Gn (all of the same arity); when n = 1 we omit brackets. 
It stands for the functor that maps A f---t F(G1A, ... , GnA). We write 
F t G for t(F, G) when t E {x, + }. 

2.3. Inductive Types 

Least fixpoints of (covariant) functors give rise to inductive types, which 
correspond to initial functor-algebras, a generalization of the usual no­
tion of term algebras over a given signature. 

Let F: C--> C be a functor. An F-algebra is an arrow h :FA--> A, 
called the operation. The object A is called the carrier of the algebra. A 
morphism of algebras, or F -homomorphism, between h : FA --> A and 
k : F B --> B is an arrow f : A --> B such that f o h = k o F f. The 
category of F-algebras is formed by considering F-algebras as objects 
and F-homomorphisms as morphisms. The initial algebra, if it exists, 
gives the inductive type whose signature is captured by F. We shall 
denote the initial algebra by inp : F Ji-F--> Ji-F. This arrow encodes the 
constructors of the inductive type and turns out to be an isomorphism. 

Initiality permits to associate an operator with each inductive type, 
which is used to represent functions defined by structural recursion on 
that type. This operator, usually called fold [3] or catamorphism [27], is 
originated by the unique homomorphism that exists between the initial 
algebra inp and any other F-algebra h : FA --> A. We shall denote it 
by foldp(h) : Ji-F --> A . Fold is thus the unique arrow that makes the 
following equation hold: 

foldp(h) o inp = h oF foldp(h) 

Example 2.1 Consider a datatype for natural numbers, 

nat = zero I succ nat 

Its signature is captured by the functor N : C --> C such that N A = 1 +A 
and N f = id1 +f. Every N -algebra is a case analysis [h1, h2] : 1 +A --> A, 
with h1 : 1 --> A and h2 : A --> A; in particular, the initial algebra 
[zero, succ] : 1 + nat --> nat where zero : 1 --> nat and succ : nat --> nat. 
For each algebra h = [h1, h2], fold is the unique arrow f = foldN(h) 
nat --> A such that 

f(zero) = h1 f(succ(n)) = h2(f(n)) 

0 

Lists, trees as well as many other datatypes are usually parameterised. 
The signature of those datatypes is captured by a bifunctor F : C x C --> 



Generic Accumulations 53 

C. By fixing the first argument of a bifunctor F one can get a unary 
functor F(A,- ), to be written FA, such that FA B = F (A, B) and 
FA f = F(idA, f). The functor FA induces a (polymorphic) inductive 
type DA = 1-LFA, least solution of the equation X F (A , X ), with 
constructors given by the init ial algebra inFA : FA(DA)--> DA. 

Example 2.2 

(i) Lists with elements over A can be declared by: 

list(A) =nil I cons(A x list(A)) 

We will often write A* for list( A). The signature of lists is captured 
by the functor LA = 1 +A x I . The initial algebra is given by 
[nil , cons] : 1 +A x A* --> A* . For each algebra h = [h1,h2] : 
1 +Ax B--> B, fold is the unique arrow f = foldLA (h) :A*--> B 
such that 

f(nil) = h1 J(cons(a, i!)) = h2(a,j(f!)) 

It corresponds to the standard foldr operator used in functional 
programming [3] . 

(ii) Leaf-labelled binary trees can be declared by 

btree(A) =leaf A I join (btree(A) x btree(A)) 

Their signature is captured by the functor BA = A+ I x I. For 
each algebra h = [h1, h2] : A+C x C--. C, fold is the unique arrow 
f = foldBA (h) : btree(A) --> C such that 

f(leaf (a) ) = h1(a) J(join(t, u)) = h2(J(t), f(u)) 

(iii) Binary trees with information in the nodes can be declared by 

tree(A) = empty I node (tree(A) x Ax tree(A)) 

Their signature is captured by the functor TA = 1 +I x A x I. For 
each algebra h = [h1 , h2] : 1 + C x A x C--> C, fold is the unique 
arrow f = foldrA (h) :tree( A) --> C such that 

f(empty) = h1 J(node(t, a, u)) = h2(f(t) , a, J(u)) 
0 



54 Pardo 

From each parameterised datatype DA = f-LFA, we can define a func­
tor D : C ---> C, called a type functor [5], by specifying its action on 
arrows Df: DA---> DB, for f: A---> B, 

Dj = foldpA(inp8 o F(f, idDB)) 

For instance, list(!) = foldLA ([nil, cons o (! x id)]), which corresponds to 
the usual map function on lists [3]: 

list(f)(nil) =nil list(f)(cons(a, £)) = cons(f(a), list(!)(£)) 

The following are standard laws of fold. 

Fold Identity 

foldp( inp) = idJ.Lp 

Fold Fusion 

f o h =go Fj => f o foldp(h) = foldp(g) 

Acid Rain: Fold-Fold Fusion 

T transformer => foldp(h) o foldc(T(inp )) = foldc( T(h)) 

Map-Fold Fusion For f: A---> Band h: FB C---> C, 

foldp8 (h) o D f = foldpA (h o F(f, ide)) 

Acid rain removes intermediate data structures that are produced by 
folds whose target algebra is built out of the constructors of the data 
structure by the application of a transformer. A transformer [12] is a 
mapping T: \fA.(F A---> A)---> (GA---> A) from F-algebras toG-algebras 
that preserves homomorphisms, i.e., for f : A ---> B, h : FA ---> A and 
h': FB---> B, 

foh=h'oFJ => foT(h)=T(h')oGJ 

Intuitively, a transformer T may be thought of as a polymorphic function 
that builds algebras of one class out of algebras of another class. 

2.4. Strong Functors 

It might be the case that product not only distributes over coproduct, 
but also over an arbitrary functor. This property is what characterizes 
the so-called strong functors. In this paper, strong functors will play 



Generic Accumulations 55 

an essential role in the definition of recursive functions with additional 
parameters. 

If A = (A1, ... , Am) is an object of en and B an object of e, then 
let us define A X B = (Al X B, ... 'Am X B) . A functor F: em-+ e is 
called strong if it is equipped with a natural transformation 

Ti,x: FAx X-+ F(A x X) 

called a strength, such that the following equations hold: 

7Tl 

Tixx,X o (Ti,x X idy) o CYFA ,X ,Y 

Under the assumption that the underlying category e is distributive, a 
strength for each polynomial functor F can be defined by induction on 
the structure of F. 

