
An Approach to Implement Feature-Based 
Applications using Knowledge Aided Engineering 
Technology 

F. MANDORLI\ C. RIZZI2, L. SUSCA2 and V. CUGINI2 

1 Department of Mechanical Engineering, University of Ancona, Via Breece Bianche 1-60131, 
Ancona, Italy 
2 Department of Industrial Engineering, University of Parma, Viale delle Scienze 43100, 
Parma, Italy 

Abstract: Concurrent Engineering methodology and process analysis and modelling 
showed the importance of tools that allow the designers to evaluate, from the 
beginning, different aspects of product definition. 3D CAD systems, 
simulation tools and virtual proto typing technologies can support the designer 
during herlhis decision-making activity but, in order to provide an effective 
support, they must be tailored to the needs of the design process of each 
specific product. 
During last years, different types of tools appeared on the market to support 
this tailoring activity and to promote the development of product-dependent 
applications. In this paper, we have focused the attention on software tools 
named KAE (Knowledge Aided Engineering) development shells. 
Applications implemented by using this type of tools can support experts 
during the decision making process to evaluate alternative solutions. They 
provide a kernel for the integration of different technologies, and represent a 
basic step for the development of the product design. 
In this paper we present a brief overview of the architecture of a typical KAE 
application and we provide a survey of the most significant systems that we 
have developed, within different application domain, taking advantage of the 
KAE technology. 

Key words: Knowledge Aided Engineering, Feature Technology 

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2003
R. Soenen et al. (eds.), Feature Based Product Life-Cycle Modelling

10.1007/978-0-387-35637-2_11

http://dx.doi.org/10.1007/978-0-387-35637-2_11


42 Feature-Based Knoweldge Aided Engineering 

1. INTRODUCTION 

The development of ideas and design conceptualisation involve 
creativity, expertise (Cross, 1998); at the same time, to reduce design cycle 
time and improve product values, the designer must be able to identify the 
best design solution as soon as possible, i.e., the right design the first time. A 
crucial issue in decision-making process is the possibility to design and 
evaluate alternative solutions in a short time. 

The problem to compute and verify alternative design solutions is a 
traditional engineering problem that involves routine jobs and manual 
computation and often requires an enormous waste of time (Vernadat, 1996). 
In this scenario, simulation can play a significant role by providing 
simplified (either physical or mathematical) models the designer can use to 
validate hislher assumptions. 

The motivation for the development of an automatic decision support 
system is to eliminate routing jobs and perform, as much as possible, 
automatic computation during the evaluation of alternative design solutions. 
This will speed up the decision process and will give to the designer time to 
develop new ideas and improve the product. 

A key aspect in the development of such a kind of systems is the amount 
and the quality of controls incorporated into the system, i.e., in an ideal 
situation, the user should be able to interact with the system in order to 
generate alternative design solutions, and the system should give feedback 
about the qualitative and/or quantitative evaluation of each solution. 

In order to provide such functionality, the system must incorporate all the 
significant knowledge about the problem under inspection. This objective 
can only be reached through the formalisation of related know-how and 
consequent acquisition and mapping of knowledge into appropriate 
computerised models and functions. 

A possible methodology to deal with the problem of knowledge 
representation within design support systems is based on the concept of 
feature. The concept of feature provides the basis to formalise and represent 
the different types of knowledge involved in the designer's decision-making 
activity. In fact, features have been widely used to represent complex 
structures containing shape as well as functional and technological 
information of a specific application domain (Shah 1994, Shah 1995) and the 
feature technology has matured to the point that most of the today available 
CAD systems claim to be feature-based. 

Although feature-based systems have improved the modelling capability 
of CAD systems, the problem to define general procedures able to guarantee 
the control of the coherence between function and shape (i.e., the feature 
semantic) is still an open issue (Bidarra 2000, Gao 2000, Mandorli 1997). 



F. Mandorli, C. Rizzi, L. Susca, U. Cugini 43 

Better results on model control can be achieved when the general purpose 
approach is substituted by a domain-dependent approach, i.e., instead of 
using a general purpose shape-based system, we move to a function-based 
system, tailored on a specific product and incorporating the users' 
knowledge related to the different phases of the product design process. In 
this case, the problem to tailor a generic system to the needs of a specific 
application domain is strictly related to the definition of an appropriate set of 
features and to the implementation of suitable functionality to manage and 
control the feature model. 

