
A Prototype SNMP Management Framework for
DiffServ Linux Routers, its Implementation and
Performance

Theodore Kotsilieris·, Panagiotis Zikos, Efstathios Vlachos, Stelios
Kalogeropoulos, Angelos Michalas, George Karetsos and Vassilis Loumos
National Technical University of Athens

Division ofCommunications, Electronics anti Information Engineering,

Department of Electrical and Computer Engineering

9 Heroon Polytechneiou Str., GR-I5773 Athens, Greece

Abstract: In Linux Router management, the Traffic Control tool is still the
unique method provided to network managers for monitoring
and configuration. Scripts invoked through telnet are used for
this purpose. Router monitoring is obtained by parsing the
report created from the tc show command. This leads in
signifieant load for the management system imposing barriers
for real time and dynamie management. The purpose of this
paper lies in presenting a prototype implementation of the
DiffServ MIB based on the Traffie Control API. The
fundamental objective of this implementation is to provide an
SNMP management framework for DiffServ Linux Routers. It is
shown that, on the basis of the SNMP functionality, efficient
and real-time management can be obtained, enabling the
introduetion of relative differentiated services.

Key words: SNMP, DiffServ-MIB, Differentiated Services, Network Management, Unux
Router

• Corresponding author: e-mail tkots@central.ntua.gr

©

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35620-4_43

D. Gaïti et al. (eds.), Network Control and Engineering for QoS, Security and Mobility
IFIP International Federation for Information Processing 2003

http://dx.doi.org/10.1007/978-0-387-35620-4_43

406 Theodore Kotsilieris et al,

1. INTRODUCTION

Emerging multimedia applications (e.g. VoIP, video on demand) need real­
time performance guarantees such as bounded delay, jitter and maximum
throughput. The current Internet does not support these QoS features and it is
areal challenge to embody them in the existing infrastructure. The DiffServ
WG W is focused on providing the architecture to support various types of
applications through class of service differentiation of Internet traffic. The
differentiated services framework proposes the use of a well-defined set of
components that afford the opportunity for a variety of services to flourish
W. The goal of the DiffServ WG is to suggest a reference model for
boundary routers (Le. ingress and egress) defining traffic conditioning
parameters, configuration and monitoring data. Towards this aim, DiffServ
Mffis (Management Information Bases) are proposed in the form of Internet
drafts W.
Differentiated service mechanisms ill allow network providers to allocate
different quality levels to different users of the Internet and investigations
are being done on mechanisms such as traffic meters, shapers/droppers, and
packet markers to be used at the boundaries of the network. That is the point
where Linux comes into play. Due to the fact that Linux is an open, flexible,
and easily extensible platform with state of the art functionality for QoS
support, it is a widely accepted solution for research purposes. Its flexibility
and robustness allows development and validation of experimental systems.
Such an area is relative and absolute service differentiation [3,4,5,6], where
the basic idea is that the bandwidth assigned to each class of service can be
dynamically allocated depending on the traffic load and the contracted SLAs
(Service Level Agreements) between ISPs and users.
This paper presents a prototype implementation of the DiffServ Mffi for a
Linux router and its performance against existing techniques. The motivation
was to enable Differentiated Services management with SNMP features. The
most recently proposed draft-ietf-diffserv-mib-16 was chosen for
implementation.
Though the traffic control technology fL.[l has been introduced on the Linux
platform since 1998, there has not been proposed an efficient way to monitor
and configure Linux Routers except from the tools offered from the Traffic
Control Next Generation project I.2l (tcng command-line tool). tc is a user­
space application used to handle the incoming traffic at the network interface
card by defining queues, classes and filters il..Ql.
Through its command set it provides detailed information about the current
configuration and performance statistics of a Linux router. The existing
monitoring capabilities are limited to parsing the report generated from the tc
show command. The configuration of a Linux Router is based on scripts
defining the alternative queue management mechanisms, the classes and

A Prototype SNMP Management Frameworkfor DiffServ Linux... 407

filters that provide the desired QoS. Specifically, the tc scripts contain
detailed information and define the queue characteristics of a router, the
filters that classify the incoming traffic and the classes (schedulers) that
enqueue the packets into the appropriate queues and forward them according
to specific disciplines.
This paper is organized as follows: Section 2 presents a methodology for
enabling SNMP based network management on Linux routers. In particular
we first elaborate on the inefficiencies of the Tc approach and then we
continue by presenting an architecture for incorporating SNMP by enhancing
the Tc API from ffiM. All the required enhancements are given in detail. We
conclude this section by presenting the application of the DiffServ MIB
implementation on monitoring and configuration of Linux routers. Section 3
presents a set of experimental results that took place on areal test-bed which
prove the performance enhancement that is achieved by the presented
approach. We finish the presentation of our work by providing conclusions
as well as directions for further enhancements.