I = idAxX Tx {n1 x idx , 1r2 x idx) 7A,X (A,B) ,X 
en 

T+ dA,B ,X T- 7Tl = (A1 , .. . , An ),X (A,B),X 
II!' 

idA;xX 
F(G;) F( G1 Gn ) F T ' 7A,X 7A ,X ' · · · ' 7A ,X 0 7 (G;A),X (A1, ... ,An) ,X 

Given two strong functors F and G, a natural transformation liA : FA-+ 
GA is said to be strong if it behaves consistently with respect to the 
strengths: liAxX o T.f x = <i x o (r;;A x idx ). 

' ' 

3. Functions with Parameters 

Some recursive functions require additional constant parameters, usually 
representing some context information, for their computation. As an 
example, consider the addition between natural numbers: 

add(zero, n) = n add(succ(m), n) = succ(add(m, n)) (1) 

In this function the argument n remains unchanged throughout the re­
cursion. 

There are several ways in which a function of this kind can be defined. 
One is by using currying, something that is common practice in func­
tional programming. A possible curried version is one that binds the con­
stant parameters globally. That is, a definition of type X -+ [J.tF -+ A], 
where X represents the type of parameters, J.tF the recursive datatype, 
and A the type of the result . In the case of addition it corresponds to: 

add(m) = foldN(const(m), succ) :nat-+ nat 



56 Pardo 

where const( m) : 1 ___., nat is a constant function returning m. An alter­
native curried definition is one that maps the recursive argument onto a 
function on the parameters: t-tF ___., [X ___., A]. In the case of addition, 

add(zero) = id add(succ(m)) = succ o add(m) 

This version corresponds to a higher-order fold, 

add= foldN(h) :nat___, [nat___, nat] 

where h = [h1,h2]: 1 +[nat___., nat]___, [nat___., nat] is given by h1(u) = 
idnat and h2(f) = succ of. 

An alternative to currying consists of tupling the arguments: t-tF x 
X ___, A. In the case of addition, for instance, this means a definition 
of type nat x nat ___, nat in the style of (1). However, a problem with 
definitions of this kind is that they cannot be expressed in terms of fold, 
since it gives no way of defining functions with multiple arguments. For 
instance, we cannot write add = foldN(h) : nat x nat ___, nat, for some 
h. This problem can be overcome by defining another operator, called 
pfold, which represents a sort of fold with parameters. Categorically 
speaking, this alternative to currying makes reasoning and calculations 
much simpler, since in general product types are easier to handle than 
function spaces. On the other hand, there may be cases in which pfold is 
the only alternative available to define recursive functions with constant 
parameters, for example, in a traditional language without higher-order. 

To define pfold it is sufficient to assume that the initial algebra is 
strongly initial [10] (or initial with parameters) giving rise to the so­
called strong datatypes [9]. Next we briefly review the concept of strong 
initiality and the definition of pfold. 

Let us fix an object X . We call an arrow of type A x X ___, B, 
for arbitrary A and B, an X -action. Composition of two X -actions 
f: B X x _ ___, c and g: A X X-. B is given by f•g = fo (g,7r2)· Let 
us define f = f o 1r1 : A x X ___, B, for f : A ___, B. 

Strong functors can be lifted to work on X-actions. Given a strong 
functor F, for each f : A x X ___., B, we define F f : FA x X ___., F B to 
be: 

ri,x Ff 
Fj = FAxX-----F(AxX)----FB 

Furthermore, it can be seen that F is a functor at the level of X -actions, 
that is, it preserves identities (given by 1r1 : A x X ___., A) and composi­
tions between X-actions (see e.g. [29] for details). 



Generic Accumulations 57 

Definition 3.1 ([10]) Given a strong functor F, an initial F-algebra 
inF is said to be strongly initial if, for each object X and X -action 
h : FA x X -+ A , there exists a unique X -action f : f.LF x X -+ A that 
makes the following diagram commute 

Ff.LF X X 
(F f , 1r2) 

FAx X 

inF x ;dx j jh 
f.LF X X A 

f 

We call pfold [28, 29] the unique arrow that results from strong initiality 
and denote it by pfoldF(h) : f.LF x X-+ A. 0 

Note the role played by the strength TF (as part of F) in the definition 
of pfold: it distributes the value of the parameters to the recursive calls. 
The following proposition guarantees the existence of categories where 
strong initiality holds. 

Proposition 3.2 ([10]) If C is a cartesian closed category, then every 
initial algebra is strongly initial. 

This means that pfold can be defined in categories like Set and Cpo. 
This fact turns out to be a corollary of the following more general result. 

Proposition 3.3 Let C be a cartesian closed category. Then, for any 
natural transformation b'y : FY x X -+ F(Y x X) {natural in Y) and 
X -action h : FA x X -+ A, there exists a unique f : f.LF x X -+ A such 
that f o (inF x idx) = h o (Ff o <5, 1r2). 

The proof of this proposition is completely similar to that of Propo­
sition 3.2 (see e.g. [10, 20, 28]). 

Example 3.4 

(i) Natural numbers: for each h = [h1, h2] o d : (1 +A) x X -+ A, 
where h1 : 1 x X -+ A and h2 : A x X -+ A, pfold is the unique 
arrow f = pfoldN(h) :nat x X-+ A such that 

f(zero ,x) = h1(x) f(succ(n), x) = h2(f(n, x), x) 

(ii) Lists: for each h = [h1 , h2] o d : (1 +A x B) x X -+ B, pfold is the 
unique arrow f = pfoldLA (h) :A* x X-+ B such that 



58 Pardo 

f (nil, x) = h1(x) f (cons( a, f), x) = h2(a, J(f, x), x) 

(iii) Leaf-labelled binary trees: for each h = [h1, h2] o d: (A+ C x C) x 
X --t C, pfold is the unique arrow f = pfold B A (h) : btree( A) x X --t 

C such that 

f (leaf( a), x) 

f (join(t, u), x) 

h1(a,x) 

h2(f(t, x), f(u, x), x) 

(iv) Binary trees with information in the nodes: for each h = [h1, h2] o 
d : (1 + B x A x B) x X --t B, pfold is the unique arrow f = 
pfoldrA (h) : tree(A) x X --t B such that: 

f (empty, x) 

f (node(t, a, u), x) 

h1(x) 

h2(f(t,x),a,f(u,x),x) 

The following are some laws for pfold. 

