Security and Resource Policy-based Management
Architecture for ALAN Servers

Temitope Olukemi, Ioannis Liabotis, Ognjen Prnjat, Lionel Sacks

University College London, Torrington Place, London WCIE 7JE, England;email: {tolukemi |
iliaboti [oprnjat [Isacks}@ee.ucl.ac.uk

Abstract: Application Layer Active Networks (ALAN) allow quick and efficient
deployment, on the active servers, of user-customised services (proxylets).
Programmability above the transport layer makes this approach distinct form
other active network initiatives. This scenario raises the issues of efficient
resource management on the active server. Moreover, the deployment of user-
specified processes has to be highly secure so as not to harm the active server
operator platform. The IST project ANDROID is using a flexible generic
specification for policies, in XML, allowing a wide range of policies to be
expressed and processed in a common framework. This paper presents the
security and resource management architecture developed to support the
application of the ANDROID policy-based principles to manage the ALAN
servers. We present the architecture, as well as the sample policy sets. The
prototype security and resource management implementation were
demonstrated during two real-life trials and the results are presented here.

Key words: ALAN, Policy-based management, XML, Resource and security management.

1. INTRODUCTION AND PROBLEM FIELD

Application Level Active Networks (ALAN) [1], provides an environment
in which developers can engmeer applications through the network by
utilising platforms on which 3™ party software (proxylets) can be
dynamically loaded and run [2][3]. The ALAN system consists of client and
server applications that are located in the existing Internet. Communication
is enhanced through customised services provided by user-deployed
proxylets which run on the Execution Environment for Proxylets - EEP,
which is a Java Virtual Machine (JVM) running on an active server (the host
platform). Proxylets provide functionalities that enhance the level of service
or introduce new services to the user. End-to-end active services are

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35620-4_43

D. Gaiti et al. (eds.), Network Control and Engineering for QoS, Security and Mobility

© IFIP International Federation for Information Processing 2003

http://dx.doi.org/10.1007/978-0-387-35620-4_43

92 Temitope Olukemi et al.

provided by one or more active servers executing one or more proxylets. The
IST project Active Network DistRibuted Open Infrastructure Development
(ANDROID) is focusing on management of AL AN-enabled networks. The
objective is to develop a flexible, policy-based [4] system that enables
monitoring and control of active nodes and services. The key issues are the
ability to effectively manage the active server resources, and the security of
those resources. Here we present the specific developments of the larger
ANDROID management architecture [5] - those concerning the security and
resource management of the active servers.

2. ANDROID MANAGEMENT PRINCIPLES

ANDROID focuses on the development of a scalable, lightweight
management infrastructure for the ALAN-based active networks.
ANDROID system is an event driven, policy enabled [4] management
system [6][7]. ANDROID active nodes are either active routers or active
servers. Active router provides an execution environment that runs
dynamically loaded customised routing software components. Flexibility is
restricted by allowing users to provide only configuration policies for
components selected by router operators. Active server (an end system with
a full protocol stack) offers more flexibility to users, by allowing
deployment of proxylets unrestricted above the transport layer. If more users
share the same server management mechanisms have to be built in order to
provide a safe and reliable execution environment. An active server is an end
system with a specific general purpose Operating System (OS). Multiple
EEPs are allowed to run on each active server. Each EEP is allowed to run
one or more proxylets. The ANDROID EEP is a Java Virtual Machine
(JVM) - FunnelWeb [8]. Each proxylet runs on its own JVM and can consist
of more than one Java threads. The management system secures and
manages locally the resources consumed by the proxylets and EEPs.

