
Learning Software Engineering with EASE

Dirk Draheim
Institute of Computer Science, Free University Berlin, Takustrasse 9, 14195 Berlin, Germany

draheim@inffu-berlin.de

Key words: Didactics of Informatics, Higher Education, Teamwork

Abstract: The paper describes EASE- an ultra-lightweight software engineering process
model that specifically targets student projects in higher education. The model
has been obtained by analysing the requirements of student projects and then
carefully combining relevant concepts from state-of-the-art software
management concepts. Recommendations ate given for structuring the course
as a whole, as well as managing the work. The latter is oriented towards
mature andragogical methodologies. EASE has significantly improved the
learning outcomes in both undergraduate and graduate courses and the paper
proposes that it should be adapted and trialled in secondary education and
industrial training environments.

1. INTRODUCTION

EASE (Education for Actual Software Engineering) is a methodology for
the teaching of software engineering skills in higher education. It applies to
projects, i.e. every kind of course in which students build software systems
by doing teamwork. Such projects belong to every core curriculum in
computer science, both undergraduate and graduate. EASE consists of the
following components (Figure!):
• driving forces;
• a process architecture;
• a practices catalogue.

In a broad sense the driving forces define the problem the lecturer is The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35663-1_34

© IFIP International Federation for Information Processing 2003
T. J. van Weert et al. (eds.), Informatics and the Digital Society

http://dx.doi.org/10.1007/978-0-387-35663-1_34

120 Dirk Draheim

faced with. The process architecture and the practices catalogue together
constitute the solution. The practices form a process pattern language
(Coplien 1995) (Figure 2).

prjyjng Forces

learning gools risks and chances

Process Architecture

process micro {

mplerrentati:>n checkpoint

practjces Catalogue

Figure 1. EASE- Education for Actual Software Engineering

EASE is the first process model that has been designed from scratch to
accommodate the specific needs of education. Wherever appropriate EASE
is oriented towards concepts found in today's software engineering process.
With respect to didactics, EASE is influenced by collaborative learning
(Brufee 1983).

Learning Software Engineering with EASE 121

r-
(

nxed total number ol hours
mm hours

ruread o[re(IJirtd mulrs

(
art Ifact orlentatbn
etl!)lmeraphor

slmLJtaneous mprovement
risk cktectirm

llrsl relaxed meeting

(
come together
ltamtrcontrocl

BliPBriS
freeing reamfrom /ow-levtl
arptcts of technology -

------- lecturer - - -._
minimizt .stres personal wnvicliom
maximiz.e learning outcome

team leader
no teacher bUI motivator
modtrator. expert

architectural spike
lecturer 's responsibility

ina nutshell jurrpsrarr

last lteraUons

----------=choosing technology

Figure 2. Practices pattern languages

2. DRIVING FORCES

We consider learning goals and risks and chances (or opportunities) are
the driving forces of a software practical course. It is noteworthy that these
driving forces are fundamentally different from those found in practice.
Software management is a product-oriented task. The main driving force is
risk and the entities to deal with during risk estimation are different from
those in education- namely quality, quantity, cost, time and productivity.

A software course inherits risks and chances from adult education. There
are also specific risks with regard to software engineering. Different
individuals perceive the same topic in totally different ways (Varela 1988;
1993). Participants have different dispositions and hold different opinions
about the purpose of computer science. As a result, the students have
different objectives concerning their participation in the course. Like Siebert
(2000) we regard this point as crucial for adult education and believe that the
course can hardly be successful if it is ignored. However, we believe that is
not only a risk factor but also a chance as different skills and opinions may
contribute to collaborative learning (Brufee 1983).

These are chances. Students are receptive, hard-working and well­
motivated. There is the risk that motivation may vanish. We believe it is very
important to respect the students' different points of view in order to keep
motivation high.

In nearly every software project, we observed students who only wanted
to gather know-how about technology and were not interested in other
learning goals. They have an attitude similar to that of real programmers and

122 Dirk Draheim

sometimes "baby duck syndrome" occurs. Even more problematically, these
students often tend to be non-communicative. They are not willing to work
together with students that do not exactly share their opinions. In the worst
case a project team consists of several small competing groups of
programmers (and a bunch of increasingly intimidated other participants).
With EASE's micro process, these students quickly become major
contributors to teamwork.