Pfold Lifting 

foldp(h) = pfoldp(h) 

Pfold Identity 

Pfold Fusion 

f • h = h' • Ff ==? f • pfoldp(h) = pfoldp(h') 

Pfold Pure Fusion 

f o h = h' o (Ff x id) ==? f o pfoldp(h) = pfoldp(h') 

Acid Rain: Pfold-Fold Fusion 

Ttransformer ==? foldp(h) o pfold0 (T(inp)) = pfold0 (T(h)) 

Fold-Pfold Fusion 

"' strongly natural 

pfoldp(h) o (foldc(inp o "') x id) = pfoldc(h o ("' x id)) 

0 



Generic Accumulations 59 

Map-Pfold Fusion For f: A----) Band DA = f.LFA, 

pfoldFB (h) o (D j X id) = pfoldFA (h o (F(f, id) X id)) 

Morph-PFold Fusion For every f: X----) X', 

pfoldF(h) o (id X f)= pfoldF(h o (id X f)) 

In the acid rain law T stands for a transformer of type VA. (FA ----) A) ----) 
(GA x X----) A). A proof and examples of the use of these laws can be 
found in [29]. 

4. Accumulations 
Accumulations are recursive functions that keep intermediate results in 
additional parameters, known as accumulating parameters or accumula­
tors, which are eventually used in later stages of the computation (see 
e.g. [4, 19, 5, 15]). In this section we define a generic operator that 
permits us to represent structural recursive accumulations on inductive 
types. The operator is obtained by a small modification in the definition 
of pfold. 

Let us start with an example of an accumulation. Consider the func­
tion that computes the sums of the initial segments of a list of numbers: 

where 

initsums(£) = isums(e, zero) 

isums(nil, e) 

isums(cons(n,£), e) 

wrap( e) 

cons(e, isums(£, e + n)) 

(2) 

(3) 

where wrap(x) = cons(x, nil). In this case the accumulator holds the 
partial sum of the elements that appeared previously in the list. In each 
recursive step the accumulator is updated (adding to it the value at the 
head of the current list) and passed to the recursive call. 

To define a function of this kind we have two alternatives. One is to 
define the function as a higher-order fold of type f.LF ----) [X ----) A], where 
now X corresponds to the type of accumulators. That is the approach 
pursued in [19]. The other alternative consists of tupling the arguments, 
defining a function of type f.LF x X ----) A. For example, in the particular 
case of isums this corresponds to a definition of type nat* x nat----) nat* 
in the style of (2) and (3). Like functions with (constant) parameters, 
accumulations defined in this manner cannot be written in terms of the 
standard fold operator. The reason is that fold lacks the possibility 



60 Pardo 

of representing functions with multiple arguments. Furthermore, accu­
mulations cannot even be written as a pfold because the values of the 
accumulating parameters change during the computation. 

The solution we adopt to express accumulations is similar to the one 
considered for functions with parameters. In fact , we introduce a new op­
erator, called afold, which corresponds to a fold with accumulators. The 
definition of afold will be obtained by working with a modified version 
of strong initiality that reflects the possibility of performing alterations 
to the (accumulating) parameters. 

In the sequel let us fix an object X that now will be regarded as the 
type of accumulators. Let us recall the diagram that defines pfold: 

F11FxX 
(Ff, 7r2) 

FAx X 

inp x idxj jh 
11FxX A 

f 

Existence and uniqueness of an arrow f fulfilling this diagram is what 
characterizes the notion of strong initiality. Accumulations have a sim­
ilar structure to functions defined in this manner, the only difference 
being the fact that accumulations permit to alter the parameters in 
the recursive calls. We will then take advantage of this similarity to 
define afold. Since accumulators are modified when passed to the re­
cursive calls, is easy to see that such a modification has to take 
place within F f, or more precisely, within the corresponding arrow 
FA x X --> F(A x X). In the case of pfold, that arrow is given by 
the strength TJI X> which simply distributes the value of the parameters 
to the calls. In an accumulation, however, a modified value 
has to be distributed. This means that, to define an accumulation it is 
necessary to provide an arrow 

T : FA X X --; F(A X X) 

that reflects this fact . Even though the form in which the parameters are 
modified is something that depends on each specific case, it is possible 
to state general conditions that an arrow 7' must satisfy to be considered 
proper for accumulation. 

Definition 4.1 An arrow T: FAx X__, F(A x X) is said to be proper 
for accumulation if the following conditions hold: 



Generic Accumulations 61 

Naturality 'f is natural in A: For any f :A____, B, 

FAx X 
TA 

F(A x X) 

Ff X idx l lF(f x idx) 

FBxX F(B X X) 
TB 

Shape and data preservation 

F(A X X) 

y 
FA X X F1fl 

FA 
0 

The first condition actually states a restriction to the amount of in­
formation that can be used for modifying the accumulators. Indeed, 
that 'f is natural (polymorphic) in A makes accumulation independent 
of the values in the functor's variable positions (which correspond to 
the substructures). This means that the only values that are available 
for accumulation are those contained in the nodes of the data structure. 
This is an immediate consequence of the naturality condition. The sec­
ond condition coincides with one of the requirements for strengths. It 
asserts that 'f cannot modify the shape of the structure of type FA nor 
the data contained in it. 

A general form for 'f can be given in the following cases: 

• When F is a constant functor C we have that 'f = 1r1 : C x X ---t C. 

• When F = G + H , 

'f= ('f' +'f") od: (GA+HA) X X ---t G(A X X) +H(A X X) 

for some 'f' : GA x X____, G(A x X) and 'f" : HA x X____, H(A x 
X). This means that accumulations performed in the variants of 
a sum are independent of each other. This is a consequence of the 
hypothesis about distributivity. 