The ANDROID approach to management is event-driven and policy-
based. Policies specify actions that should be applied when particular events
occur [9]. When a policy is triggered, conditions involving locally available
information are evaluated and the actions initiated. Policies and events are
communicated between the components through the management
information distribution (MID) system [10][5]. ANDROID approach strives
to facilitate the exchange of management information between
heterogeneous systems, by defining a lightweight, flexible, and extensible
policy and event schemas., in XML [11][{12]. This allows platform
independence and facilitates the management information exchange between
heterogeneous systems. The ANDROID XML schemas specify features
common to all policies or events in a standard way and also allow flexibility
in the definition of specific information sets for managing particular
components of a system. The policy schema [5] consists of 6 elements:
creator identifies the origin of the policy; info describes information not
relevant for policy rules; sender identifies the forwarding path of the policy;
subject identifies entities that respond to the policy; trigger relates the
policies to events that trigger them; action represents the behaviour that the
policy triggers, dependent on some conditions. A policy is to be interpreted
by a subject which performs actions on targets, dependent on some
conditions. The event schema consists of 7 elements: event-id (unique); time

Security and Ressource Policy-based ... 93

(when the event occurred); timetolive; source (event originator); sequence
(number of events produced from a source); info; and the data element
which allows any well-formed XML to be included, describing the event-
specific information.

3. ACTIVE SERVER ARCHITECTURE

Here we present the resource and security management functionality
needed for policy enforcement on the active servers (ASs). We first capture
the required functionality in terms of use-cases, and then elaborate, through
UML, on the required infrastructure of the ASs.

et
+EEP s an | sproxylet |
«cabstracts +oad()
Active Serves +modify()
REECRMTN muns |igart()
sstop()
«abstracts «abstract> |+Event generator] |
B |+Management component_|
security event() {toad event()
lresource event() |
+policy authenticator| +policy handler spolicy store sconflict resolution

send data and policy() relrieve ' policies(

analyse policy()
e)dract handler name and location|

Figure 1 - Active server overview

Use-cases include the service set-up and in-service use cases, initiated by
User or AS Operator. Service negotiation and set-up involves the
interactions between the business players: negotiation of the resource usage,
SLA definition, and set-up of policies. Service initialisation involves the
user requesting the start of the service by sending events to the operators.
After performing resource and security checks based on policies, operators
load the proxylets. Runtime service management involves the operators
monitoring the behaviour of the proxylets, and, in case of unexpected
behaviour, applying the relevant policies so as to preserve the resource
integrity and security of the platforms. Service modification use-case
involves the modification of the service parameters, either by the user or the
operator. Specific sub-cases are: the reallocation of the proxylet making up a
service to another processing platform; requesting the increase or decrease
of the resources dedicated to the proxylet. Service termination involves
stopping the service by the operator or the user.

UML class diagram models are used for detailed design. The AS (Figure
1) hosts one or more EEPs which run one or more proxylets. On each AS,
there is a policy infrastructure, providing for policy authentication, generic
policy handling, policy storing, and basic conflict resolution. The AS also
supports the event/notification handling functionality. Finally, the specific
management functionality is located on the AS: security and resource
managers. These two components are XML-enabled: they can receive
events/policies, interpret them, and apply management actions on targets.
These components can also generate XML events - via event generator.

94 Temitope Olukemi et al.

iaerger
Iclesiadiatal]
Em-ml time|]
] neve
' -

y
| ResourceEstimator

Figure 2 -Resource manager

Proxylets and EEPs running on an AS consume the resources provided by
the OS. Resource management is important from the operator perspective,
(dictating resource consumption of user processes); and user perspective
(proxylets adapting resource usage levels dynamically). 3 main categories of
the local resources are CPU (Kernel and User modes), storage (memory and
disk) and network [13]. Resource management involves the tasks of resource
monitoring - observing the consumption of resources by processes; and
resource (re)allocation - closing the local control loop, e.g. (re)scheduling a
process. The resource manager (RM) (Figure 2) uses resource monitoring
and estimation components. It also performs basic conflict resolution.
Management actions are either communicated in the form of events, created
via event generator, to the EEP controller (which then enforces the actions
on EEP), or are directly enforced on the resources via the resource
allocation controller.

