
Security and Resource Policy-based Management
Architecture for ALAN Servers

Temitope Olukemi, Ioannis Liabotis, Ognjen Prnjat, Lionel Sacks

University College London, Torrington Place, London WCIE 7JE, England;email: {tolukemi /
iliaboti / oprnjat / lsacks}@ee.ucl.ac.uk

Abstract: Application Layer Active Networks (ALAN) allow quick and efficient
deployment, on the active servers, 0/ user-customised services (proxylets).
Programmability above the transport layer makes this approach distinct/orm
other active network initiatives. This scenario raises the issues 0/ efficient
resource management on the active server. Moreover, the deployment of user­
specijied processes has to be highly secure so as not to harm the active server
operator platform. The IST project ANDROID is using a flexible generic
specijication tor policies, in XML, allowing a wide range 0/ policies to be
expressed and processed in a common /ramework. This paper presents the
security and resource management architecture developed to support the
application ofthe ANDROID policy-based principles to manage the ALAN
servers. We present the architecture, as weil as the sampie policy sets. The
prototype security and resource management implementation were
demonstrated during two real-life trials and the results are presented here.

Key words: ALAN, Policy-based management, XML, Resource and security management.

1. INTRODUCTION AND PROBLEM FJELD
Application Level Active Networks (ALAN) [1], provides an environment

in which developers can engineer applications through the network by
utilising platforms on which 3rd party software (proxylets) can be
dynamically loaded and run [2][3]. The ALAN system consists of c1ient and
server applications that are located in the existing Internet. Communication
is enhanced through customised services provided by user-deployed
proxylets which ron on the Execution Environment for Proxylets - EEP,
which is a Java Virtual Machine (JVM) running on an active server (the host
platform). Proxylets provide functionalities that enhance the level of service
or introduce new services to the user. End-to-end active services are

©

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35620-4_43

D. Gaïti et al. (eds.), Network Control and Engineering for QoS, Security and Mobility
IFIP International Federation for Information Processing 2003

http://dx.doi.org/10.1007/978-0-387-35620-4_43

92 Temitope Olukemi et al.

provided by one or more aetive servers exeeuting one or more proxylets. The
IST projeet Aetive Network DistRibuted Open Infrastrueture Development
(ANDROID) is foeusing on management of ALAN-enabled networks. The
objeetive is to develop a flexible, poliey-based [4] system that enables
monitoring and eontrol of aetive nodes and services. The key issues are the
ability to effeetively manage the aetive server resourees, and the seeurity of
those resourees. Here we present the speeifie developments of the larger
ANDROID management arehiteeture [5] - those eoneerning the seeurity and
resouree management of the active servers.

2. ANDROID MANAGEMENT PRINCIPLES
ANDROID focuses on the development of a sealable, lightweight

management infrastrueture for the ALAN-based aetive networks.
ANDROID system is an event driven, policy enabled [4] management
system [6][7]. ANDROID active nodes are either aetive routers or active
servers. Active router provides an exeeution environment that runs
dynamieally loaded customised routing software components. Flexibility is
restrieted by allowing users to provide only configuration policies for
eomponents seleeted by router operators. Active server (an end system with
a full protocol stack) offers more flexibility to users, by allowing
deployment of proxylets unrestrieted above the transport layer. If more users
share the same server management mechanisms have to be built in order to
provide a safe and reliable exeeution environment. An active server is an end
system with a speeific general purpose Operating System (OS). Multiple
EEPs are allowed to run on each active server. Each EEP is allowed to run
one or more proxylets. The ANDROID EEP is a Java Virtual Machine
(JVM) - FunnelWeb [8]. Each proxylet runs on its own JVM and ean eonsist
of more than one Java threads. The management system seeures and
manages loeally the resourees eohsumed by the proxylets and EEPs.