62 Pardo 

Given Y satisfying Definition 4.1 we can define another extension of 
functor F that works on X-actions. For f : A x X ---t B, let us define 
F f : FA x X ---t F B to be: 

TA Fj 
Fj = FAxX----F(AxX)----FB 

An immediate consequence of the condition of shape and data preserva­
tion for T is that F preserves identities, i.e. F 1r1 = 1r1. F preserves com­
positions of X -actions if Y satisfies the equation Yo (Y, 1r2 ) = F(id, 1r2 ) oY, 
something that we do not expect to hold in general. 

Definition 4.2 ([29]) An initial algebra inp is said to be initial with 
accumulators if for each object X, Y: FAx X ---t F(A x X) proper for 
accumulation, and h : FA x X ---t A, there exists a unique f : J-LF x X ---t 

A that makes the following diagram commute: 

FJ-LFxX 
(F j, 1r2) 

FAx X 

inF x idxl lh 
J-LF X X A 

f 

We call afold the unique arrow that results from initiality with accu­
mulators and denote it by afoldp(h, Y) : J-LF x X ---t A. D 

Like strong initiality, initiality with accumulators is guaranteed to 
exist in the presence of exponentials. 

Proposition 4.3 If C is a cartesian closed category, then every initial 
algebra is initial with accumulators. 

Like Proposition 3.2, this fact also follows directly from Proposi­
tion 3.3. Therefore, accumulations can be defined in categories like Set 
or Cpo. 

Example 4.4 

(i) For the natural numbers, 

wherer.p = idAx'l/J: AxX ---t AxX, forsome'lj;: X ---t X . For each 
h = [h1, h2] o d: (1 +A) x X ---t A, f = afoldN(h, Y) : nat x X ---t A 
is such that: 



Generic Accumulations 63 

f(zero,x) = h1(x) f(succ(n), x) = h2(f(n, 'ljJ(x)), x) 

For example, addition can be defined by 

add= afoldN(h, 'F) 

where h1 = 1r2, h2 = 1r1 and 'ljJ = succ. That is, 

add(zero,n) = n add(succ(m), n) = add(m, succ(n)) 

(ii) For lists with elements over A, 

TB = (1r1 + <p) o d 

where <p : (Ax B) x X----> Ax (B x X) is given by <p((a, b), x) = 
(a, (b, 'ljJ(a, x))), for some 'ljJ: Ax X----> X. For each h = [h1, h2] od: 
(1 +Ax C) x X ----> C, f = afoldLA (h, 'F) : A* x X ----> C is such 
that: 

f (nil, x) 

f (cons( a, ), x) 

h1 (x) 

h2(a, f( , '1/J(a, x)), x) 

For example, the function isums can be defined by 

isums nat* x nat ----> nat* 

1su ms a fold ( h, 'F) 

where h1(e) = wrap(e), h2(n,f,e) = cons(e, ), and 'ljJ =add. 

(iii) For leaf-labelled binary trees, 

'Fe= (1r1 + <p) o d 

where <p : ( C x C) x X ----> ( C x X) x ( C x X) is natural in C 
and preserves shape and data. This means that the c's in the 
output appear in the same order as in the input. Therefore, <p = 
(1r1 x '1/J, 1r2 x '1/J'), for some '1/J, 'ljJ' : X ----> X (i.e. accumulation 
on left and right branches may differ from each other). For each 
h = [h1,h2] o d : (A+ D x D) x X ----> D, f = afoldBA(h,'F) 
btree(A) x X ----> D is such that: 

f (leaf( a), x) 

f (join(t, u), x) 

h1(a, x) 

h2(f(t, '1/J(x)), f(u, '1/J'(x)), x) 



64 Pardo 

For example, the function rdepth : btree(A) ----> btree(nat), which 
replaces the value at each leaf of a tree by the depth of the leaf, 
can be defined by 

rdepth(t) = down(t, zero) 

where 

down btree(A) x nat----> btree(nat) 

down afoldBA (h, 7') 

with h1 (a, n) = leaf(n), h2(t, u, n) = join(t, u) and 'ljJ = 'l/;1 = succ. 
That is, 

down(leaf(a), n) = leaf(n) 

down(join(t, u), n) = join(down(t, n + 1), down(u, n + 1)) 

(iv) For binary trees with information in the nodes, 

"'Fe = ( 1r1 + 'P) o d 

where 'P: (C x Ax C) x X----> (C x X) x Ax (C x X) is natural 
in C and preserves shape and data. Like in the previous case, 
the c's in the output must appear in the same order as in the 
input. Therefore, 'P((c, a, c'), x) = ((c, 'lf;(a, x)), a, (c', 'l/J'(a, x))), for 
some 'l/;, 'lf;' : A x X ----> X (i.e. accumulation on left and right 
branches may differ from each other). For each h = [h1, h2] o d : 
(1 + D x A x D) x X ----> D, f = afoldrA (h, 7') : tree( A) x X ----> D 
is such that: 

f (empty, x) 

f (node(t, a, u), x) 

h1(x) 

h2(f(t, 'lf;(a, x)), a, f(u, 'l/J'(a, x)), x) 

For example, the function asums : tree(nat) ----> tree(nat), which 
labels each node with the sum of its ancestors, can be defined by 

where 

asums(t) = sdown(t, zero) 

sdown 

sdown 

tree(nat) x nat----> tree(nat) 

afoldrnat (h, 7) 



Generic Accumulations 65 

such that h1(n) =empty, h2((t,m,u),n) = node(t,n,u) and 'ljJ = 
'lj;' =add. That is, 

sdown (empty, n) 

sdown (node(t, m, u), n) 

empty 

node(sdown(t, m + n), n, sdown(u, m + n)) 
D 

The following are some laws for afold. 