SecurityManager

fevent : XMLDocument
EventHandier : XMLDocument PolicyHandler

) : XMLDocument

event : XMLDocument [+getPolicles() : XMLDocumeny -policy : XMLDocument
}parameters : String () : void -parameters : String
[textractParameters() : String| [FregisterMID() : void +extraxtParameters() : Stringf

jrregisterDS() : void
frconfigure() : vaid
verifyRote() : Boolean

LocalPolicyUpdater

faccessControlList : File

-proxylet : JARFile +updatelocalSecurityPoticy() : void
-certificate : Certificate
[+verityCertificate{) : Boolean}
+verityJARSign() : Boolean

- String
) : XMLDocument|

Keystore

[+load() : void
[+getCertificate() : Centificate

Figure 3 - Security manager

Security and Ressource Policy-based ... 95

The security manager (SM) (Figure 3) performs the policy-controlled
deployer and proxylet authentication, and set-up of java.policy file which
restricts the runtime proxylet access to the resources [14] in FunnelWeb. SM
receives events from event handlers and policies from the policy store. It
performs basic conflict resolution. The event handler extracts relevant
parameters from the XML event. The policy handler extracts parameters
from XML policies. The proxylet verifier performs verification of the
signature of the proxylet JAR file. It also verifies that the certificate used to
sign the JAR file is a valid one contained in the keystore. Event generator
receives parameters from the security manager and generates XML events
which are forwarded to the MID. The local policy updater updates the local
java.policy file on the AS using information from an access control list
which is derived from the relevant policies.

The UML sequence diagram (service initialisation use-case) is shown in
Figure 4. When the user-defined "start" event arrives at the active server, it is
handled as shown on the first portion of Figure 4. Policy handler analyses
the event/policy, retrieves the relevant management policies and forwards
the event data and policies to the SM. SM performs the authentication of the
proxylet and the deployer, and the update of the java.policy file. Then, the
SM sends the security event (in this case the "load proxylet” event) via the
event generation component to the event handler. This event is the
authorisation of SM to the resource manager notifying it to load the proxylet.

The specifics of the resource management are as follows. The RM
receives the resource management policies from the policy handler. The
actions might also depend on the measured/estimated resource information.
Considering this info, conditions are evaluated, relevant action is set, and the
event generator is notified to create the relevant event, in this case "load
proxylet". This event is the authorisation of the RM targeted at the EEP and
notifying it to load the proxylet.

] [e)]][] [

send: data and polic) :
v

snalyss policy()
ralrieve management poli)

T

ED exiract handler n:meiand location()

H 3d_poliies+dstsf
[H
H
f H
1 H

E]j authenticate deployer()

; ': T i
; security svent() ;

: load event() I. f f
| ! 5 § E

Figure 4 - Service initialisation - security related sequence diagram

96 Temitope Olukemi et al.

4. POLICIES

4.1 Security management

Based on use-cases we categorise the security policies in: policies for
service initialisation, reallocation and termination; and for runtime
management. This categorisation is based on the type of events that occur in
use-cases, and on the event source. Most of the policies in group 1 originate
from users, while the group 2 policies are mainly established by the AS
operator. Since not all the policies can be described here, the following
shows the example security events, conditions and actions associated with
the service initialisation use-case. Different combinations of these (Table 1)
define the full set of policies.

EVENT CONDITION ACTION
aLocSPU

eLdPrx aLdPrx
pAuthDeployer aDnLdPrx

aSecAl

AuthProxylet
P y aRnPrx

eRnPrx aDnRnPrx
aSecAl

Table 1 - Security management policies (service initialisation)

Events:

Load proxylet event (eLdPrx): received by SM when a user or AS operator
wants to load a specified proxylet on the AS.

Run proxylet event (eRnPrx): received by the SM when a user or AS
operator wants to run a proxylet that has already been loaded to the AS.
Conditions:

pAuthDeployer: returns True if deployer of the proxylet is authenticated,
i.e., has provided a certificate and False otherwise.

pAuthProxylet: returns True if the proxylet has been signed with a valid
certificate (of the creator) and False otherwise.