The ANDROID approach to management is event-driven and poliey­
based. Policies speeify aetions that should be applied when partieular events
occur [9]. When a policy is triggered, conditions involving locally available
information are evaluated and the actions initiated. Policies and events are
communicated between the components through the management
information distribution (MID) system [10][5]. ANDROID approach strives
to facilitate the exchange of management information between
heterogeneous systems, by defining a lightweight, flexible, and extensible
policy and event schemas., in XML [11][12]. This allows platform
independence and faeilitates the management information exchange between
heterogeneous systems. The ANDROID XML schemas speeify features
eommon to all policies or events in a standard way and also allow flexibility
in the defmition of specific information sets for managing particular
components of a system. The policy schema [5] eonsists of 6 elements:
creator identifies the origin of the policy; info deseribes information not
relevant for poliey mIes; sender identifies the forwarding path of the poliey;
subject identifies entities that respond to the policy; trigger relates the
policies to events that trigger them; action represents the behaviour that the
poliey triggers, dependent on some conditions. A policy is to be interpreted
by a subject which performs actions on targets, dependent on some
eonditions. The event schema eonsists of 7 elements: event-id (unique); time

Security and Ressource Policy-based ... 93

(when the event occurred); timetolive; source (event originator); sequence
(number of events produced from a source); info; and the data element
which allows any well-formed XML to be included, describing the event­
specific information.

3. ACTIVE SERVER ARCHITECTURE
Here we present the resource and security management functionality

needed for policy enforcement on the active servers (ASs). We first capture
the required functionality in terms of use-cases, and then elaborate, through
UML, on the required infrastructure of the ASs.

• • ntlc or 1------,."",0"",11 ..."h""M""dIOf,,----! 1---"'''''OI IIO'''' .. '----{ +confRd ,.ulutlon

send dala and policy() retriave management policias(
analyse policy()
extrad handler name and Iocation

Figure 1 - Active server overview

Use-cases include the service set-up and in-service use cases, initiated by
User or AS Operator. Service negotiation and set-up involves the
interactions between the business players: negotiation of the resource usage,
SLA definition, and set-up of policies. Service initialisation involves the
user requesting the start of the service by sending events to the operators.
After performing resource and security checks based on policies, operators
load the proxylets. Runtime service management involves the operators
monitoring the behaviour of the proxylets, and, in case of unexpected
behaviour, applying the relevant policies so as to preserve the resource
integrity and security of the platforms. Service modification use-case
involves the modification of the service parameters, either by the user or the
operator. Specific sub-cases are: the reallocation of the proxylet making up a
service to another processing platform; requesting the increase or decrease
of the resources dedicated to the proxylet. Service termination involves
stopping the service by the operator or the user.

UML class diagram models are used for detailed design. The AS (Figure
1) hosts one or more EEPs which run one or more proxylets. On each AS,
there is a policy infrastructure, providing for policy authentication, generic
policy handling, policy storing, and basic conjlict resolution. The AS also
supports the eventlnotification handling functionality. Finally, the specific
management functionality is located on the AS: security and resource
managers. These two components are XML-enabled: they can receive
events/policies, interpret them, and apply management actions on targets.
These components can also generate XML events - via event generator.

94 Temitope Olukemi et al.

....... -.-.
1!!;;1J"-"u
___ lU_li

I - --I c I . - -
L ".111.1" I

I

I • ..
I

.... s" z C I I ,
!

Figure 2 zResource manager

Proxylets and EEPs running on an AS eonsume the resourees provided by
the OS. Resouree management is important from the operator perspeetive,
(dietating resouree eonsumption of user processes); and user perspeetive
(proxylets adapting resouree usage levels dynamieally). 3 main eategories of
the loeal resourees are CPU (Kernel and User modes), storage (memory and
disk) and network [13]. Resouree management involves the tasks ofresouree
monitoring - observing the eonsumption of resourees by processes; and
resouree (re)alloeation - closing the loeal eontrolloop, e.g. (re)seheduling a
proeess. The resource manager (RM) (Figure 2) uses resource monitoring
and estimation eomponents. It also performs basic conflict resolution.
Management aetions are either eommunieated in the form of events, ereated
via event generator, to the EEP controller (whieh then enforees the aetions
on. EEP), or are direetly enforeed on the resourees via the resource
allocation controller.

wnt:XMLDoc:urnenI
oDOIIcv : XMlDocuMnl PollcyHandlar

X""M""LO,.....oc-um-.n..,.-' -l
paremet.,.. : Strlng oIv.Policl •• O : vold parameter. : String

axtractPal'llmetar.() : Strlng ragi.terMIOO : void .extraxtP.rameteraO : Strin
regiltarDSO : void
c:onfigureO : Yoid
",.rifyRole() : Bool •• n

1 L..------,
Ev.ntOaner.tor

-paramater. : String

+generateevent{) : XMLDocument

ProxylaWerlfla,

-proxyJet : JARFila
·certlficat. : Certificet.
+verifyCartificataO : Bool ••

+verifyJARSlgnO : 8001e.n

T

10.dO: void
getCertific.teO : Certificat

acce .. ControlUlt : Fil.