2. THE SNMP APPROACH TO LINUX ROUTER
CONFIGURATION

There are several drawbacks in using the TC tool for a Linux router
management. An important one is that configuration can be only achieved by
executing predefined scripts through a telnet session. The complexity
induced by this approach is increased, as the network manager apart from
dealing with a not user-friendly environment, has also to face the problem of
an indeterminate framework.
Furthermore, monitoring appears to be inefficient due to defective set of
operations. The tc show command appears to be insufficient especially for
real time and of specific parameters monitoring.
On account of the aforementioned shortcomings, an implementation of the
DiffServ MIB is suggested in this paper in order to efficiently integrate
Linux router management with the dominant SNMP illl management
protocol.
SNMP is an application level protocol that is part of the TCPIIP protocol
suite. For a standalone management station, a manager process controls the
access to a central Mffi at the management station and provides an interface
to the network manager. No ongoing connections are maintained between a
manager station and remote network devices. Instead, each exchange is a
separate trans action between the manager station and the managed node (i.e.
an SNMP agent). Due to its bulk retrieval and transfer mechanisms for

408 Theodore Kotsilieris et al.

minimizing network resources consumption, SNMP is nowadays the de facto
standard in IP network management.
A Network Management system based on SNMP provides uniform access to
the management information, whether real time alarms and alerts are sent or
trend analysis reports are requested, acting as the cornerstone component
leading to a homogeneous solution. The objective of this paper is to present
an efficient DiffServ MIB implementation in order to allow Linux router
management through SNMP. We will prove that SNMP enabled router
management provides enhanced functionality compared with the TC tool,
due to its simplicity in monitoring and configuration, and significant
performance gains as we present later in section 3.
Apart from configuration and performance management other key functional
areas are also supported. Fault management is obtained through the trap
mechanism that allow unsolicited message reception while SNMP specific
security issues partially satisfy access control mechanisms to the network
elements.
The suggested SNMP agent, communicates with the Linux kernel collecting
or setting all the appropriate information in order to update the objects of the
DiffServ MIB tree. The DiffServ MIB is a model for the functional data path
elements, allowing the network manager to erect them in any way that meets
the target policy. These data path elements include Classifiers, Meters,
Actions of various sorts, Queues, and Schedulers. Abrief description for
each element and its role is given in the following table.

Table 1. Tbe main data path elements description
Data Path Element Description
Classifier Classifiers are used to differentiate among

types of traffic. Classifiers can be simple or
complex depending on whether they apply in
core or edge interfaces respectively.

Metering Traffic A meter integrates the arrival rate of traffic
and determines whether the shaper at the far
end was correctly applied. A shaper
schedules traffic for transmission at specific
times.

Actions applied to packets

Queuing and Scheduling of Packets

An Action is what a differentiated services
interface PHB may do to a packet in transit.
Tbrough the combined use of Queues and
Schedulers, it is possible to build multi-level
schedulers. such as those which treat a set of
gueues as having priority arnong them.

Through these components, the user operates over a high level interface
avoiding direct interaction with the kernel. Furthermore, SNMPv3 secures

A Prototype SNMP Management Framework for DiffServ Linux... 409

the basic principles that rule the transactions between the management
station and the agent (Linux router) by protecting against:

• Modification of Information,
• Masquerade,
• Message Stream Modification, and
• Exposure.

9-"11 Of'I'SSIV_ ><_2
8 - <tffS.-_

a <II's..-.ojocIs
I __ T_

fI..,-.. -...v
tIl CJ .."s...oo."'.
e- dlftSeM.4ell" : I" clttS.YMeI"Nexlf', ..

EIl • CI.t'StNMe1erhobie
dHServTBP._

f[l
I'
I III ,,'rs.v...-,'_
I clfFSW'I'O.tPMettAdf ..
I J dfrServCOl.rtAdNilxWr ..

:' .. '1$""" ""_ __ '"
S "'_ ... ,.......,,-

I ..

• I Holt ..!l CommunIIr. I
' h1V_: .------3...., ... _COIIII'/IIII'OII rl -----
: 'c_...,.: I 3 ConIIIdEnIIrIeO' I

1
oedlnv ftJlt •.