Several approaches based on different technologies and with different 
level of complexity, are today available to face this problem. 

In this paper we present three different applications we have developed 
by using a feature-based approach supported by the Knowledge Aided 
Engineering (KAE) technology. 

The intent is to summarise our experience and to underline advantages 
and drawbacks related to the adopted technology, with reference to the 
identification of class of design problems that can benefit from the proposed 
approach. 

2. TECHNOLOGY TO DEVELOP TAILORED 
APPLICATIONS 

Different IT tools can be used to implement customised applications. 
First consideration when selecting the most appropriate development tool is 
the needed balance between the amount of control that will be incorporated 
into the system and the development effort. 

Remarks about the effort and skill required to develop a tailored 
application is particularly significant if we consider the lost of information 
that may occur when the domain expert has to interact with the IT expert that 
will develop the application. This drawback could be avoided if the domain 
expert can develop, test and finally use the application. 

In the following we summarise the approaches to the development of 
tailored applications, based on different technologies, and we give an 
assessment about the control/development-effort balance (See Table 2). 

• CAD Feature Libraries: 
most of the commercially available feature-based CAD systems allow 
the users to create libraries of feature templates. The feature template is 
generated by defining its shape and main geometric parameters. The user 
can interactively define new features and store them in a feature library 



44 Feature-Based Knoweldge Aided Engineering 

for a future use. The control of the correct use of the feature template 
during the definition of a new model is left to the user. 

• CAD Development Kit: 
most of the commercially available CAD systems provide a software 
development kit. The developer to implement control algorithms that 
will navigate the data structure in order to check the model consistency 
can use this kit. The developed algorithms become available as new 
commands in the system interface and the user can recall them when 
required. 

• Software Components: 
several software components are available on the market as software 
libraries to provide specialised services for geometric modelling, 
dimensional constraints management, visualisation, etc .. The developer 
can take advantage from the algorithms present into the libraries to 
develop its own application. 

• KAE Development shell: 
the user can develop his own application by using a development 
environment that provides functionality to handle a hierarchical product 
model structure including shape representations, dimensions, assembly 
rules, access to external data bases, etc. 

to the user. 

The user from the CAD system 
interface fires the new developed 
control command. 

The developer has to implement the 
controls that will perform automatic 
check or will be available for the 
final user. 

When a model property is changed, 
the developed application 
automatically fe-computes the 
model on the basis of the controls 
inserted into the model in form of 



F. Mandorli, C. Rizzi, L. Susca, U. Cugini 45 

The CAD feature library approach does not require a real implementation 
effort; however, the features defined in such a way can just represent shapes 
and related dimensioning parameters, but they fails in the possibility to 
manage validation rules and other complex functionality to control the 
correct behaviour of the feature model. 

The CAD Development kit and Software Components approaches allow 
implementing better control procedures but they require the developer to 
have a significant skill in both programming languages and geometric 
modelling technology. 

KAE development shell represents the compromise among the above­
mentioned approaches. The developer can take benefit from the flexibility of 
the high level programming language provided by the tool to define a 
product model containing all the different types of required knowledge. This 
approach requires a limited experience in programming and geometric 
modelling technology. In next chapter we will describe with more details the 
characteristics of a KAE development shell and the methodology to 
implement an application. 

3. KAEDEVELOPMENTSHELL 

3.1 Methodology to develop KAE applications 

KAE development shells are based on generative technology. Within the 
development environment, the domain expert can create and test generative 
product models. Once the model has been completely defined, a graphical 
user interface for the application has to be developed in order to let the end­
user interact with the generative product model (Rosenfeld, 1995; 
Moulianitis, 1999; Ognjanovic, 1996). 

The generative product model is a hierarchical structure made by parts 
and subparts. Part properties and relationships have to be defined by the 
domain expert in order to incorporate design specifications, design intent, 
engineering and manufacturability rules, and enterprise-wide best practices. 

The generative product model takes, as input, the design specifications, 
applies relevant procedures, and generates automatically a product design. 
When the design specifications change, the KAE shell automatically updates 
the product model, and generates new design version by directly deriving all 
the outputs. 