: vold

Figure 3 z Security manager

Security and Ressource Policy-based ... 95

The security manager (SM) (Figure 3) performs the poliey-eontrolled
deployer and proxylet authentieation, and set-up of java.poliey file whieh
restriets the runtime proxylet aeeess to the resourees [14] in FunnelWeb. SM
reeeives events from event handlers and policies from the poliey store. It
performs basie eonfliet resolution. The event handler extraets relevant
parameters from the XML event. The policy handler extraets parameters
from XML polieies. The proxylet verifier performs verifieation of the
signature of the proxylet JAR file. It also verifies that the eertifieate used to
sign the JAR file is a valid one eontained in the keystore. Event generator
reeeives parameters from the seeurity manager and generates XML events
whieh are forwarded to the MID. The local policy updater updates the loeal
java.poliey file on the AS using information from an aeeess eontrol list
whieh is derived from the relevant polieies.

The UML sequenee diagram (service initialisation use-ease) is shown in
Figure 4. When the user-defined "start" event arrives at the aetive server, it is
handled as shown on the first portion of Figure 4. Poliey handler analyses
the eventJpoliey, retrieves the relevant management polieies and forwards
the event data and polieies to the SM. SM performs the authentieation of the
proxylet and the deployer, and the update of the java.poliey file. Then, the
SM sends the seeurity event (in this ease the "load proxylet" event) via the
event generation eomponent to the event handler. This event is the
authorisation of SM to the resouree manager notifying it to load the proxylet.

The speeifies of the resouree management are as folIows. The RM
reeeives the resouree management polieies from the poliey handler. The
aetions might also depend on the measuredlestimated resouree information.
Considering this info, eonditions are evaluated, relevant action is set, and the
event generator is notified to ereate the relevant event, in this ease "load
proxylet". This event is the authorisation of the RM targeted at the EEP and
notifying it to load the proxylet.

leNH-ey "Plj'C'tiQDh.ndJtrl I EG-Ey'nl9,n'fI'pr I ISMS'.U.,MIDI,,,I

"":'''' ,,' p.lieD) ·'r-r0 """"""""''''-'''''''!f'\

, ,
[]:;I III:lnlld handler namel.nd loeatiDnO

9:::, loo' ""t:::'''+dlllf)
.ulh.ntietl.d.ploYlr() i o upda1'{\ "0

__ __ ':::, U. "" "tolO .

Figure 4 - Service initialisation - security related sequence diagram

96 Temitope Olukemi et al.

4. POLICIES

4.1 Security management

Based on use-eases we eategorise the seeurity policies in: polieies for
serviee initialisation, realloeation and termination; and for runtime
management. This eategorisation is based on the type of events that oeeur in
use-eases, and on the event souree. Most of the policies in group 1 originate
from users, while the group 2 polieies are mainly established by the AS
operator. Sinee not all the polieies ean be deseribed here, the following
shows the example seeurity events, eonditions and aetions assoeiated with
the service initialisation use-case. Different eombinations of these (Table 1)
defme the fuH set of polieies.