Afold Lifting For any 'f, 

Afold Identity 

Afold Pure Fusion 

f o h = h' o (F f x id) =? f o afoldp(h, 'f) = afoldp(h', 'f) 

Acid Rain: Afold-Fold Fusion 

Ttransformer =? foldp(h)oafolda(T(inp),'f) = afoldc(T(h),'f) 

Fold-Afold Fusion For every natural transformation K,: G =? F, 

K, o T = 'f1 o (K, X id) 

afoldp(h, 'f1) o (folda(inp o /'1,) x id) = afolda(h o (/'1, x id), 'f) 

Map-Afold Fusion For f: A____, Band DA = J-LFA, 

F(f, id) 0 T = T1 0 (F(f, id) X id) 

afoldpB (h, 'f1) o (D j X id) = afoldpA (h o (F(f, id) X id), 'f) 

Morph-Afold Fusion For every f : X ____, X', 

F(id X f) o T A = o (id X f) 

afoldp(h, 'f1) o (id x f) = afoldp(h o (id x f), 'f) 



66 Pardo 

In the acid rain law, T stands for a transformer of type VA. (FA -+ A) -+ 
(GA x X-+ A). Morph-afold fusion is particularly interesting because it 
relates two accumulations whose accumulating parameters have different 
type. The premise of that law states a coherence condition that must 
hold between the accumulators. A proof of these laws can be found in 
[29]. 

Note 4.5 It is worth mentioning that the strong similarity between 
these laws and those for pfold is not accidental. In fact, in [29] it is 
shown that both pfold and afold are particular instances of so-called 
comonadic fold, a recursive operator based on comonads (which are al­
gebraic structures dual to monads). The comonad that corresponds to 
the case of pfold and afold is the so-called product comonad, which has 
functor W A = A x X. The laws for pfold and afold are then obtained by 
specialization from laws of comonadic fold. The (small) differences be­
tween the laws of pfold and afold is a consequence of different properties 
enjoyed by TF and 'f. 

Morph-afold fusion (as well as morph-pfold fusion) has another feature 
that makes it especially interesting. It is the fact that it states the 
composition of a recursive function with a comonad morphism. In fact, 
afold is composed with function id x f, which turns out to be a comonad 
morphism between the product comonads W A = A x X and W' A = 
Ax X' (see [29] for details). Although it is a very simple case of comonad 
morphism, to the best of our knowledge this is the first time the concept 
of comonad morphism is used for program calculation purposes. 0 

Example 4.6 The height of a leaf-labelled binary tree can be calculated 
as the maximum of the depths of the leaves in the tree: 

height = maxbtree o rdepth 

where maxbtree = foldsnat([id, max]): btree(nat)-+ nat returns the max­
imum value contained in a tree: 

maxbtree(leaf ( n)) 

maxbtree(joi n ( t, u)) 

n 

max( maxbtree(t), maxbtree( u)) 

where max(m, n) returns the greater of m and n. Since rdepth(t) = 
down(t,zero), we can write that height(t) = aheight(t,zero), where 

a height 

a height 

btree(A) x nat-+ nat 

maxbtree o down 

This two-pass definition produces an intermediate tree which can be 
eliminated by fusing the parts. To this end, we first observe that down = 



Generic Accumulations 67 

afoldBA(T([Ieaf,join]),'f), being T: (BAG____, C)____, (BAG x nat____, C) 
the following transformer: 

T(k) = [k1 o 1r2, k2 o 1r1] o d 

for k = [k1, k2] : A+ C x C ____, C. Therefore, by applying afold-fold 
fusion we obtain that : 

a height= afoldBA ( T([id, max]), 'f) 

That is, 

aheight(leaf(a), n) 

aheight(join(t, u), n) 

n 

max(aheight(t, n + 1), aheight(u, n +I)) 

Now, suppose we want to prove the following law: 

m + aheight(t, n) = aheight(t, m + n) 

In point-free style, 

(m+) o a height= aheight o (id x (m+ )) 

The proof proceeds as follows: 

aheighto(id x (m+)) 

{ morph-afold fusion; proof obligation } 

afoldBA(T([id,max]) o (id x (m+)),'f) 

{ definition of T } 

afoldBA ([1r2, max o 1r1] o do (id x (m+ )), 'f) 

{ naturality of d } 

afoldBA([1r2,maxo1rl] o (id x (m+) + id x (m+)) od,'f) 
= { coproduct } 

afoldBA ([(m+) o 1r2, max o 1ri] o d, 'f) 

{ afold pure-fusion; proof obligation } 

(m+) o a height 

The proof obligation for morph-afold fusion is: 

'fo (id X (m+)) = BA(id X (m+)) o'f 

which can be checked by a simple calculation that relies on naturality of 
d. In the case of pure-fusion the proof obligation is: 

(m+) o [1r2, max o 1r1] o d = [(m+) o 1r2, max o 1r1] o do (BA(m+) x id) 



68 Pardo 

which can be verified by a simple calculation that uses the property: 
max o ((m+) x (m+)) = (m+) o max. D 

Example 4. 7 A typical example of accumulation is the linear-time ver­
sion of reverse: 

areverse(£) = rev(£, nil) 

where 

rev A* x A* ____, A* 

rev afoldLA ([1r2, 1r2 o 1r1] o d, 7rev) 

with 7rev = (1r1 + tprev) o d and tprev((a, £),£') =(a,(£, cons( a,£'))). That 
is, 

rev(nil,e') = e' rev( cons( a,£), e') =rev(£, cons( a,£')) 

Consider also the accumulative version of the function that computes 
the length of a list: 

alength(£) =len(£, zero) 

where 

len A* x nat ____, nat 

len = afoldLA ([1r2, 1r2 o 1r1] o d, 7len) 

with 7len = (1r1 + tplen) o d and tplen((a, £), n) =(a,(£, succ(n))). That is, 

len(nil, n) = n len(cons(a,t'),n) = len(t', succ(n)) 

Now, suppose we want to prove the following law: 

length o areverse = alength 

where length = fold LA ([zero, succ o 1r2]) is the usual definition of length 
in terms of fold. This reduces to prove that: 

length(rev(£, nil))= len(£, zero) 

which in turn is a particular case of this more general property: 

length o rev= len o (id x length) 

The proof proceeds as follows . 



Generic Accumulations 

length o rev 

{ afold pure fusion; proof obligation } 

afoldLA ([length 0 7T2 1 7T2 0 1r1] 0 d, 7rev) 

= { algebraic manipulation } 

afoldLA ([1r2, 7T2 0 7Tl] 0 d 0 (id X length), 7rev) 

{ morph-afold fusion; proof obligation } 

len o (id x length) 

The proof obligation for pure fusion is: 

length o [1r2, 1r2 o 1r1] o d = [length o 1r2, 1r2 o 1r1] o do (LA length x id) 

69 

which can be verified by a simple calculation. In the case of morph-afold 
fusion the proof obligation is: 

LA (id X length) 0 rrev = rlen 0 (id X length) 

which reduces to proving that 

(id X (id X length)) o <prev = <plen o (id X length) 

This can be verified by a simple calculation. 0 

Finally, we present a law that relates a fold with an accumulative 
version of it. This law is an adaptation to our setting of a law in [19] 
that relates a fold with a higher-order fold . 