Actions:

aLdPrx: SM allows the proxylet to load - generates "load proxylet" event.
aRnPrx: SM allows the proxylet to run - generates "run proxylet" event
aLocSPU: invokes a direct method call on SM which creates/updates a local
policy file with the proxylet/user authorisation to the local AS resources.
aSecAl: involves the generation of an event informing the AS operator that a
security violation has occurred.

aDnLdPrx, aDnRnPrx: involves sending an event back to the user
notifying that the request could not be fulfilled by the AS.

The example security policy shown in Figure 5 is triggered by a load
proxylet event. There are two conditions (pAuthDeployer and
pAuthProxylet) that have to be satisfied before the actions aLdPrx and
aLocSPU are invoked.

Policy-ID (Policy 2)
Event (Load proxylet), Event Originator (User)
Condition (If "Deployer authenticated" and "Proxylet authenticated")

Security and Ressource Policy-based ... 97

Policy Originator (AS Operator)
Action 1 (Invoke Load_proxylet method on resource manager)
Action 2 (Update the java.policy file related to the proxylet)

<?xml version = "1.0" encoding = "UTF-8"?>
<policy xmlns = "http://www.android.org/policy" xmlns:xsi =
"http://www.w3.org/2000/10/XMLSchema-instance"” xsi:schemaLocation =
"http://www.android.org/policy file:///C:/docs/policy.xsd">
<creators
<authority>
<admin-domain>EE</admin-domains>
<role>Admin</role>
</authority>
<identity>/AS/ADMIN</identity>
<reply_address>127.0.0.1</reply_address>
</creator>
<info>
<policy-1d>270920011237</policy-id>
<modality>Obligation</modality>
</info>
<subject>
<domains>
<role>Security</role>
</domain>
</subject>
<triggers
<event-idseLdPrx</event-id>
</trigger>
<actions>
<condition>
<operands>pAuthDeployer</operand>
<operator>Equals</operator>
<operand>True</operands>
<and/>
<operand>pAuthProxylet</operand>
<operator>Equals</operator>
<operand>True</operand>
</condition>
<actions>
<target>
<domain>
<role>Resource-Manager</role>
</domain>
</target>
<data>
<method>aLdPrx</methods>
</data>
<target>
<domain>
<role>Security Managerc</roles
</domain>
</target>
<data>
<method>aLocSPU</method>
</data>
</action>
</actions>
</policy>

Figure 5 - Example security management policy (service initialisation use-case)

Another example policy for the runtime service management use-case is
shown on Figure 6. This use case involves the AS operator monitoring the
behaviour of the proxylets, and, in case of unexpected behaviour, applying
the relevant policies so as to preserve the resource integrity and security of
the platform. The policy shown in Figure 6 is triggered by the eResProfVio
event which indicates to the security manager that the resource profile
violation has been carried out by the proxylet. If the deployer of the event is
correctly authenticated, the security manager invokes the aStPrx and aSecAl
actions: it stops the proxylet and raises a security alarm.

98 Temitope Olukemi et al.

<?xml version="1.0" encoding="UTF-8" 2>
<policy xmlns="http://www.android.org/policy"
xmlns:xsia"http://www,w3.org/2000/10/XMLSchema-instance"
x81 :achemaLocation="http://www.android.oxg/policy
http://www.ee.ucl.ac.uk/-tolukeni/policy.xsd">
<creator>
<authority>
<admin-domain>EE</admin-domain>
<role>Admin</role>
</authority>
<identity>/AS/ADMIN</identity>
<reply_address>127.0.0.1</reply_address>
</creator>
<info>
<policy-1d>2260420021050</policy-id>
<modality>Obligation</modality>
</info>
<subject>
<domain>
<role>Security</role>
</domain>
</subject>
<trigger>
<event -1d>eResProfVioc/event-id>
</trigger>
<actiong>
<condition>
<operandspAuthDeployer</operand>
<operator>Equals</cperator>
<operand>True</operand>
</condition>
<action>
<target>
<domain>
<role>Security Manager</roles
</domain>
</target>
<data>
<method>aSt Prx</method>
<method>aSecAl</method>
</data>
</action>
</actions>
</policy>