EVENT CONDITION ACTION
aLocSPU

eLdPrx aLdPrx
pAuthDeployer aDnLdPrx

aSecAI
pAuthProxylet

aRnPrx
eRnPrx aDnRnPrx

aSecAI

Table 1 - Security management policies (service initialisation)

Events:
Load proxylet event (eLdPrx): reeeived by SM when a user or AS operator
wants to load a speeified proxylet on the AS.
Run proxylet event (eRnPrx): reeeived by the SM when a user or AS
operator wants to run a proxylet that has already been loaded to the AS.
Conditions:
pAuthDeployer: returns True if deployer of the proxylet is authentieated,
i.e., has provided a certifieate and False otherwise.
pAuthProxylet: returns True if the proxylet has been signed with a valid
eertifieate (ofthe ereator) and False otherwise.
Aetions:
aLdPrx: SM aHows the proxylet to load - generates "load proxylet" event.
aRnPrx: SM allows the proxylet to run - generates "run proxylet" event
aLoeSPU: invokes a direet method eall on SM whieh ereates/updates a loeal
poliey file with the proxylet/user authorisation to the loeal AS resourees.
aSeeAl: involves the generation of an event informing the AS operator that a
seeurity violation has oeeurred.
aDnLdPrx, aDnRnPrx: involves sending an event baek to the user
notifying that the request eould not be fulfilled by the AS.

The example seeurity poliey shown in Figure 5 is triggered by a load
proxylet event. There are two eonditions (pAuthDeployer and
pAuthProxylet) that have to be satisfied before the aetions aLdPrx and
aLoeSPU are invoked.
Poliey-ID (Poliey 2)
Event (Load proxylet), Event Originator (User)
Condition (lf "Deployer authentieated" and "Proxylet authentieated")

Security anti Ressource Policy-based ...

Policy Originator (AS Operator)
Action 1 (Invoke Load_proxylet method on resouree manager)
Action 2 (Update the java.poliey file related to the proxylet)

<?xml version .. "1.0" encoding .. "UTF-8"?>
<policy xmins • "http://www.android.org/policy'' xmIns:xsi •
''http://www.w3.org/2000/10/XMLSchema-instance'' xsi:schemaLocation =
''http://www.android.org/policy file:///C:/docs/policy.xsd",

<creator>
<authority,

<admin-domain,EE</admin-domain,
<role,Admin</role,

</authority'
<identity,/AS/ADMIN</identity,
<repIy_address,127.0.0.1</repIy_address,

</creator>
<info>

<policy-id,270920011237</policy-id,
<modality,Obligation</modality,

</info,
<subject,

<domain>
<role,Security</role,

</domain,
</subject,
<trigger>

<event-id'eLdPrx</event-id,
</trigger>
<actions>

<condition>
<operand,pAuthDeployer</operand,
<operator,Equals</operator,
<operand,True</operand,
<and/,
<operand,pAuthProxylet</operand,
<operator,Equals</operator,
<operand>True</operand>

</condition,
<action>

<target>
<domain>

<role>Resource-Manager</role>
</domain,

</target,
<data>

<method,aLdPrx</method,
</data,
<target>

<domain>
<role>Security Manager</role>

</domain,
</target,
<data,

<method,aLocSPU</method,
</data,

<faction,
</actions,

</policy,

Figure 5 - Example security management policy (service initialisation use-case)

97

Another example poliey for the runtime service management use-case is
shown on Figure 6. This use ease involves the AS operator monitoring the
behaviour of the proxylets, and, in ease of unexpeeted behaviour, applying
the relevant polieies so as to preserve the resouree integrity and seeurity of
the platform. The poliey shown in Figure 6 is triggered by the eResProfVio
event whieh indieates to the seeurity manager that the resouree profile
violation has been earried out by the proxylet. If the deployer of the event is
eorreetly authentieated, the seeurity manager invokes the aStPrx and aSeeAl
aetions: it stops the proxylet and raises a seeurity alarm.

98 Temitope Olukemi et al.

c?xml version-"I.D" encoding-"UfP-S Ii 1>
<pol icy xmlna-"http://www . android. arg/pol icy·
xmlns :xai-"http://www.1II3 .org/2000/10/XMLSchema-inatance"
XB!: schemaLocation- .. http://www.androi4.org/poU.cy
http://www •••• ucl •• c .uk/-toluk_i/policy 4">
<ereator>

cauthority>
cadmin-domiJin>EE</admin-domain>
<role>Admin</role>

</authority>
cidentity>/AS/ADMINc/identity>
creply_addresS>127 • 0.0 .lc/reply_address>

e/ereator>
dnfo>

<poliey- id>226042 0021 OSOc/policy- id>
etllOdality>Obligationc/modality>

</info>
csubject>

<domain>
crole>Security<!role>

</domain>
</subject>
<trigger>

<event -id>eResProfVio<1 event - id>
<!trigger>
<acttons>

<condition>
coperand>pAuthDeployer</operand>
<operatonEquals<!operator>
<operand>True</oparand>