Proposition 4.8 Let f : A x X ---> A be a function with right identity 
e, i.e. f(a , e) =a, for every a. Then, 

f o (h x idx) = k o (F f, 1r2) => foldF(h)(t) = afoldF(k, r)(t, e) 

where F f = F f or, for r proper for accumulation. 

Proof. First, let us consider the following composite diagram: 

F foldF(h) x idx 
FJ.iF X X FA X X 

(F f, 1r2) 
FAx X 

inF x idx j 
I 

jk (I) h x idx (II) 

+ 
J.iF X X Ax X A 

foldF(h) x idx f 



70 Pardo 

(I) commutes by definition of fold, while (II) commutes by hypothesis. 
Since, 

(F j, 1r2) o (F foldp(h) x idx) = (F(f o (foldp(h) x idx) ), 1r2 ) 

by initiality with accumulators we obtain that : 

f o (foldp(h) x idx) = afoldp(k, "T) 

Therefore, 

foldp(h)(t) = j(foldp(h)(t), e) = afoldp(k, "T)(t, e) 

as desired. 0 

5. Downwards Accumulations 
Downwards accumulations [13, 14, 15] are functions that label every 
node of a data structure with some function of its ancestors. Gibbons 
[15] presents a generic definition of downwards accumulation in terms 
of unfold (the operator dual to fold, see [16]) that uses an accumulating 
parameter to pass information downwards. In this section, we show that 
a generic definition of downwards accumulation can be given in terms of 
our notion of accumulation. More precisely, we show that a downwards 
accumulation can be written as an afold. 

A downwards accumulation returns a data structure which is similar 
to that given as input but that has a label in every node. That makes 
necessary the introduction of a notion of labelled variant of a datatype. 

Definition 5.1 ([6]) The labelled variant of a parameterized datatype 
DA induced by a bifunctor F is a datatype Dc A induced by a bifunctor 
G defined by G(A, Y) =Ax F(1, Y). 0 

This means that DC is defined by the type equation DC A 9:! A x 
F(1, DC A). Note that each node of the labelled variant of a datatype 
carries one (and only one) label of type A. 

Example 5.2 

(i) In the case of lists, the functor G given by 

G(A, Y) = A x £(1, Y) 
A X (1 + 1 X Y) 

C>! A X (1 + Y) 
e>< A+AxY 

inducing a type of non-empty lists: 



Generic Accumulations 71 

nelist(A) = newrap(A) I necons(A x nelist(A)) 

(ii) In the case of leaf-labelled binary trees, the functor G is given by 

G(A, Y) A x B(1, Y) 
= A X (1 + y X Y) 
2:! A+AxYxY 

inducing a type of so-called homogeneous binary trees [15]: 

htree(A) = hleaf(A) I hnode(A x htree(A) x htree(A)) 

(iii) In the case of binary trees with information in the nodes, the func­
tor 

G(A, Y) Ax T(1, Y) 
A X (1 + y X 1 X Y) 

e::< A+AxYxY 

inducing the same type of homogeneous binary trees shown in the 
previous case. 

0 

Having defined the notion of labelled variant of a datatype, we are 
now ready to give a definition of downwards accumulation in terms of 
afold. 

Definition 5.3 Given 'f: FAG x X---+ FA(C x X), proper for accumu­
lation, and f2: F(A, 1) x X---+ B, we define downwards accumulation 
to be the arrow dapA (e, 'f) : DA x X ---+ D£ B given by 

where 

dapA (e, 'f) = afoldpA (inc3 o <p, 'f) 

<p F(A,D£B) X X 

!) X idx, 'fl) 

(F(A, 1) x X) x F(A, D£ B) 

B X F(1,D£B) 

G(B,DCB) 
0 



72 Pardo 

Gibbons' version of downwards accumulation [15] carries a function 
of type X x F(A, 1) ---t B x F(1, X) that takes an accumulator and 
the labels attached to a node of the input data structure and returns 
the label of type B that is attached to that node in the resulting data 
structure together with the value of the accumulators for the recursive 
calls. Our version, in contrast, splits up these actions into two functions 

(!: F(A, 1) X X ---t B 

such that 'T computes the value of the accumulators for the recursive calls 
and (! : F(A, 1) x X ---t B computes the label of type B to be attached 
to the node of the resulting data structure. Another difference we have 
with Gibbons' construction is that he needs to assume the existence of 
a polymorphic partial function 

zipc : G(A, B) x G(A', B') ---t G(A x A', B x B') 

that combines two values provided that they have the same shape. In 
our case that assumption is unnecessary. 

Example 5.4 As a simple example of a generic function that can be 
defined in terms of downwards accumulation, Gibbons [15] presents a 
generic function depths : D A ---t De. nat, which counts the number of 
ancestors of every node of a data structure. In terms of our version of 
downwards accumulation depths is defined by: 

where 

depthsD(t) = dcountD(t, zero) 

dcountD 

dcountD 

D A x nat ---t De. nat 

daFA (e, 'T) 

such that (! = 7!'2 and 'T = rFA o (id x succ). Function dcount simply 
attaches the current value of the accumulator to the node and passes the 
accumulator's successor to the recursive calls. Let us see some instances: 

(i) For lists, we have 

dcount(nil, d) 

dcount( cons( a,£), d) 

newrap(d) 

necons(d, dcount(£, d + 1)) 

(ii) For leaf-labelled binary trees, we have 

dcount(leaf(a), d) 

dcount(join(t, u), d) 

hleaf(d) 

hnode(d, dcount(t, d + 1), dcount(u, d + 1)) 



Generic Accumulations 73 

(ii) For binary trees with information in the nodes, we have 

dcount(empty, d) 
= hleaf(d) 

dcount(node(t, a, u), d) 
= hnode(d, dcount(t, d + 1), dcount(u, d + 1)) 

0 

Example 5.5 

(i) If we modify function 1n1tsums (shown at the beginning of Sec­
tion 4) so that it returns a value of type nonempty list instead of 
a value of type list (as it was declared), then we can define it in 
terms of a downwards accumulation: initsums(.C) = isums(.e, zero), 
where 

isums 

isums 

nat* x nat --+ nelist( nat) 

daLnat ( 11"2, Tis) 

The arrow ::ris coincides with the one used to define isums in Ex­
ample 4.4. 