Syom:_ ,. 'i-"'----==-- _.:
I Ac .. u R-., I -

Figure 1. The DiffServ MIB and the SNMP management environment

The partially expanded tree of the DiffServ MIB is presented in figure 1
through the Mffi Browser tool of AdventNet 1161. All the previously
mentioned components are depicted along with a typical SNMP management
environment.
Finally, the applications based on the SNMP are very flexible and take full
advantage of the SNMP API as weIl as of innovative network management
techniques 112, 13, 141.

2.1 The DiffServ MIB implementation

The implementation of the DiffServ Mffi is based on the TC API L!2.l,
which is an interface to the Linux Kernel QoS mechanisms. Its main benefit
is that it allows user applications (Le. SNMP agents) to communicate with

410 Theodore Kotsilieris et al.

the Linux kernel through the netlink interface. Netlink consists of a standard
socket based interface for user processes and an internal kernel API for
kernel modules.
We used components of the TC API, in order to fetch the management
information contained in the MIB. We also enriched the TC API by creating
new functions and data structures enhancing its functionality. The necessity
for new functions stemmed from the fact that all the components are treated
as entities. Most of the information already existed in the TC API but either
it was accessible from the user through an interface or it was not grouped in
appropriate structures so as to be easily handled. Although it is not
complicated to access the statistics, there were no functions to obtain this.
More specifically we developed the functions depicted in table 2 so as to
obtain the statistics for the elements indicated in the first column:

Table 2. New functions in the TC API
Objects
Classifier

Meters

Filters

TB Meters

Queues

Classes

AlgDrop

Function Name
Void*classifierstats(dFilter Anchor *filter Anchor,
int counter)
Void *u32meterstats(du32 *u32filter,int counter)
void *tcindexmeterstats(dTC *tcindex,int counter)
void *routemeterstats(dRoute *route,int counter)
void *fwmeterstats(dFW *fw,int counter)

Void *u32_filterstats(du32 *u32filter,int protocol)
void *tcindex_filterstats(dTC *tcindex,int protocol)
void *route_filterstats(dRoute *routefilter, int

protocol)
Void *u32TBmeterstats(du32 *u32filter)
void *tcindexTBmeterstats(dTC *tcindex)
void *routeTBmeterstats(dRoute *route)
void *fwTBmeterstats(dFW *fw)

Void *cbq_stats(dQdisc *qdisc)
void *dsmark_stats(dQdisc *qdisc)
void *TBF _stats(dQdisc *qdisc)
void *fifo_stats(dQdisc *qdisc)
void *red_stats(dQdisc *qdisc)
void *ingress_stats(dQdisc *qdisc)
Void *cbqClass_Stats(dQdisc *qdisc)
void *dsmarkClass_Stats(dQdisc *qdisc)
void *prioClass_Stats(dQdisc *qdisc)
Void *AlgDrop_Stats(dQdisc *qdisc)

Description
Tbe classifier statistics
of incoming traffic.
Tbe meters statistics
that a system may use
to police a stream of
classified traffic.

Tbe filter statistics that
a system may use to
identify IP traffic

Tbe specific token­
bucket meters statistics
that a system maY use
to police a stream of
traffic.

Tbe individual queues
statistics on an
interface.

Tbe individual class
statistics on an
interface.
Tbe AlgDrop_Stats
provides statistics for
dropped packets

A Prototype SNMP Management Frameworkfor DiffServ Linux... 411

Objects

Count
Action

Function Name

Void *countactstats(NIC *nic)

Description

The *countactstats(NIC
*nic) provides counters
statistics for all the
traffic passing through
an action element

Furthermore modifications were done in the core functions of the TC API
illustrated in table 3. The necessity for these enhancements arises from the
fact that filters have no statistics. Instead of them policers' statistics can be
used. They are attached to filters and maintain their own statistics. Usually
each filter can have a policer, and this way the filter statistics are these
cOllected from the policer.

Table 3. Modified functions of the TC API
Function Name
int TreeBuilderTFilter(Qsession *qSession,struct nlmsghdr
*reply, NIC *nic)
static void TreeBuilderAddTCEntry(dFilterAnchor
*filterAnchor, dTC *node)
static void TreeB uilder AddTCHashTable(dFilter Anchor
*filterAnchor, dTCHT *node)

Description
Enhanced functionality in order
to obtain filter statistics.
Both are used in order to add a
tcindex filter statistics indicator
to the previously created hash
table.