By means of the user interface, the end-user can change the design 
specifications and execute the generative model over and over again to 



46 Feature-Based Knoweldge Aided Engineering 

rapidly evaluate alternative design solutions, taking advantage from the 
automation of several routine operations, such as the following ones: 

• Generating geometric models from functional specifications; 
• Calculating engineering and geometry properties; 
• Choosing a configuration of product components; 
• Enforcing compliance to standards and best practices; 
• Verifying product manufacturability; 
• Determining the theoretical performance or behaviour of the 

product; 
• Exporting the product geometry and model information to external 

engineering analysis programs; 
• Generating information such as bills of materials, cost reports, 

manufacturing instructions and CAD-format data. 

3.2 Components of a KAE development shell 

The main components of a KAE development shell include: 

• The interpreter of the generative design language used to define 
product models; 

• The dependencies manager to trace product model changes and drive 
the model re-generation; 

• Geometry modelling tools to create rule-based definitions of surface 
and solid models; 

• Graphical interfaces to interact and test the generative product 
models; 

• Data integration tools for linking to other software products. 
The core of a KAE shell is the interpreter of the generative design 

language and the dependencies manager that drives the model re-generation 
when model inputs change. 

Regardless syntactical aspects, the generative design languages provided 
by the different commercially available KAE development shells are based 
on high-level Object Oriented languages with mUltiple inheritances 
integrated with functionality to represent part-subpart relationships. 

Each part of the generative product model is defined as an object having 
a name and a set of property/expression couples representing respectively 
the name and the value of the property. The property value is an expression 
(i.e., any valid sentence of the language). New objects can inherit properties 
and property values from basic objects or from previously defined object. 
Sets of basic objects are supplied with the shell in order to provide basic 
functionality. These objects can be roughly grouped into following 



F. Mandorli, C. Rizzi, L. Susca, U. Cugini 47 

categories: objects to handle series of identical objects, objects implementing 
methods to access external databases, objects implementing calls to the 
integrated geometric modeller, and objects to handle input/output 
functionality. 

By using a particular part-composition property, the objects can be 
organised into a tree structure in order to form the generative product model. 

The language provides a special syntax that can be used in any 
expression to make reference to an object property. This feature, together 
with a dependencies manager, allows the developer to build parametric 
models: when a property is evaluated by computing its expression, if the 
expression contains references to other properties, the dependency manager 
automatically and recursively evaluates all the properties which are referred 
to. 

While defining mechanical product models, shape is a significant part of 
the information that must be used to represent product components. In this 
case, the developer can benefit from the geometric objects provided by the 
KAE shell. Once a new object inherits from a basic geometry object, it 
inherits all the methods that are needed to render the object and the 
properties that are needed to represent the basic parameters of the object 
shape. Basic geometry objects can be combined to form more complicated 
shapes. Using expressions referring to other properties of the model can 
parameterise the dimensions of the geometric objects. 

When the product model has to represent an assembly, a further need is 
the possibility to position a model component with respect to another one. 
This can be done by means of positioning property defined within the 
geometric objects. A suitable syntax allows to define positioning constraints 
such as: align, mate, angle, centred at, coincident, concentric, match vectors, 
parallel, perpendicular, tangent, etc. 

4. EXAMPLES OF DEVELOPED KAE 
APPLICATIONS 

In the following three different applications developed by using a feature­
based approach supported by the Knowledge Aided Engineering (KAE) 
technology are presented. 



48 Feature-Based Knoweldge Aided Engineering 

4.1 Automatic generation of wire harness design 
and schematics 

The application described in this section is an automatic system to 
support design and comparative evaluation of different wire harness 
architectures. The application simulates the traditional design process and 
still leaves a fundamental role to the designer who makes the choices. 

Wire harness design is an evolutionary process, which transfers the 
logical model of required electric functionality from the abstract domain of 
functions and logical nets to the physical domain of connectors and cables. 

The logical model is given in terms of circuit diagrams where all required 
functionality are represented together with all the logical connections among 
them. 

While designing wire harness for automotive industries, the decision 
process of how to map the logical model into a physical model is basically 
constrained by the vehicle layout, materials, manufacturing techniques, and 
economics. 