(ii) In a similar manner, we can modify function asu ms (defined in 
Example 4.4) so that it now returns an homogeneous binary tree. 
This means that it will attach a label inclusive to an empty tree. 
This new version of asu ms can be defined in terms of a downwards 
accumulation: asu ms( t) = sdown ( t, zero), where 

sdown 

sdown 

tree(nat) x nat--+ hbtree(nat) 

darnat ( 11"2, rd) 

The arrow rd coincides with the one used to define sdown in Ex­
ample 4.4. 

0 

Now let us see some properties of downwards accumulations. Because 
downwards accumulations are a particular form of afold their properties 
are derived from those of afold. A proof of these laws can be found in 
[29]. 

DAce-Fold Fusion 

foldc 8 (k) o dapA (e, ::r) = afoldpA (k o <p, 7) 



74 Pardo 

DAce-Map Fusion 

Map-DAce Fusion For f: A---t Band DA = J.lFA, 

F(f, id) o 7' = 1'1 o (F(f, id) x id) 

dap8 (f!, 1'1) o (D j X id) = dapA (f! o (F(f, id) X id) , 7') 

Morph-DAcc Fusion For every f : X ---t X', 

F(id X f) 0 T = 1'1 0 (id X f) 

dap(e, -::r') o (id x f) = dap(f! o (id x !), -::r) 

Except for dace-map fusion, which is a corollary of dace-fold fusion, the 
rest of the laws are specializations of laws for afold. This is a natural 
consequence of having defined downwards accumulation as an afold . For 
example, law dace-fold fusion follows immediately from afold-fold fusion 
after observing that ina8 o <p can be written as T(ina 8 ), being T(h) = 
h o <p a transformer. 

Example 5.6 The function paths : tree(A) ---t htree(A*), which labels 
each node with the list (in reverse order) of its ancestors, can be defined 
by: 

where 

That is , 

paths= pdown(t, nil) 

pdown 

pdown 

case x of 

tree(A) x A* ---t htree(A*) 

darA(7rz,7'Pd) 

inl(u) ---t inl(u) 
inr(t,a,t') ---t inr((t,cons(a,£)),a,(t',cons(a,£))) 

pdown(empty, £) 

pdown(node(t, a, t'), £) 
hleaf(£) 

hnode(pdown (t, cons( a,£)),£, pdown (t', cons( a,£))) 



Generic Accumulations 75 

Now, suppose we want to prove that: 

asums = htree(sum) o paths 

where sum = fold ([zero, add]) : nat* ____, nat is the function that adds the 
elements of a list of numbers. This reduces to prove that: 

sdown(t, zero)= htree(sum)(pdown(t, nil)) 

which in turn is a particular case of this more general law: 

sdown o (id x sum) = htree(sum) o pdown 

By dace-map fusion, we have that 

htree(sum) 0 pdown = darnat (sum 0 1r2, Tpd) 

whereas by morph-dacc fusion: 

sdown o (id x sum)= darn.,(n2 o (id x sum),rPd) 

Therefore, we have arrived at the same result in both sides, since 1r2 o 
(id x sum) =sumo 1r2. Morph-dacc fusion requires that 

Tnat(id x sum) o 'Fpd = 'F5d o (id X sum) 

which can be verified by a simple calculation. 0 

6. Final Remarks 
This work presented a generic definition of accumulations on inductive 
types. This was achieved by the introduction of a recursion operator 
on inductive types that encapsulates the action of accumulation in a 
natural transformation. The construction presented resolves some of the 
shortcomings of a previous version defined in [28]. Concretely, in [28] 
we attempted to specify in full detail the way in which accumulators are 
modified. As a consequence of being too specific, accumulations included 
useless cases, namely those corresponding to empty constructors. That 
problem has been overcome in the current version. 

We also showed that the notion of downwards accumulation developed 
by Gibbons is a specific case of the notion of accumulation captured by 
the new operator. This demonstrates that downwards accumulations 
can also be defined by structural recursion. 

Accumulations may also be defined in a domain-theoretic setting. In 
fact, every accumulation can be expressed as a hylomorphism [27]: 

afoldF(h, 'F)= hyloFxx(h, ('F, 1r2) o (outF x idx )) 



76 Pardo 

where outp : 1-LF ____, F 1-LF is the inverse of inp and for each k : H A ____, A 
and g: B ____, HB, hyloH(k,g): B ____,A is defined by 

hyloH(k,g) = fix(<p) with <p(f) = k o Hf o g 

The following diagram makes the types explicit: 

F afoldp(h, 7) x idx 
F(!-LF X X) X X---------FA X X 

(7,7T2)) 

F!-LFxX 

outp x idx) 

h 

1-LF X X -----------A 
afoldp(h, 7) 

The base functor of the hylomorphism is GY = FY x X; it corre­
sponds to the signature of a labelled variant of the input data structure 
(of signature F) which has a value of the accumulators attached to ev­
ery node. A consequence of this representation is that the laws for afold 
(showed in Section 4) can be derived from standard laws for hylomor­
phism and by the addition of some strictness conditions in certain cases. 

Every hylomorphism can be split into the composition of a fold after 
an unfold (see [27]): hyloH(k, g) = foldH(k) o unfoldH(g), where unfold 
is defined by 

unfoldH(g) = inH o H unfoldH(g) o g 

In the case of afold, this means that 

unfoldc( (7 o outp, 1r2)) foldc(h) 
afoldp(h, 7) = 1-LF x X 1-LG A 

This factorization makes the process of generation and consumption of 
the intermediate data structure (of signature G) explicit. In the gen­
eration phase, corresponding values of the accumulators are computed 
recursively (using 7) and attached to every node of the data structure. 
In the consumption phase, a result is computed from the intermediate 
data structure. To produce the result this process uses, in each step, 
the information contained in each node of the (original) data structure 
together with the attached values of the accumulators. 