On top of the TC API, we used the AdventNet Agent Toolkit 116] that
provided a C code framework for implementing the MIB. The C language
was chosen for the implementation because of the necessity to have a
common interface with the linux kernel and time essential processing. The
stub code generated from the Agent Toolkit associates the data accessed
through the TC API to the appropriate MIB objects. The outcome of this
work was a complete DiffServ SNMP Agent. The high level architecture of
our implementation is presented in figure 2.

412 Theodore Kotsilieris et al.

User Level

I Kernel Level I
NETLINK

L1NUX KERNEL

Figure 2. The DiffServ MIB prototype implementation high-level architecture

2.2 Monitoring and Configuration

A leaf node in the Mffi tree represents each managed object of the router.
Every node is assigned a label consisting of an integer. The identifier of an
object is aseries of integers that mark the full path from the root of the Mffi
tree to the specified object. The DiffServ Mffi describes every component of
the router (queues, filters, classes) and the associated information is
organised in Mffi Tables; each Table corresponds to a specific component
and contains entries for every queue, filter or class.
During the initialization phase the SNMP agent checks the DiffServ
configuration of the router through the initAgentO function, each queuing
discipline module adds itself to a global list named qdisc_base and fills the
associated Mffi entries. Once started, the agent runs as aseparate Linux
process and listens for incoming SNMP requests to a specified port.
The manager is able to make a query through the GET operation of the
SNMP, providing as an argument only the 010 of the desired component
and the ip address of the router. Each time the agent is triggered, either
locally or remotely, it communicates with the Linux kernel via the TC API.
The TC API functions direct the incoming requests, either for monitoring or
for configuration, from the user to the kernel level in order to perform the
desired management operations and produces a response with the requested
information.

A Prototype SNMP Management Frameworkfor DiffServ LimIX... 413

DiffServ
Management Appilcatlon

SNMP ,equest

SNMP ,esponse

SNMP notlflcatlons

EJ
DlffServ MIB

Figure 3. Monitoring and Configuration through SNMP.

Especially for the configuration case, it can be achieved via the SET
operation of SNMP. Through the network management application the user
selects the desired DiffServ component to be created or modified. A new
Queuing tree, which describes the updated structure of the DiffServ router, is
constructed each time a configuration is accomplished. Figure 3 illustrates
how monitoring and configuration is obtained through SNMP.

3. EXPERIMENTAL RESULTS

In order to verify the optimization introduced by our system we performed a
simple experiment, of managing a DiffServ Linux router using the SNMP
agent. The same experiment was also conducted using the previously
described methodology, based on parsing the TC tool report. The performed
tests were focused on the evaluation of execution time needed for both
methodologies to extract the diffServCountActTable entries on a varying
number of nodes. The test-bed is illustrated in figure 4.

Linux
routers

Figure 4. The test-bed topology

414 Theodore Kotsilieris et al.

In figure 5 the results of the tests demonstrate that the SNMP agent
implementing the DiffServ MIB performs better than parsing the report file
generated from the tc show cornmand.

Companson 01 Telnet vs. SNMP

i
E
-;
E

jjj

6 7 8 9 1011 12 1314151617 181920 21 2223

Number 01 L1nux Routers

[--- Teine! SNMP I

Figure 5. Comparison of Management through Telnet versus SNMP

Table 4. The experimental results

Number of Nodes Telnet SNMP
6 1570.9 413
7 1590.2 475.7
8 1981 541.4
9 1999 624.4
10 2114 675.6
11 2134 819.3
12 2279.8 885.3
13 2583.6 971.2
14 2648 1020.2
15 2695 1027.6
16 2852 1150.1
17 3059 1154.1
18 3425 1225.6
19 3882 1363.4
20 4282 1427.1
21 4304 1478

A Prototype SNMP Management Frameworkfor DiffServ Linux... 415

Number of Nodes
22
23

Telnet
4322
5793

SNMP
1488.7
1557

From the results of our experiments we conclude that response time
decreases by 20% for a simple GET operation on 6 nodes and 70% for 25
nodes. The execution time for management through Telnet increases rapidly
as the number of managed routers increases. On the contrary, the execution
time for management through SNMP increases in significantly slower rate
due to an overhead of 100 msecs accrued each time a new node is introduced
in the test-bed.
The operation performed in this experiment is simple but representative
enough to confirm the performance improvement. This is quite a promising
outcome, since we haven't considered possible overheads introduced in the
case of the Tc approach for the preparation of scripts capable to return every
requested variable by parsing the report file. We will focus our next steps on
studying in detail these trade-offs, by performing further experiments and
measurements.