Depending on how functionality are grouped into connectors and uses, 
the mapping process can lead to solutions having different wires length, type 
and even number. 

The developed application is based on a product model structure made by 
a set of features organised into four main subparts representing the four 
logical class of information to be managed: the entire set of circuit diagrams 
that are part of the project, represented in terms of electrical symbols and 
logical nets; the whole set of cabling, grouped by regions, represented in 
terms of tubes and components; the set of automatically generated wire 
harness schematics represented in terms of components and wires; the 
vehicle layout, represented in terms of different vehicle regions (engine, 
dashboard, door, etc.) and the set of tubes connecting different regions. 

During a typical working session, the system takes as input a set of files, 
representing circuit diagrams, generated by an electrical 2D CAD system. 
An interactive session is then required where the user, supported by a 
graphical environment, must specify the connector and tubes location. 
Starting from such information the system generates a wire for each logical 
net that is part of one of the diagram. The components to be connected by 
the wire are evaluated by looking at the correspondence between logical 
symbols and physical components. A graphical representation of the wire 
harness is then provided (see Figure 1) together with information about 
wires length and type, evaluated by looking at the tubes path the wire must 
follow to connect the components. 

By changing the connector location and/or the tubes the user can generate 
and evaluate alternative solutions. 



F. Mandorli, C. Rizzi, L. Susca, U. Cugini 49 

The application has been developed in collaboration with CRF (Italian 
Research Centre with participation of Fiat S.p.A.) and IVECO (the Italian 
leading company for truck production). The application has been realised 
using the lCAD development shell by KTI Inc. (Di Lecce 1997). 

Figure 1. Example of Automatically Generated Wire Hamess 

4.2 Weights distribution analysis of IRL Cars 

The application described in this section is an automatic system that 
allows the designer to automatically compute and evaluate mass properties 
of Indy Racing League (IRL) cars. 

During the design process, car components are sized in order to optimise 
the weight/strength balance with respect to the overall constraints imposed 
by the IRL technical specifications. Car mass distribution is then derived 
from the dimensioning of the car sub-assemblies. However, mass 
distribution is a fundamental parameter, which must be taken into account 
during design because of its contribution to car performance. The designer 
tries to improve car performance starting from the idea of a new car 
configuration. In this stage, the designer is guided by the perspective of 
achieving some particular advantages that s/he can foresee relying on 
personal expertise. Possible alternative solutions are evaluated in order to 



50 Feature-Based Knoweldge Aided Engineering 

define the strategy of the following steps. A detailed analysis of the solution 
selected allows the designer to evaluate hislher original idea, giving a 
feedback of results on the hypothesis 

The developed application is based on a car model made by a set of 
features organised into a product model structure containing all car sub­
systems (e.g., suspension and chassis). Different part-subpart relationships 
define the tree model and link an object (e.g., suspension) to its components 
(e.g., wishbones and wheel). 

Starting from a set of predefined independent parameters (design 
variables), the system automatically generates the car model configuration, 
including geometric models used to evaluate all properties related to derived 
dimension, position, mass, etc. 

During a typical working session, the user interacts with the graphic user 
interface (see Figure 2) to edit independent design parameters and generate 
alternative car configurations. The user evaluates different car configurations 
by looking at the system outputs, which consist in numeric data (mass, 
centre of mass of both the car and its sub-systems) and graphic elements (car 
and sub-systems 3D representation). 

The application has been developed in collaboration with Dallara (Italian 
leading company in the production of racing cars) using the Selling Point 
development shell by Oracle Corporation (Susca 1999). 

Figure 2. User Interface of the Weights Distribution Analysis System 



F. Mandorli, C. Rizzi, L. Susca, U. Cugini 51 

4.3 Cupboard configuration 

The application described in this section is an automatic system for 
cupboard configuration that drives the user to the definition of valid 
configurations and automatically generates bills of materials, NC programs 
and offers for sale. 