Figure 6 - Example security management policy (runtime management use-case)

4.2 Resource management
EVENT CONDITION ACTION
pCPUthr aLdPrx aDnLdPrx
eLdPrx pDISKthr aMRMP aNtfAR
pNETthr aRnPrx aDnRnPrx
pPredMeta alRs aFRn
eRnPrx aMRMP aNtfAR

Table 2 - Resource management policies (service initialisation)

Based on the use-cases, we categorise the resource management policies
into policies for service initialisation, run-time management, service
reallocation, resource increase/decrease, and service termination. Based on
the originator we also categorise policies into policies originated by users
and by AS operators. Main difference is the delivery and/or execution
guaranties they offer. In case of conflicts AS operator policies have
precedence over user policies. Since not all the policies can be described
here, the Table 2 gives the events, policies and actions associated with the
service initialisation use-case. Policies are identified by the conditions that
the resource manager has to evaluate. Actions can be applied directly to
targets or can be sent as events through the notification system to the
appropriate management component. Combinations of events, conditions,
and actions define the full set of policies (Table 2).

Events:
eLdPrx; eRnPrx; explained in section 4.1 on security management polices.

Security and Ressource Policy-based ... 99

Conditions:

pCPUthr: this condition type describes a range of policies that are
associated with CPU usage. The operands are measured values (in
percentages) such as: total time, kernel time, user time; and the statistics.
pMEMthr, pDISKthr: these types of conditions have as operands the
amount (in absolute values or percentages) of free/used memory/disk space.
pNETthr: operands are: incoming/outgoing bytes per second and statistical
information on those values (average, standard deviation, percentiles).

The above conditions are checked by the resource monitor.

pPredMeta: involves the predicted future resource usage using information
found in the proxylet metadata and is checked by the resource estimator.
Actions:

aLdPrx: RM allows the proxylet to load - generates "load proxylet" event.
aRnPrx: SM allows the proxylet to run- generates "load proxylet" event.
aAlRs: a direct method call to the resource allocation controller that will
enforce hard resource allocation or change process priorities.

aMRMP: is related to conflict resolution and will be used in the future to set
valid policy in case of conflicting requirements.

aDnLdPrx, aDnRnPrx: involve sending an event back to the user notifying
that the request could not be fulfilled.

aFLd, aFRn: forwarding actions are applied when the AS cannot load/run
the requested proxylet. The original load/run event is sent to another AS.
aNtfAR: The AS notifies the active router (AR) that the request for service
has been forwarded to another AS.

<?xml version = “1.0" encoding = “UTF-8"?>
<policy xmlns = "http://www.android.org/policy" xmlns:xsi =

"http://www.w3.0rg/2000/10/XMLSchema-instance® xsi:schemalocation =
vhttp://www.android.org/policy file:///home/iliaboti/policy.xsd*>
<creators>
<authority>
<admin-domain>AS</admin-domain>
<role>AS Operator</role>
</authority>
<identity>ASOperatorl</identity>
<reply_address>ASOP@asl.org</reply_address>
</creators>
<info>
<policy-id>Policyl</policy-id>
<modalitysobligationc</modality>
</info>
<subject>
<domain>
<role>Resource-Manager</roles>
</domain>
</subject>
<triggers
<event-id>eLdPrx</event-id>
</triggers>
<actions>
<condition>
<operand>Total -CPU-Usage</operand>
<operatorsLessThan</operator>
<operand>60%</operand>
</condition>
<action>
<target>
<domain>
<role>EEP-Controllex</role>
</domain>
</target>
<data>
<method>aldPrx</method>
</data>
</action>
</actions>
</policy>

Figure 7 - Example resource management policy (service initialisation)

100 Temitope Olukemi et al.

The example policy of Figure 7 demonstrates one event-condition-action
combination that appears during the service initialisation use-case. This AS
Operator specified policy allows loading of user requested proxylets if the
Total CPU time load of the AS is less that 60%.