4. CONCLUSIONS

We have presented the high level architecture and the implementation of a
system that proved to deli ver better performance in monitoring and
configuration of DiffServ Linux routers. Today's evolution in Internet QoS
requires flexible network management solutions. Towards this end, the
implementation of the DiffServ MIB presents distinct advantages over
previously proposed techniques that are currently in operation.
In this work, we also presented results from a real experiment concerning the
time needed to accomplish a task. The execution time of a task is critical in
network management and especially in areas that real time interaction is
necessary. The experimental results revealed that significant gains could be
obtained on the performance of a Linux router management system through
our implementation.
Our next objective within this framework is to design and implement a
distributed management system for Linux routers. Decentralisation of the
SNMP protocol, through the usage of eORBA or Mobile Agents, could lead
to significant enhancements in terms of both functionality and performance.
Furthermore, another promising research area is the design and
implementation of appropriate mechanisms to control resources managed by
the kernel il1l (i.e. epu usage, disk access, memory usage). This

416 Theodore Kotsilieris et al.

functionality will enhance QoS applications and control algorithms by
altering the existing approach which is limited to packet filtering, marking
and scheduling.

REFERENCES
[I] http://www.ietf.orglhtml.charters/diffserv-charter.html
[2] "Perfonnance evaluation of a Linux DiffServ implementation", G. Stattenberger, T.

Braun, M. Scheidegger, M. Brunner, HJ. Stuttgen, In Computer Communications Journal,
vol.25, issue13, pp 1195-1213

[3] "Proportional Differentiated Services: Delay Differentiation and Packet Scheduling",
C.Dovrolis, D.Stiliadis and P. Ramanathan, Accepted for publication at the IEEEIACM
Transactions in Networking.

[4] "Dynamic Class Selection: From Relative Differentiation to Absolute QoS", C.Dovrolis,
P.Ramanathan, Proceedings of the 2001 IEEE International Conference on Network
Protocols.

[5] "A Case for Relative Differentiated Services and the Proportional Differentiation Model",
C. Dovrolis, P. Rarnanathan. In IEEE Network, 13(5) p.p. 26-34, September 1999

[6] Relative Jitter packet scheduling for Differentiated Services, T.N.Quynh, H.Karl,
A.Wolisz, K.Rebensburg, 9th IFIP Conference on Performance Modelling and evaluation
of ATM & IP Networks 2001.

[7] Almesberger, Werner. Linux Traffic Control- Implementation Overview
[8] W. Almesberger, J. Salim, A. Kuznetsov, Differentiated services on Linux, Globecom '99,

Rio de Janeiro, December 1999, pp. 831-836
[9] http://tcng.sourceforge.neU
[10] http://www.linuxdoc.org/HOWTO/Adv-Routing-HOWTO.html
[11] http://www.ietf.org/html.charterslsnmpv3-charter.html
[12] "Integration ofMobile Agents with SNMP: How and Why", Pagurek, B., Wang, Y.,

White, T., Proceedings of NOMS 2000
[13] "Evaluating Tradeoffs of Mobile Agents in Network Management", Pagurek, B., Wang,

Y., White, T., Networking and Information Systems Journal, Hermes Science Publications,
vol. 2,no. 2,pp. 237-252, 1999

[14] "Integration of SNMP into a CORBA- and Web-based Management Environment", Gerd
Aschemann, Thomas Mohr, Mechthild Ruppert, KiVS '99, March 2-5,1999, Darmstadt.

[15]http://oss.software.ibm.comldeveloperworksiprojects/tcapiJ
[16] www.adventNet.com
[17] "Enhancing the Performance of Mobile Agent based Network Management

Applications", A. Michalas, T. Kotsilieris, S. Kalogeropoulos, G. Karetsos , Moshe Sidi
and V. Loumos, 6th IEEE Symposium on Computers and Communications, IEEE
ISCC'OI, 3-5 July 2001 Harnmamet, Tunisia.

POSTERS 2

	35
A Prototype SNMP Management Framework forDiffServ Linux Routers, its Implementation andPerformance
	1. INTRODUCTION
	2. THE SNMP APPROACH TO LINUX ROUTERCONFIGURATION
	2.1 The DiffServ MIB implementation
	2.2 Monitoring and Configuration

	3. EXPERIMENTAL RESULTS
	4. CONCLUSIONS

	POSTERS 2