Furniture configuration is traditionally performed by selecting and 
composing standard components (wall, shelf, back, drawer, door, etc.) from 
a catalogue. Due to assembly and manufacturing constraints, only a subset of 
all the possible configurations is allowed. The control about the validity of a 
configuration is usually left to the experience of the expert, usually sales 
assistant. If a configuration error occurs during the selling, this is usually 
detected during the assembly of the furniture. The error produces the need to 
reconsider the configuration and then to make corrections on the bill of 
material, with a consequent changes on the final price. This situation will 
delay the delivery and the final assembly of the furniture and will cause the 
customer disappointment. The risk to make a mistake during the 
configuration process rises when the customer asks for the modifications of 
standard components in order to meet constraints imposed by the furniture 
location (room dimensions, steps on the floor, etc.). 

The developed application is based on a cupboard model made by a set of 
features organised in two main subparts representing the internal and 
external components of the cupboard. 

The external part of the cupboard has a predictable structure made by a 
sequence of aggregated components and then it can be automatically 
generated starting from a set of independent parameters, such as the number 
of cupboard aggregates and the dimensions of each aggregate (see Figure 3). 

Cupboard 

Row 

I 

Figure 3. Model Structure of the Cupboard Exterior 

]-1 

Conversely, the cupboard interior is dressed by interactively selecting a 
variable number and type of components that can be assembled on the basis 
of specific assembly constraints. In order to manage this situation, the 



52 Feature-Based Knoweldge Aided Engineering 

subpart structure representing the cupboard interior has been enriched with a 
logical feature (called bay) that simulates the internal available space. The 
bay feature behaves as follows: when a new component is candidate to be 
inserted in the space available in the interior model structure, the bay feature 
checks the compatibility between the selected component and the selected 
location. This can be done thanks to the knowledge the bay feature has about 
the type of components surrounding the available space and the assembly 
constraints. Once the selected component has been verified and accepted, it 
is inserted in the interior model structure together with two new bay features, 
resulting from the split of the original one (see Figure 4). 

B'Y J 
Bay 

Figure 4. Model Structure of the Cupboard Interior 

During a typical working session, the user first interacts with the graphic 
user interface to generate the cupboard external structure by providing 
independent parameters, such as number and dimensions of the cupboard 
aggregates (see Figure 5 top). Then s/he starts to dress the cupboard interior 
by selecting internal components (see Figure 5 bottom). Once the 
configuration process is completed, the user can ask the system to 
automatically generate bill of material, NC programs for the components that 
requires additional manufacturing, and sale offer. 

The application has been developed in collaboration with Molteni (Italian 
leading company in the production of furniture) using the Concept Modeller 
development shell by Wisdom Systems (Mandorli 1995). 



F. Mandorli, C. Rizzi, L. Susca, U. Cugini 

Figure 5. User Interface of the Cupboard Configuration System (for exterior and interior 
definition) 

5. CONCLUSIONS 

53 

The paper describes three different applications developed with the 
support of KAE technology. 

Several distinctions can be noticed among these applications, regarding 
geometric aspects, product structure, product definition and evaluation 
process. In particular, for the wires application the geometry representation 
required to support the evaluation process is mainly 2D (automatic 
generation, representation and positioning on a plane of a huge number of 
wires), while both for racing car and cupboard application it is 3D. The IRL 



54 Feature-Based Knoweldge Aided Engineering 

car application requires the evaluation of mass and centre of mass properties 
of the car 3D model, the cupboard application requires reasoning about the 
adjacency relationships and the dimensions of the 3D objects that build-up 
the cupboard model. 

Regarding the product structure and structure definition process, the 
product model for the racing car application is purely generative (the car 
structure is automatically generated by the system on the basis of user 
inputs), while the wire and the cupboard applications require an hybrid 
approach where a part of the product model is automatically generated and 
another part is interactively defined by the user: the truck cabling for the 
wire application and the interior definition for the cupboard application. 

Nevertheless, a significant common point can be identified among all of 
the three developed applications: the design process is known and stable and 
the product structure is predictable. This is the premise for a successful 
application of KAE technology that is based on the exact identification of 
the design process for a particular product family and on its organisation into 
a prototype, which is characterised, by the same rules and procedures that 
are traditionally used by the designer during herlhis activity. 

The most critical issue of a KAE application is the analysis of the 
design/manufacturing process, that must lead to the identification of the 
independent design parameters (later used to generate alternative design 
solutions), the constraints each solution must satisfy, and the criteria that will 
support, or automatically perform, the evaluation of the generated solutions. 