</condition>
<action>

<target>
cdomain>

crole>Security Managerc/role>
</domain>

</target>
<data>

<metho(baStPrx</method>
<metho<baSecAlc/method>

c/data>
<faction>

</actions>
</poUcy>

Figure 6 - Example security management policy (run time management use-case)

4.2 Resource management

EVENT CONDITION ACTION
pCPUthr aLdPrx aDnLdPrx

pMEMthr aAIRs aFLd
eLdPrx

pDISKthr
aMRMP aNtfAR

pNETthr aRnPrx aDnRnPrx

pPredMeta aIRs aFRn
eRnPrx aMRMP aNtfAR

Table 2 - Resource management policies (service initialisation)

Based on the use-cases, we categorise the resource management policies
into policies for service initialisation, run-time management, service
reallocation, resource increase/decrease, and service termination. Based on
the originator we also categorise policies into policies originated by users
and by AS operators. Main difference is the delivery and/or execution
guaranties they off er. In case of conflicts AS operator policies have
precedence over user policies. Since not all the policies can be described
here, the Table 2 gives the events, policies and actions associated with the
service initialisation use-case. Policies are identified by the conditions that
the resource manager has to evaluate. Actions can be applied directly to
targets or can be sent as events through the notification system to the
appropriate management component. Combinations of events, conditions,
and actions defme the full set of policies (Table 2).
Events:
eLdPrx; eRnPrx; explained in section 4.1 on security management polices.

Security and Ressource Policy-based ... 99

Conditions:
pCPUthr: this condition type describes a range of policies that are
associated with CPU usage. The operands are measured values (in
percentages) such as: total time, kerne I time, user time; and the statistics.
pMEMthr, pDISKthr: these types of conditions have as operands the
amount (in absolute values or percentages) of free/used memory/disk space.
pNETthr: operands are: incomingloutgoing bytes per second and statistical
information on those values (average, standard deviation, percentiles).
The above conditions are checked by the resource monitor.
pPredMeta: involves the predicted future resource usage using information
found in the proxylet metadata and is checked by the resource estimator.
Actions:
aLdPrx: RM allows the proxylet to load - generates "load proxylet" event.
aRnPrx: SM allows the proxylet to run- generates "load proxylet" event.
aAlRs: a direct method call to the resource allocation controller that will
enforce hard resource allocation or change process priorities.
aMRMP: is related to conflict resolution and will be used in the future to set
valid policy in case of conflicting requirements.
aDnLdPrx, aDnRnPrx: involve sending an event back to the user notifying
that the request could not be fulfilled.
aFLd, aFRn: forwarding actions are applied when the AS cannot load/run
the requested proxylet. The original load/run event is sent to another AS.
aNtfAR: The AS notifies the active router (AR) that the request for service
has been forwarded to another AS.

<?xml version _ "1.0" encoding • "trrF-B"?>
<polic:y xmlns .,. "http://www.android.org/policy'' xmlns:xsi •
''http://www .w3 .org/2000/10/XHLSchema-instance" xsi :schemaLocat!on •
"ht tp, / Iwww.android.org/policyfHe./llhorne/ iliaboti/policy . xsd" >

<creator,
cauthority>

cadmin-domain::oASc/admin-domain>
<role>AS Operator</role>

</authority>
< ident i ty>ASOperatorl< / identi ty>
< reply _address>ASOPaasl. orgel reply _ address>

</creator>
<info>

<pol icy- id>Policylc/pol icy- id>
<modal i ty>obl igat ion< /modali ty>

</info>
csubject>

cdomain>

</domain>
</subject>
<trigger>

<event M id>eLdPrx< / event id>
</trigger>
<actions>

<condition>
<operand>Total Usage< / operand>
<operator>LessThan</operator>
<operand>60t</operand>

</condition>
<action>

<target>
<domain>

</domain>
</target>
<data>

<method>aLdPrx</method>
</data>

<faction>
</actions>

</policy>

Figure 7 - Example resource management policy (service initialisation)

100 Temitope Olukemi et al.

The example policy of Figure 7 demonstrates one event-condition-action
combination that appears during the service initialisation use-case. This AS
Operator specified policy allows loading of user requested proxylets if the
Total CPU time load ofthe AS is less that 60%.
Policy-ID (Policy 1)
Event (Load Proxylet), Event Originator (User)
Condition (If "Total CPU time load" less than 60%)
Policy Originator (AS Operator)
Action (Send Load proxylet event to EEP Controller)

5. SOFTWARE DEMONSTRATION
The resource manager (RM) and the seeurity manager (SM) were

demonstrated in two distinet real-life trials of the ANDROID projeet. The
first trial [5], in Essen, involved the demonstration ofthe prototype resouree
monitoring eomponent, eonsisting of the monitoring GUI and the measuring
proxylet (R-Iet). The resouree GUI was used to launeh the R-Iet at the
remote aetive server (AS). AS was seeured by the SM, whieh performed
proxylet deployer authentieation on the basis of the authentieation poliey.
Monitoring of resourees (CPU, memory) on the AS is then done by the R-Iet.
The sequenee of events in the demo is as follows. The SM reeeives a XML
event from resouree monitoring GUI instrueting it to load the R-Iet. The SM
parses the event, and checks the loeal poliey store for a poliey assoeiated to
this event. After authentieating the user that sent the event the SM loads the
R-Iet via FunnelWeb. From then on the monitoring applieation ean eontaet
FunnelWeb for running proxylets or R-Iet for monitoring information.

The seeond ANDROID demonstration in Paris involved three scenarios
demonstrating the seeurity and resouree manager funetionality on the AS.
The scenarios involved the enforeement of the seeurity and resouree
management polieies given in Figure 5 and Figure 7. The seeurity and
resouree managers were implemented to interoperate sequentially, where the
request to load the proxylet was first authorised by the security manager, and
then the load request would be forwarded to the resouree manager, which
would invoke the chosen action on the EEP.

The first scenario involved the sueeessful loading of the proxylet, where
first the security manager performed the proxylet and deployer
authentication as specified by the security poliey in 5. Next, the resouree
manager verified that there are enough resourees, using the resource monitor
eomponent. Aeeording to the resource management poliey given in Figure 7,
whieh specifies that the proxylet can be loaded if there is no more of 60% of
CPU used, the resouree manager loaded the proxylet via the EEP, since the
60% eondition was met.

The second scenario involved the attempt to load an incorrectly signed
proxylet. According to the security poliey specified in Figure 5, the seeurity
manager denied the incorrectly signed proxylet to load on the AS.

The third scenario involved the authorisation of the security manager to
run the proxylet, which was eorrectly signed. However, the proxylet was
denied to run by the resource manager, since the 60% CPU condition was
not met. The condition was not met because a dummy resource-consuming
proxylet was running on the AS, which was consuming 100% of the CPU
resources.

Security anti Ressource Policy-based ... 101

The seeurity and resouree manager sereens are eaptured on Figure 8. The
top part of the sereen shows the seeurity manager, with the Keystore and
poliey file loeations. The bottom part shows the resouree manager. On the
left side, the AS CPU utilisation (in this ease 100%) and the relevant poliey
loeation are depieted. The right hand side of the sereen shows the resouree
manager log, where it ean be seen that the proxylet was denied to load sinee
the CPU utilisation eondition was not met.

Acllw Server C PU UIII:
1100.0000000000000

Volley URt;

CommunlcaUon:r-__ ""':;""":""'i
Rueln: Port ___ .h
Send: Pon 4445

Senlt .. ost locaJhosl

MUliQtmtnt:,..--''--' ___ -,-_.,
Keystore /home/androld/androld
Allu ANDROIDEE I'
I'Usword • .,.... _.,.------,--'

on POft: 4445
1Co1nec:tion fran Event Producer accepted

11 Cl{aJ-LJ'u-usaae lessThan
returned : faJse

nCl{ Loaded

Ihttp ://128.16.235 .59/RSM/DoIldesJPoIICVl.xml
E..ellt Port

fer Connealon on port: 4<145

Usten

Figure 8 - Security and resource managers - demo screens

The use of the poliey-eontrolled seeurity and resouree managers in the
ANDROID project demo demonstrated their applieability in the real-life
trial. Both eomponents effeetively demonstrated the poliey-enforeement on
the ALAN aetive servers, inc1uding proxylet and deployer authentieation,
and proxylet admission control based on the loeally interpreted resouree
information.