Policy-ID (Policy 1)

Event (Load Proxylet), Event Originator (User)
Condition (If "Total CPU time load" less than 60%)
Policy Originator (AS Operator)

Action (Send Load proxylet event to EEP Controller)

S. SOFTWARE DEMONSTRATION

The resource manager (RM) and the security manager (SM) were
demonstrated in two distinct real-life trials of the ANDROID project. The
first trial [S], in Essen, involved the demonstration of the prototype resource
monitoring component, consisting of the monitoring GUI and the measuring
proxylet (R-let). The resource GUI was used to launch the R-let at the
remote active server (AS). AS was secured by the SM, which performed
proxylet deployer authentication on the basis of the authentication policy.
Monitoring of resources (CPU, memory) on the AS is then done by the R-let.
The sequence of events in the demo is as follows. The SM receives a XML
event from resource monitoring GUI instructing it to load the R-let. The SM
parses the event, and checks the local policy store for a policy associated to
this event. After authenticating the user that sent the event the SM loads the
R-let via FunnelWeb. From then on the monitoring application can contact
FunnelWeb for running proxylets or R-let for monitoring information.

The second ANDROID demonstration in Paris involved three scenarios
demonstrating the security and resource manager functionality on the AS.
The scenarios involved the enforcement of the security and resource
management policies given in Figure 5 and Figure 7. The security and
resource managers were implemented to interoperate sequentially, where the
request to load the proxylet was first authorised by the security manager, and
then the load request would be forwarded to the resource manager, which
would invoke the chosen action on the EEP.

The first scenario involved the successful loading of the proxylet, where
first the security manager performed the proxylet and deployer
authentication as specified by the security policy in 5. Next, the resource
manager verified that there are enough resources, using the resource monitor
component. According to the resource management policy given in Figure 7,
which specifies that the proxylet can be loaded if there is no more of 60% of
CPU used, the resource manager loaded the proxylet via the EEP, since the
60% condition was met.

The second scenario involved the attempt to load an incorrectly signed
proxylet. According to the security policy specified in Figure 5, the security
manager denied the incorrectly signed proxylet to load on the AS.

The third scenario involved the authorisation of the security manager to
run the proxylet, which was correctly signed. However, the proxylet was
denied to run by the resource manager, since the 60% CPU condition was
not met. The condition was not met because a dummy resource-consuming
proxylet was running on the AS, which was consuming 100% of the CPU
resources.

Security and Ressource Policy-based ... 101

The security and resource manager screens are captured on Figure 8. The
top part of the screen shows the security manager, with the Keystore and
policy file locations. The bottom part shows the resource manager. On the
left side, the AS CPU utilisation (in this case 100%) and the relevant policy
location are depicted. The right hand side of the screen shows the resource
manager log, where it can be seen that the proxylet was denied to load since
the CPU utilisation condition was not met.

(- Configuratian

. Communication: v
. Receive: Port ~ [B445

- Send: Port 4445
1d: Host. ~* |iocalhost

Key Management: :

Keystore |/home/android/android |
Allas = [ANDROIDEE |
;’._ o ; 3 t" [—]

: Pollr.y Management: sy % : Xk
Ay 'I’oll_t.vfile_.l http://128.16.235.59/RSM/policies/security. xml

LT i sun]

ReSOUrCE ManAger

Waiting for Connection on port. 4445
iConnection from Event Producer accepted

iGot Event
Event Is of type: eRnPrx
: Got Policy

Active Server CPU Utik 7 ‘Policy Condition:
[100.0000000000000 |+ iTotal-CPU-Usage LessThan 60%

Policy Conditions returned: false
rolicy URL: Proxylet not Loaded
[hrtp:/7128.16.235.5 9 JRSM/policies /Policyl. xml |
Event Port y ¢)

ng f nection on port: 4445

[4445 J Waiting for Connecti p

| Listen i

Figure 8 - Security and resource managers - demo screens

The use of the policy-controlled security and resource managers in the
ANDROID project demo demonstrated their applicability in the real-life
trial. Both components effectively demonstrated the policy-enforcement on
the ALAN active servers, including proxylet and deployer authentication,

and proxylet admission control based on the locally interpreted resource
information.