The correct analysis of the design problem and its mapping into an 
appropriate product model can lead to the development of a system able to 
perform all the repetitive tasks of the design process and to automatically 
verify/ensure that generated solutions are acceptable, saving a lot of the 
designer's time. 

A significant side-effect of the development of a KAE application is that 
the implemented product model serves as a centralised repository for 
engineering information and expertise, that can be eventually re-used for 
education/training of junior engineers. 

ACKNOWLEDGMENTS 

This work is dedicated to our friend Lorenzo. 



F. Mandorli, C. Rizzi, L. Susca, U. Cugini 55 

REFERENCES 

Bidarra, R., Bronsvoort, W. F. (2000), Semantic Feature Modelling, Computer-Aided Design, 
Elsevier Science Ltd., N. 32, pp. 201 - 225. 

Cross, N. (1998). Expertise in Engineering Design. Research in Engineering Design, Vol. 10, 
pp. 141 - 149. 

m Leece, B., Tagliabo', F., Mandorli, F., Accornero, B., Strata, A. (1997), A Knowledge­
Based tool for automatic generation of wire harness design and schematics, in Proceedings 
of 6th European Conference, Lightweight and Small Cars, the Answer to Future Needs, 
Vol. 2, pp. 987 - 998. 

Gao, S., Chen, Z., and Peng, Q., (2000), Feature Validity Maintaining Based-on Local Feature 
Recognition, In CD-ROM Proceedings of the 2000 ASME International Computers and 
Information in Engineering Conference, ASME. 

Mandorli, F., (1995), Sistemi per 10 sviluppo di applicazioni KAE: un esempio nel settore 
degli armadi componibili, In IX Convegno Nazionale Associazione Nazionale Disegno di 
Macchine (ADM '95), pp. 171-180. 

Mandorli, F., Cugini, U., Otto, H.E., and Kimura, F., (1997). Modeling with self Validation 
Features, in Proceedings of ACMlIEEE Symposium on Solid Modeling and Applications 
'97, pp. 88-96. 

Moulianitis, V. C., Dentsoras, & A.J., Aspragathos, N.A. (1999). A Knowledge-Based 
System for the Conceptual Design of Grippers for Handling Fabrics. Artificial Intelligence 
for Engineering Design, Analysis and Manufacturing (AIEDAM), Vol. 13, No.1, pp. 13-
27. 

Ognjnovic (1996). Decisions in Gear Train Transmission Design. Research in Engineering 
Design,Voi. 8,pp. 178 -187. 

Rosenfeld, L.W., (1995), Solid Modeling and Knowledge-Based Engineering, Handbook of 
Solid Modeling, Eds. Donald E. LaCourse, McGraw-Hill Inc. 

Shah J.J. and M!1ntyla, M. (1995), Parametric and Feature-Based CAD/CAM: Concepts, 
Techniques, Applications, John Wiley & Sons, New York, NY. 

Shah, 1.1., M!1ntyla, M. and Nau, D. (1994), Introduction to Feature Based Manufacturing, 
_ Advances in feature based manufacturing, Elsevier Science B.V. 

Susca, L., Mandorli, F., Rizzi, C., and Cugini, U. (2000), A Racing car design using 
knowledge aided engineering, Artificial Intelligence for Engineering Design, Analysis and 
Manufacturing (AIEDAM), Vol. 14, No.3, pp. 235 - 249. 

Vernadat F.B. (1996). Enterprise Modeling And Integration - Principles and Applications. 
Chapman and Hall. 


	An Approach to Implement Feature-BasedApplications using Knowledge Aided EngineeringTechnology
	1. INTRODUCTION
	2. TECHNOLOGY TO DEVELOP TAILOREDAPPLICATIONS
	3. KAEDEVELOPMENTSHELL
	3.1 Methodology to develop KAE applications
	3.2 Components of a KAE development shell
	4. EXAMPLES OF DEVELOPED KAEAPPLICATIONS
	4.1 Automatic generation of wire harness designand schematics
	4.2 Weights distribution analysis of IRL Cars
	4.3 Cupboard configuration
	5. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES




