
UML Semantics Representation of Enterprise
Modelling Constructs

Herve Panetto
CRAN CNRS UMR 7039, France, herve.panetto@cran.u-nanc;y.fr

Abstract: Enterprise modelling contributes to understand enterprise structure by provid­
ing an explicit description of enterprise processes. Among many key issues in
an engineering project, fonnalisation appears to be a suitable technique to
check the global consistency between all the various specifications a system is
intended to cover. This paper deals with the use of UML semantics representa­
tion by means of stereotypes and OCL invariant fonnalisation to cope with a
global consistency of the UML definition.

1 INTRODUCTION

Enterprise modelling contributes to the understanding of enterprise struc­
ture by providing an explicit description of enterprise processes, which could
help in performance measurement and improvement to make the best possi­
ble decision by the enterprise managers. Among many key issues in an engi­
neering project, formalisation appears to be a suitable technique to check the
global consistency between all the various specifications a system is in­
tended to cover. Applying that within the enterprise modelling framework,
leads to the formalisation of some existing enterprise standards such as
CIMOSA (AMICE, 1993, Vernadat, 1998) in order to provide them with
refutable foundations.

Our approach is based on the UML (200 1) meta-modelling of CIMOSA
constructs (Panetto, et al, 2000) and, more generally, of the European Pre­
Standard ENV 12204 (CEN, 1995) constructs, in order to establish enter­
prise constructs described with a common language, UEML (Unified Enter­
prise Modelling Language) (Kosanke, 1999, UEML IST TN, 2002), which

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2003
K. Kosanke et al. (eds.), Enterprise Inter- and Intra-Organizational Integration

10.1007/978-0-387-35621-1_43

http://dx.doi.org/10.1007/978-0-387-35621-1_43

382 Panetto, H.

formalises, not only their definitions and their relationships, but also the con­
straints they have to meet in order to gain semantics. The first section out­
lines the formalisation requirements in enterprise modelling and illustrates
the UML modelling of enterprise constructs. The second section illustrates
the semantics approach defined in the UML standard. The third section
shows the UML semantics representation of some UEML constructs. Con­
clusion and prospects are discussed in the last section.

2 UEML CONSTRUCTS

The European Pre-Standard ENV 12204 contains definitions, descrip­
tions and detailed attributes of the common constructs (IF AC/IFIP, 2001)
extracted from enterprise models such as CIMOSA (Fig. 1), GERAM,
GRAI, ... and the relationships between these (Fig. 2).

0 .. 1

Enterprise
Activity

Event
+identifier

Domain
Domain

relationship
+identifier 1 ...

+name
+identifier

+name de fines_1 .. ' '<>+description /inkfld.b}
+name
tde&cription tde&crlption ---

+type
+predicate
+timestamp:Oate

:I />\o:'ce
' '

<<)(or>> All source
I c1}

+identifier

---1 .. "3; +name
t<lescriptlon

needs +Operations(1.!J
+Class

tri

0 .. 1 +type
(·

ggers contams I

1 ..

1 .. ' stJJject·to
..

Domain Objective
" Process 0 .. 1 1 .. ' +identWior

+identifier +name
+name stJJject-to tde&cription

<.rarent ...description
0 .. 1 _ J macte-o

Sub '-=J:- "" uses • constraint-br_ .. •

Constraint
Process

+identWior
behaviour +name

+idontWier +description
+name
+description
+action

Figure l: Part of the CIMOSA constructs (Panetto, et al, 2000)

These constructs to be standardised suffer from the lack of a semantic
foundation for formally verifying their use in the scope a particular model­
ling process. Indeed, these constructs are promoted without any ability to
check their conformance with the user's requirements. Moreover, their in­
stantiation within a particular enterprise model is not guaranteed to respect
some enterprise constraints and properties. Formalisation of these constructs
(including enterprise properties) is expected to cope with these two key is­
sues in enterprise models verification.

UML Semantics Representation of Enterprise Modelling Constructs 383

The practical issues in formalising UEML constructs aim to meta-model
them using class dia ams from UML and to formalise constructs constraints
and relation­
ships using the
OCL (Object
Constraint
Language) as
defined in
UML standard.

The formal
quality of the
system model
can be reached
by the quality
of a formal
modelling lan­

• has authority on

guage. A model Figure 2: Selected constructs and concepts from ENV 12204:1995
is a representa- (IFAC/IFIP, 2001)

tion used to formalise a system with semantics while a meta-model is a
model used to formalise another model with semantics. Indeed, Godel's sec­
ond incompleteness theorem states that any formal system that is interesting
enough to formulate its own consistency can prove its own consistency if
and only if it is inconsistent. This means that a model cannot be formalised
by itself, but only by a higher-level meta-language.

Such meta-languages manipulate basic concepts of the formalised model
to help its understanding. For example, the Fig.3 and Fig.4 represent meta­
models of relational model and UML with respectively sNets (sNets Formal­
ism, 1998) and MOF, (1997).

Figure 3: Meta-model of the relational
model with sNets

384 Panetto,H.

As has already been done for products data definitions in ISO STEP
10303 application protocols (ISO, 1994), constructs can be defined as object
classes or template structures, which can be assembled to model a system.
Due to the complexity and the variety of models, their coherent integration
needs the definition of a limited set of constructs that can be applied for their
formal representation. A construct is a generic object class or template struc­
ture, which models a basic concept independently of its use (ISO, 1994). As
an example, the "if-then-else" control structure is a particular construct of
programming languages.

The identification of constructs consists of meta-modelling the models
using a formal meta-language to define the basic concepts that they use. In­
tegration of different models is done by analysing their respective constructs

by mean of their meta-model and their definitions, in order to build new con­
structs that merge their respective capabilities. The objective is not here to
build a new modelling language but only to formalise constructs that help to
understand the common concepts of different modelling languages, their re­
lationships and constraints.

3 UML

The Unified Modeling Language (UML), an OMG standard, is a widely
adopted and used modelling language. The UML emerged from the unifica­
tion that occurred in the 1990s following the "method wars" of the 1970s and
1980s. Even though the UML evolved primarily from various second­
generation object-oriented methods (at the notation level), the UML is not
simply a third-generation object-oriented modelling language.

The UML is defined by nine languages. In this work, we use the Class
Diagram, which defines objects with their attributes, their operations and the
relationships between them. Research work in progress aims to use state­
transition diagrams to describe the dynamic behaviour of operations. More­
over UML standard specifies the Object Constraint Language (OCL), an ex­
pression language that enables one to describe constraints on object-oriented
models. OCL is a formal constraint language based on first order predicate
logic. It formalises constraints, which are restrictions on a model or a sys­
tem. Thus, a constraint states, «this should be so». Constraints are attached
on every modelled item. This is called the context of the constraint.

There are three types of constraints:
- An invariant formalises a condition that must always be met by all in­

stances of the class
- A precondition to an operation is a restriction that must be true at the

moment that the operation is going to be executed.

UML Semantics Representation of Enterprise Modelling Constructs 385

- A postcondition to an operation is a restriction that must be true at the
moment that the operation has just ended its execution.

As a modelling language, UML can be used to meta-model enterprise
modelling standards to ensure their integration through unique and coherent
definitions.

In order to extend its meta-model, UML provides an expendability
mechanism through the definition of so called "Profiles". A profile contains
one or more related extensions of standard UML semantics. These are nor­
mally intended to customise UML for a particular domain or purpose. They
can also contain data types that are used by tag definitions for informally
declaring the types of the values that can be associated with tag definitions.
In effect, these extension mechanisms are a means for refining the standard
semantics of UML and do not support arbitrary semantic extension. They
allow the modeller to add new modelling elements to UML for use in creat­
ing UML models for process-specific domains such as enterprise models.
Constraints can also be attached to any model element to refme its seman­
tics.

4 CONSTRUCTS SEMANTICS

The construct semantics representation deals with defining an UML Pro­
file using the extensibility mechanisms of UML, which allow modellers to
customise UML for specific domains. Profiles are used for:

- Defming new meta-classes (stereotypes),
- Defining new meta-attributes (tagged values),
- Defining new meta-associations (tagged values, referencing to other

model elements),
- Defining new constraints.
The UML standard already defines 8 profiles: Scheduling, performance

and time, Enterprise Distributed Object Computing, CORBA, EJB, Software
Process Engineering Management, EAI and QoS and fault tolerance. A pro­
file defines a projection of a reference meta model and provides a mecha­
nism to define facets that can be applied to model elements and combined.

Moreover, as the UML specification relies on the use of well-formedness
rules to express constraints on model elements, this profile uses the same
approach. The constraints applicable to the profile are added to the ones of
the stereotyped base model elements, which cannot be changed. Constraints
attached to a stereotype must be observed by all model elements branded by
that stereotype. If the rules are specified formally in a profile (for example,
by using OCL for the expression of constraints), then a modelling tool may

386 Panetto, H.

be able to interpret the rules and aids the modeller in enforcing them when
applying the profile.

As an example, the "Enterprise Object" construct is defined as an "Enter­
prise Object" stereo­
type, based on the
UML "Class" meta
class (Fig. 5).

That stereotype
defines that an "En­
terprise Object"
could be "part-of'
another "Enterprise
Object" and that an
"Enterprise Object"
could be a subclass
("is-a" relationship)
of another "Enter­

«metaclass»

Class

<<Stereotype»
Child

<<Stereotype» 0 .. 1

Enterprise I"
I

I I

Object 0··11 I

<<Xor>> i
+identifier

part-of
{ OuEx} __j

I
tname I

* I

-+description I

s-a

1 .. *I • Parent

Figure 5 : Stereotype definition

prise Object". That stereotype defined, also, tagged values such as identifier,
name, description and a set of properties.

An invariant constraint represented by well-formedness rules ensures the
consistency in the relationships between modelled elements. Such a formal
rule could be:

context EnterpriseObject
inv: self.partOf->forall(p I p <> self) (1)

inv : self.properties->forall(p I p.stereotype.name == "Enterprise
Object"
implies not self.partOf->exists(p I p = self) (2)

That invariants state that (1) a particular "Enterprise Object" could not be
part of itself, and (2) a particular "Enterprise Object" could not be itself in­
cluded in the set if its own properties.

Instantiation of
that stereotype in a
particular model
aims at defining a
stereotyped class
that should meet
the previous invari­
ant formalisation.
For example, Fig. 6
shows the "Client

«Enterprise Object»

Client order <<PartOf» «Enterprise Object»

date lines Order lines
description
identifier 1 ..•
name
status

Figure 6: A Stereotype instantiation

UML Semantics Representation of Enterprise Modelling Constructs 387

order" object and the "Order lines" object as instances of the "Enterprise
Object" stereotype. The "partOf' relationship between these two "Enterprise
Objects" comes from the "part of' relationship defined in Fig. 5.

The same invariant as defined previously is applied to that model ensur­
ing its consistency. In particular, that rules avoid the definition of a relation­
ship between two "Client orders". The only authorised relationship is the
"partOf' composition between a "Client order" and one or more "Order
lines".

5 CONCLUSION

There is a need to provide a semantic foundation for formally verifying
its use in the scope a particular modelling process. UML provides extensibil­
ity mechanisms able to formalise enterprise modelling constructs. Con­
straints are also expressed and could be used, by engineering tools, to aid the
modeller in ensuring the global consistency of its model. These rules are ex­
pressed in the generic view of the model. There are tools that can interpret
these rules using class instances values for particular models. In order to be
able to verify them in partial model (for domain-based models), work is in
progress to translate them into the B language (Abrial, 1996), which allows
properties proofs, based on non refutable mathematical theories.

6 REFERENCES

Abrial J.R. (1996), The B Book: Assigning Programs to Meanings. Cambridge Univ. Press.
AM ICE, (1993), CIMOSA: Open System Architecture for CIM, Springer-Verlag.
CEN, (1995), European Pre-Standard ENV 12204,Advanced Manufacturing Technology,

Systems Architecture, Constructs for Enterprise Modelling, TC 31 0/WG I (currently under
revision).

IFAC/IFIP Task Force (2001), "Architectures for Enterprise Integration", UEML Interest
Group.

ISO I 0303, (1994), STEP, Standard for the Exchange of Product Model data, TC 184 SC4.
Kosanke, K. Vernadat F.B. Zelm, M. (1999), CIMOSA enterprise engineering and integra­

tion, Computers in Industry, Volume40, Issues 2-3, Pages 83-97.
MOF Specifications, (1997), Joint Revised Submission, OMG Document ad
Panetto H. Mayer F. Lhoste P. (2000), Unified Modeling Language for meta-modelling: to-

wards constructs definitions, Proceedings of ASI'2000, ISBN 960-530-050-8.
sNets Formalism, (1998), technical report, LRGS, Universite de Nantes.
UML 1.4, (2001), Unified Modeling Language, Object Management Group standard.
Vernadat, F. B. (1998), The CIMOSA languages, Handbook oflnformation Systems. P. Her-

nus, K Mertins and G. Schmidt (Eds.), Springer-Verlag

	UML Semantics Representation of Enterprise Modelling Constructs
	1 INTRODUCTION
	2 UEML CONSTRUCTS
	3 UML
	4 CONSTRUCTS SEMANTICS
	5 CONCLUSION
	6 REFERENCES