Lecturers may introduce other risks when they simplify complex
software engineering concepts. Sometimes concepts are simplified to such
an extent that students are misled. Take object orientation as a prominent
example - often is taught as a modelling the world with objects paradigm,
without caveats concerning the new impedance mismatch between problem
domains and solution domains of non-trivial systems, that is the result of
object orientation.
EASE is designed to mitigate risks and exploit chances. Therefore EASE
fosters teamwork and collaborative learning, self-organization and learning
by doing.
Currently EASE uses its own, quite coarse, taxonomy of learning aims.
These include hard skills which are:
• technology-related, low-level: detailed know-how about concrete

technologies, e.g. programming languages, APis, operating systems,
CASE tools;

• technology-related, high-level: the ability to recognize advantages and
disadvantages of concrete technologies with respect to a current
ambiguous task;

• method-related, low-level: know-how about concrete software
engineering techniques and concepts, e.g. specification languages,
modelling languages, process models, design patterns, GRASP patterns;

• method-related, high-level: the ability to appreciate the respective
importance of concrete software engineering techniques and concepts.

There are also soft skills:
• courage, skills concerning teamwork, leadership, decision-making,

enforcing plans, motivation, and moderation.
Finally there are key skills:
• receptiveness, efficiency, ability to learn.

EASE is supposed to support the learning of soft skills and high-level
hard skills, but it does not prescribe concrete learning goals. For instance, in
a particular project modelling, specification, design, or even coding may be
emphasized. EASE provides a framework for learning and exercising (or
applying) software engineering. The lecturer defines the learning goals.

Learning Software Engineering with EASE 123

3. PROCESS ARCHITECTURE

The core process of EASE has a sophisticated, yet easy to learn
architecture. It consists of a macro process that is accompanied by tracking
(Figure 1). The macro process starts with a project planning phase and is
followed by a preliminary teaching phase. Then a controlled iterative micro
process is entered, which consists of repeated steps, namely meetings and
exercises. The micro process takes the majority of the project's time. The
project is closed with an open space event. Tracking encompasses a spike
solution milestone and checkpoints for analysis, design, and implementation.

EASE's meeting concept was developed by adapting the iteration
planning of Extreme Programming (Beck 1999), and it is inspired by
Collaborative Learning (Bruffee 1983) and Action Learning (Revans 1982).
The resultant micro-process iteration bore a striking similarity to the session
workflow of Entrainement Mental (Chosson 1975). We regard this as a
further justification of our approach. EASE, in common with the USDP
(United Software Development Process) (Jacobsen et al 1999) has a
controlled simultaneous improvement of artifact sets, termed two­
dimensional process structure in USDP.

3.1 Macro Process

Project Planning
Some concepts in EASE presuppose that the course has enough

participants to be divided into several teams, so that each team has ten to
forty members. Each team has a lecturer or a tutor as their leader. With
minor changes EASE can be used in courses of smaller scope.

The lecturer prepares the course defining learning goals based on
personal convictions. Learning goals may be predefined because of an
encompassing study plan. The lecturer defines the desired system as a vision
document. Each team is set the task of realizing as many features as possible.
Work is finished when every student has worked a fixed total number of man
hours - a figure agreed at the beginning of the course. The course is finished
with a checkpoint - not by a milestone as that enforces a predefined feature
set. The lecturer defines sets of simple artifacts - EASE task planning is
artifact-oriented. These are divided into an analysis set, a design set and an
implementation set - an intentionally coarse division. In contrast to the
theory of stage-wise or waterfall-like software management, EASE assumes
that artifact sets are developed simultaneously from the outset - simultaneous
improvement. EASE is deliberately not prescriptive at the level of
engineering activities in order to avoid micro management. Instead it is
designed to be an instructive challenge for the students. They must find the

124 Dirk Draheim

tasks that contribute best to progress on their own.
The definition of the artifact sets is accompanied by choosing

technologies and techniques and by developing a system architecture. For
this purpose the lecturer has to develop an architectural spike. This is a
prototype system which realises just one or a few representative use cases of
the desired system. All the technologies on which a chosen system
architecture is based are used. There are subtle differences between the
reasons for architectural spikes in EASE and those found in practice. The
purpose in practice is for estimating risks associated with a particular
architecture. In EASE the resulting spike solution is used to present the
chosen architecture and technologies to the students in preliminary teaching.
It serves as both start point and reference point during the rest of the course.
The spike solution must consequently avoid encompassing unnecessary
features like exhaustive functionality, constraint checking, and fancy user­
interface layout. Using a spike this way has the following benefits:
• "in a nutshell" -the students understand the architecture as a whole.
• "jump start" -the students have early success in handling technology.

In this version of EASE, the students do not develop the architecture.
This is considered too challenging. In practice it is a senior architect's task.
The lecturer fixes days for the analysis and the design checkpoint.

Preliminary Teaching
In a first plenum the desired system is explained. EASE is explained,

especially the micro process. An overview of the architectural spike is given.
The students are assigned to teams randomly. Homogenous groups should be
avoided. An exception may be made if there are requests for homogenous
female teams. The students of each team get together in a first relaxed
meeting and a first simple task is assigned to the students.

Micro Process
Each team enters the micro process, which is fast iterative and consists of

alternating weekly meetings and exercises. Meetings are for task planning.
During exercise periods the tasks defined in the meeting are carried out. At
each meeting the whole team and its team leader get together. This team
leader is the motivator, as required a moderator, occasionally an expert.

A meeting takes approximately one and a half hours. During the meeting
five well defined activities take place (Figure 3). It is important to note that
in the first few meetings these activities are viewed as sequential steps that
define a workflow. Once students are used to the meetings activities should
be carried out in parallel. In this way, the mutual dependencies between the
activities are exploited to improve the outcome. However, the workflow
technique may be used if teamwork gets stuck. For better understanding
activities are presented as workflow steps in this paper and that is the way
they should be explained in preliminary teaching.

Learning Software Engineering with EASE

evaluate

meeting

find discuss

..__t_a_sk_s___,

exercising

Figure 3. EASE- micro process

assign
tasks

125

First, the results of the previous week's effort are discussed and validated.
Then the team concentrates on finding new tasks. Task planning is artifact
oriented. The main question is - what has to be done next in order to
contribute most effectively to the growth and the quality of the artifact set?
Brainstorming techniques are very helpful. All suggestions must be taken
seriously and gathered for further discussion. Usually more work is found
than is possible to do during the following week so tasks have to be sorted
with respect to importance. Based on their current knowledge and opinions
the tutees discuss what to do next and why. This results in a task list, ordered
by importance. Students learn to appraise the relative importance of the
mutually dependent families of software engineering activities.

Alternative solutions for the tasks are suggested, discussed and finally
one of them is chosen for each task. Tasks that are too large to be carried out
by a group in a week have to be split into several tasks. In the end every task
is assigned a new, succinct title and a short, nonetheless precise, description.
Tasks then have to be assigned to team members. Usually a task is assigned
to a group of two to four participants. Group members estimate the time
needed to carry out the task and agree the time contribution of each member.
Tasks that cannot be assigned are considered the following week.

The team is divided into small groups that work on tasks. This division is
not static and at each meeting, new groups are formed. The tutor has to
monitor the selection. In a project threads of strongly dependent tasks exist.
If a task has a predecessor, it should be assigned to the predecessor's group
but at least one group member should be replaced with a new team member.
This concept of small and frequently changing groups is crucial, because we
pursue a generalized notion of collective ownership. It is the target of the
exercise that students learn about the overall structure of the system that is
built up. Ideally, every student should have an understanding of every
technology and concept used in the project, and how they interact.
Consequently students do not over-specialize and the learning outcome is

126 Dirk Draheim

shifted in the direction of high-level hard skills and soft skills.
The meeting is followed by exercises. Tasks are carried out using the

teamwork approach. Often the group work can be further sub-divided into
smaller tasks for every group member - nearly always true for coding tasks.
Even with this sub-division the group should stay together in the same room,
although every team member may be working on their own. If a problem
arises all group members immediately work together to find a solution.
Group members help each other on demand. If the task is coding, pair
programming is recommended. If a new group member joins every question
has to be answered patiently. The concept of small changing groups makes
tutees learn from each other. At the next meeting results are evaluated.
Students talk about their experiences, describe problems that occurred and
explain how long they worked (they have to work a fixed total number of
hours). Independent of the total outcome of work we find students typically
are willing to respect the work of other, perhaps less experienced, students.
Our approach tackles the problem that students often do not trust the
industry of their colleagues because they have different capabilities - a
potential source of squabble. The overall teamwork should be supported by
appropriate simple tools like repositories, mailing lists and discussion
forums. The course terminates with an open space event. This realises the
implementation checkpoint. Each team explains its system to the other teams
in a detailed plenum presentation. Then all students gather in computer
rooms to examine and test all the systems.

3.2 Tracking

On the fixed days of the analysis and design checkpoint, the respective
artifact set is reviewed by the team leader. In a plenum, results are presented
briefly, compared and discussed. We use the term checkpoint instead of
milestone. A milestone defines a targeted result. A checkpoint is a softer
control mechanism and fixes a day for reflection and problem exploration.