102 Temitope Olukemi et al.

6. CONCLUSION

This paper discussed the policy-based management architecture focused
on managing the security and resource aspects of ALAN servers. The
approach developed by the ANDROID project adopts a lightweight
extensible policy and event schemas that effectively capture the information
needed for management of large distributed configurable systems such as
ALAN-enabled networks. The resource and security management
architecture developed is fully policy-enabled. A thorough UML-based
analysis and design allowed the development of the components necessary to
support the policy enforcement on the ALAN active servers. This approach
also allowed the specification of a wide range of policies relevant for the
target active network scenarios. The security and resource management
architecture and policies presented here were successfully deployed in a real-
life trial of the project, being a distinct part of the larger ANDROID
development.

Authors would like to thank Mike Fisher and Paul Mckee of BT for their
work on the generic policy and event specifications; Ian Marshall of
BT/UCL for discussions on some of the ideas, Ken Carlberg and Piers
O’Hanlon of UCL for help during the ANDROID project demo.

7. REFERENCES

(1] M. Fry, A. Ghosh, "Application Level Active Networking", Computer Networks, 31 (7)
(1999) pp. 655-667. '

[2] I. W. Marshall, et. al., "Application-level Programmable Network Environment", BT
Technology Journal, Vol. 17, No. 2, April 1999.

[3] I. W. Marshall, M. Fry, L. Velasco, A. Ghosh, "Active Information Networks and XML",
in "Active Networks" ed. S. Covaci, LNCS 1653 pp. 60-72, Springer Verlag, 1999.

[4] Sloman M., “Policy Driven Management for Distributed Systems”, Journal of Network
and Systems Management, 1994.

[5] O. Prnjat et. al., "Policy-based Management for ALAN-Enabled Networks"; IEEE 3rd
International Workshop on Policies - Policy 2002, Monterey, CA, USA, June 2002.

[6] Marshall 1. W., Hardwicke J., Gharib H., Fisher M., Mckee P., “Active Management of
Multiservice Networks”, Proceedings of NOMS 2000.

[7] Marshall I. W., Gharib H., Hardwicke J., Roadknight C., “A Novel Architecture for Active
Service Management”, IEEE/IFIP IM Symposium 2001.

[8] FunnelWeb http://dmir.socs.uts.edu.aw/projects/alan/

[9] Damianou N, et. al., “Ponder: A Language for Specifying Security and Management
Policies”, Imperial College Research Report DoC 2001, January 2000.

[10] Natarajan R., McKee P, Mathur A.P., “A XML Based Policy-Driven Information
Service”, IEEE/IFIP Integrated Management Symposium (IM’2001), Seattle, May 2001.

[11] W3C, “XML Schema Part 0: Primer — W3C Recommendation, 2 May 2001”, [www]
http://www.w3.org/TR/xmlschema-0

{13] Ioannis Liabotis, et. al., "Policy-based Resource Management for ALAN", Proceedings
of the 2" IEEE LANOMS 2001.

[14] Prnjat O., et. al., "Integrity and Security of the Application Level Active Networks"; IFIP
WATM’2001 and EUNICE’2001; Sept. 2001.

[12] W3C, “XML Schema Part 2: Datatypes — W3C Recommendation, 2 May 2001”7, [www]
http://www.w3.org/TR/xmlschema-2

	8
Security and Resource Policy-based ManagementArchitecture for ALAN Servers
	1. INTRODUCTION AND PROBLEM FJELD
	2. ANDROID MANAGEMENT PRINCIPLES
	3. ACTIVE SERVER ARCHITECTURE
	4. POLICIES
	4.1 Security management
	4.2 Resource management

	5. SOFTWARE DEMONSTRATION
	6. CONCLUSION
	7. REFERENCES