102 Temitope Olukemi et al.

6. CONCLUSION
Ihis paper discussed the policy-based management architecture focused

on managing the security and resource aspects of ALAN servers. The
approach developed by the ANDROID project adopts a lightweight
extensible policy and event schemas that effectively capture the information
needed for management of large distributed configurable systems such as
ALAN-enabled networks. Ihe resource and security management
architecture developed is fully policy-enabled. A thorough UML-based
analysis and design allowed the development of the components necessary to
support the policy enforcement on the ALAN active servers. This approach
also allowed the specification of a wide range of policies relevant for the
target active network scenarios. The security and resource management
architecture and policies presented here were successfully deployed in a real­
life trial of the project, being a distinct part of the larger ANDROID
development.

Authors would like to thank Mike Fisher and Paul Mckee of BI for their
work on the generic policy and event specifications; lan Marshall of
BI/UCL for discussions on some of the ideas, Ken Carlberg and Piers
O'Hanlon ofUCL for help during the ANDROID project demo.

7. REFERENCES
[1] M. Fry, A Ghosh, "Applieation Level Aetive Networking", Computer Networks, 31 (7)

(1999) pp. 655-667.
[2] l. W. MarshalI, et. al., "Applieation-Ievel Programmable Network Environment", BT

Teehnology Journal, Vol. 17, No. 2, April 1999.
[3] I. W. MarshalI, M. Fry, L. Velasco, A Ghosh, "Aetive Information Networks and XML",

in "Aetive Networks" ed. S. Covaci, LNCS 1653 pp. 60-72, Springer Verlag, 1999.
[4] Sioman M., "Poliey Driven Management for Distributed Systems", Journal ofNetwork

and Systems Management, 1994.
[5] O. Prnjat et. al., "Policy-based Management for ALAN-Enabled Networks"; IEEE 3rd

International Workshop on Policies - Policy 2002, Monterey, CA, USA, June 2002.
[6] Marshall I. W., Hardwicke J., Gharib H., Fisher M., Mekee P., "Aetive Management of

Multiservice Networks", Proeeedings ofNOMS 2000.
[7] Marshall I. W., Gharib H., Hardwicke J., Roadknight C., "A Novel Arehitecture for Active

Service Management", IEEEIIFIP IM Symposium 2001.
[8] FunnelWeb http://dmir.soes.uts.edu.au/projeets/alan/
[9] Damianou N., et. al., "Ponder: A Language for Specifying Security and Management

Policies", Imperial College Research Report DoC 2001, January 2000.
[10] Natarajan R., MeKee P, Mathur AP., "A XML Based Poliey-Driven Information

Service", IEEElIFIP Integrated Management Symposium (IM'2001), Seattle, May 2001.
[11] W3C, "XML Schema Part 0: Primer- W3C Reeommendation, 2 May 2001", [www]

http://www. w3 .0rg/TRlxmlschema-0
[13] Ioannis Liabotis, et. al., "Policy-based Resouree Management for ALAN", Proeeedings

ofthe 2nd IEEE LANOMS 2001.
[14] Prnjat 0., et. al., "Integrity and Seeurity ofthe Application Level Aetive Networks"; IFIP

WATM'2001 andEUNICE'2001; Sept. 2001.
[12] W3C, "XML Schema Part 2: Datatypes - W3C Reeommendation, 2 May 2001", [www]

http://www.w3.orglTRlxmlschema-2

	8
Security and Resource Policy-based ManagementArchitecture for ALAN Servers
	1. INTRODUCTION AND PROBLEM FJELD
	2. ANDROID MANAGEMENT PRINCIPLES
	3. ACTIVE SERVER ARCHITECTURE
	4. POLICIES
	4.1 Security management
	4.2 Resource management

	5. SOFTWARE DEMONSTRATION
	6. CONCLUSION
	7. REFERENCES