3.3 Case Study

We developed EASE based on the experiences gathered in our lectures
on software engineering and their satellite projects. EASE was thoroughly
used for the first time in summer 2001 in the lecture "Softwarepraktikum"
(undergraduate, 4 semester hours) at Freie Universitat Berlin. It significantly
improved the learning outcome. It was used by three teams each consisting
of fifteen to twenty tutees. Only eighty per cent of the participants studied
computer science. Ten per cent had extensive skills in net programming or

Learning Software Engineering with EASE 127

using databases, usually only low-level hard skills. At the beginning of the
course the other students had hardly any knowledge about distributed
systems or persistent data. By the end of the course every student could deal
with the technologies and several complex notions shown in (Figure 4).

Webshop Module

three tier ultra ttin client architecti.Te

Administration
Module

two tier fat cl ent ardJitecture

Figure 4. Case study - system architecture

The artifact sets encompassed a web user interface prototype as the result
of storyboarding, a UML data model, a textual requirement specification,
deployment and design diagrams, commented code and automated tests. The
students learned using SourceForge's open source management capabilities,
Concurrent Versioning System software, modelling tools, Integrated
Development Environments and GUI builders.

4. FURTHER DIRECTIONS AND RELATED WORK

We recommend EASE should be adapted to other areas, e.g. secondary
teaching or industrial training. In a graduate course it should be possible for
students to take over the project-planning phase and are evaluating this in a
challenging practical course on EJB (Enterprise Java Beans) application
servers. A web-enabled, team-oriented EASE project management tool is
under development. Lessons learned from using XP and the Rational Unified
Process (RUP) in student projects are presented in a number of papers
(Lippert et al 2001; Traub 2001). In our opinion it is not possible to use XP
in a student project. Teaching XP using just a few XP notions misses the
point. It is a common misunderstanding that XP is an ultra-lightweight

128 Dirk Draheim

process model. Instead it defines a highly sophisticated net of practices that
can be exploited only in a real world project. Unsophisticated attempts to use
XP in education can seriously mislead students (nonetheless XP can be
taught- by using usual "frontal" teaching). This applies even more so for the
heavyweight RUP (Kruchten 1999). The Unified Process for education
UP/EDU (Robillard 2001) is the result of reducing RUP so it can be used in
education. The result is still overpowering as UP/EDU compels the lecturer
to teach certain topics, particularly subtle proprietary RUP notions.

If a professional process model is used in education na'ively or in an
oversimplified way, its constituting concepts are probably not exploited at
all. A student project differs from a real world project in scope, in driving
forces and in organisational culture. EASE is a reusable software
engineering process for practical courses in higher education. It is ultra­
lightweight and combines new concepts with proven concepts from software
management and didactics. EASE targets the learning of soft-skills and high­
level hard skills.

REFERENCES

Beck, K. (1999) Extreme Programming Explained- Embrace Change. Addison Wesley.
Bruffee, A. (1983) Collaborative Learning: Higher Education, Interdependence, and the

Authority of Knowledge. Johns Hopkins University Press.
Chosson, J.-F. (1975) L'entrafnement mental. Le Seuil.
Coplien, J. 0. (1995) A Development-Process Generative Pattern Language. In Proceedings

oflst Pattern Languages of Program Design, J. 0 Coplien and D. C. Schmidt (eds.),
Addison-Wesley, pp. 183-237.

Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The Unified Software Development Process.
Addison-Wesley.

Kruchten, P. (1999) The Rational Unified Process. Addison-Wesley.
Lippert, M. et a1 (2001) XP lehren und Iemen. In Software Engineering im Unterricht der

Hochschulen, H. Lichter and M. Glinz (eds.) , dpunkt.verlag.
Revans, R. W. (1982) What is Action Learning ? The Journal of Management Development,

Vol. 1, No.3, pp. 64-75, MCB Publications.
Robillard, P. N., Kruchten, P. and D!Astous, P. (2001) YOOPEEDOO (UPEDU): A Process

for Teaching Software Process. In Proceedings of the 14th Conference on Software
Engineering Education and Training. IEEE.

Siebert,H. (2000) Didaktisches Handeln in der Erwachsenenbildung - Didaktik aus
konstruktivistischer Siehl. Luchterhand.

Traub, S. (2001) Einsatz von objektorientierten Technologien und Softwareentwicklungs­
prozessen in der Lehre. In Proceedings of NetObjectDays 2001. TranSIT.

Varela, F (1988) Cognitive Science- a Cartography of Current Ideas. Pergamon
Press/Leuven University Press.

Varela, F. (1993) Kognitionswissenschaft- Kognitionstechnik. Suhrkamp.

	Learning Software Engineering with EASE
	1. INTRODUCTION
	2. DRIVING FORCES
	3. PROCESS ARCHITECTURE
	3.1 Macro Process
	3.2 Tracking
	3.3 Case Study

	4. FURTHER DIRECTIONS AND RELATED WORK
	REFERENCES