Our approach to accumulations avoids the use of higher-order folds. A 
consequence of this fact is that we can only represent accumulations that 



Generic Accumulations 77 

pass information strictly downwards. Clearly, there are other kind of ac­
cumulations that does not fit this scheme. For example, we cannot repre­
sent functions that use the extra parameter to provide a continuation for 
the result. A typical example is function leaves: btree(A) -; [A* -;A*], 
which lists the leaves of a tree in the following manner: 

leaves (leaf a) £ cons( a,£) 
leaves (join ( t, u)) £ = leaves t (leaves u £) 

In this case the accumulator for the recursive call on the left subtree 
depends on the result of the recursive call on the right subtree, something 
not captured by our scheme. Accumulations of this kind can be written 
as a higher-order fold. 

Acknowledgments 

I would like to thank the anonymous referees for their detailed and help­
ful comments. Especial thanks go to Manuel Alcino Cunha for pointing 
out the representation of accumulations in terms of hylomorphisms. 

References 

[1] R. Aubin. Mechanizing Structural Induction: Part I and II . Theoretical Com­
puter Science, 9:329-362, 1979. 

[2] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic Programming­
An Introduction-. In Advanced Functional Programming, LNCS 1608. Springer­
Verlag, 1999. 

[3] R. Bird. Introduction to Functional Programming using Haskell (2nd edition). 
Prentice-Hall, UK, 1998. 

[4] R.S. Bird. The Promotion and Accumulation Strategies in Transformational 
Programming. A CM Transactions on Programming Languages and Systems, 
6(4), October 1984. 

[5] R.S. Bird and 0. de Moor. Algebra of Programming. Prentice Hall, UK, 1997. 

[6] R.S. Bird, P.F . Hoogendijk, and 0 . De Moor. Generic Programming with Re­
lations and Functors. Journal of Functional Programming, 6(1):1- 28, 1996. 

[7] R.S. Boyer and J.S . Moore. A Computational Logic. Academic Press, 1979. 

[8] R. M. Burstall and J . Darlington. A Transformation System for Developing 
Recursive Programs. JACM, 24(1):44- 67, January 1977. 

[9] R. Cockett and T. Fukushima. About Charity. Technical Report 92/480/18, 
University of Calgary, June 1992. 

[10] R. Cockett and D. Spencer. Strong Categorical Datatypes I. In R.A.C. Seely, 
editor, International Meeting on Category Theory 1991, volume 13 of Canadian 
Mathematical Society Conference Proceedings, pages 141-169, 1991. 

[11] M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Universiteit 
Twente, The Netherlands, 1992. 



78 Pardo 

[12] M.M. Fokkinga. Datatype Laws without Signatures. Mathematical Structures 
in Computer Science, 6:1-32, 1996. 

[13] J. Gibbons. Upwards and Downwards Accumulations on Trees. In R.S. Bird, 
C.C. Morgan, and J.C P. Woodcock, editors, Mathematics of Program Construc­
tion, LNCS 669. Springer-Verlag, 1993. 

[14] J. Gibbons. Polytypic Downwards Accumulations. In Mathematics of Program 
Construction, LNCS 1422. Springer-Verlag, 1998. 

[15] J. Gibbons. Generic Downwards Accumulations. Science of Computer Program­
ming, 37(1-3):37-65, 2000. 

[16] J. Gibbons and G. Jones. The Under-Appreciated Unfold. In Proc. 3rd. 
ACM SIGPLAN International Conference on Functional Programming. ACM, 
September 1998. 

[17] M.C. Henson. Elements of Functional Programming. Computer Science Texts. 
Blackwell Scientific Publications, 1987. 

[18] R. Hinze. Polytypic Programming with Ease. In 4th Fuji International Sym­
posium on Functional and Logic Programming (FLOPS'g9), Tsukuba, Japan., 
Lecture Notes in Computer Science Vol. 1722, pages 21- 36. Springer-Verlag, 
1999. 

[19] Z. Hu, H. Iwasaki, and M. Takeichi. Calculating Accumulations. Technical 
Report METR 96-03, Faculty of Engineering, University of Tokyo, March 1996. 

[20] B. Jacobs. Parameters and P arameterization in Specification, using distributive 
categories. Fundamenta Informaticae, 24(3):209-250, 1995. 

[21] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. Bulletin 
of EATCS, 62:222- 259, 1997. 

[22] J. Jeuring. Theories for Algorithm Calculation. PhD thesis, Utrecht University, 
1993. 

[23] D.J. Lehmann and M.B. Smith. Algebraic specificat ion of data types. Mathe­
matical Systems Theory, 14:97-139, 1981. 

[24] G. Malcolm. Data Structures and Program Transformation. Science of Com­
puter Programming, 14:255- 279, 1990. 

[25] E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics. Texts 
and Monographs in Computer Science. Springer-Verlag, 1986. 

[26] Z. Manna and R. Waldinger. The Deductive Foundations of Computer Program­
ming. Addison-Wesley, 1993. 

[27] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Ba­
nanas, Lenses, Envelopes and Barbed Wire. In Proceedings of Functional 
Programming Languages and Computer Architecture'91, LNCS 523. Springer­
Verlag, August 1991. 

[28] A. Pardo. Towards Merging Recursion and Comonads. In Workshop on Generic 
Programming, Ponte de Lima, Portugal, July 2000. Technical Report UU-CS-
2000-19, Utrecht University. 

[29] A. Pardo. A Calculational Approach to Recursive Programs with Effects. PhD 
thesis, Technische Universitiit Darmstadt , October 2001. 

[30] L.C . P aulson. ML for the Working Programmer. Cambridge University Press, 
Cambridge, UK, 1991. 


	Generic Accumulations
	1. Introduction
	2. Mathematical Framework
	2.1. Product and Sum
	2.2. Polynomial functors
	2.3. Inductive Types
	2.4. Strong Functors

	3. Functions with Parameters
	4. Accumulations
	5. Downwards Accumulations
	6. Final Remarks
	Acknowledgments
	References




