
13

State-Based Security Policy
Enforcement in Component­
Based E-Commerce Applications

Peter Herrmann, Lars Wiebusch, and Heiko Krumm
Universitiit Dortmund, FB Informatik, LS IV, 44221 Dortmund, Germany

Peter. Herrmann@ cs.uni-dortmund.de, Iars-wiebusch @web.de, krumm @cs.uni-dortmund.de

Abstract: Software component technology supports the cost-effective development of e­
commerce applications but also introduces special security problems. In par­
ticular, a malicious component is a threat to any application incorporating it.
Therefore wrappers are of interest which control the behavior of components at
run-time and enforce the application's security policies. The wrapper of a compo­
nent monitors the component behavior at its interfaces and checks its compliance
with the security behavior constraints of the component's employment contract.
We propose state-based security policy definitions, report on their suitable design,
and clarify their employment by means of a component -structured e-procurement
application.

Keywords: Security policy enforcement, component security, security wrappers.

1. INTRODUCTION
The approach of component -structured software envisages applications com­

posed from cost-effective components. The components are supplied by dif­
ferent developers and are offered to a growing community of customers on an
open market (cf. Szyperski, 1997). By selection, configuration, and customiza­
tion of components powerful applications can be built which are tailored to the
special needs of single customers. The benefits of the component approach,
however, are accompanied by a series of technical problems. The architecture
of component-structured application systems really extends the conception of
distributed object-based applications. In particular, it imposes new security
aspects since it introduces new principals and roles. In addition to users and ap­
plication system owners, also component vendors and host providers have to be
considered. On the one hand they introduce their own security objectives. On
the other hand, they introduce new types of threats since in general the different
principals cannot trust each other to full extent. Considering that enterprises

©

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35617-4_48

J. L. Monteiro et al. (eds.), Towards the Knowledge Society
IFIP International Federation for Information Processing 2003

http://dx.doi.org/10.1007/978-0-387-35617-4_48

196 State-Based Security Policy Enforcement

are increasingly dependent on their information systems, the security of the
applications is of growing importance. Therefore approaches are of interest
which support the security of those component -structured application systems
incorporating code obtained from not necessarily fully trusted sources.

Of course, the composition of applications from various components causes
not only security problems. Among other properties, in particular it is essential
for the functionality of an application that each component acts in accordance
with its specifications. Therefore the approach of software components refers
to the employment of explicit contracts. Each component integration shall
be accompanied by a contract which is legally binding and describes agreed
properties of a component and, in particular, its interface. According to (Beug­
nard et al., 1999), a contract consists of four parts specifying the structure of a
component interface (i.e., methods, input and output parameters, exceptions),
the desired behavior of the component and its environment, synchronization
aspects, and quantitative quality-of-service properties.

Our overall approach is also based on contracts. A component contract
has to contain a description of the security-relevant behavior with which the
component's execution is assumed to correspond:

• At design time, the structure of the system is analyzed in combination
with the behavior descriptions of its components in order to prove that
required security properties of the system hold if each component will
act in accordance with its contract.

• At run-time, the consideration can focus on the components. For each
component it is of interest that its actual behavior in fact is conformable
with its contract.

We assume that malicious components or compromised code (e.g., by virus
or Trojan horse infection) will result in behaviors which diverge from the de­
scriptions of the contract. Therefore the component behavior is controlled at
run-time by means of wrappers. A wrapper monitors the interfaces of a com­
ponent. It detects the interface events and checks their compliance with the
security behavior constraints of the component's employment contract. In case
of policy violations components are blocked and the application administrators
are notified.

The approach is introduced in (Herrmann and Krumm, 2001), which reports
on the architecture and management of wrappers. Moreover, it describes how
enforcement functions for state-based policy definitions are provided in wrap­
pers and outlines a corresponding Java Bean implementation. Since detailed
control functions can cause substantial overhead, furthermore trust adaptation
is introduced. The control functions of a wrapper are dynamically adapted to
that level of trust, the component currently has in the eyes of the application
owner. Additionally (Herrmann, 2001) concentrates on the trust management

Peter Herrmann, Lars Wiebusch, and Heiko Krumm 197

aspects of our approach describing a suitable information system infrastructure
and its support for component procurement decisions.

In the sequel we will report on application-oriented aspects of run-time com­
ponent security policy enforcement. From an application owner's point of view
the security policy of a component shall help to discriminate between desired
and malicious component behavior in order to expose compromised compo­
nents threatening the application and the assets managed by it. In principle,
this objective is best supported if the policies specify the desired behavior of
the component in detail. Then, however, the policy implementation in the wrap­
pers would have the character of reference implementations and the efforts for
the development of the policies and their implementations would be compa­
rable to component development. This aspect as well as performance issues
plead for the employment of more abstract policies. Therefore policies are of
interest which can be defined under abstraction from the detailed component
behavior and which concentrate on the essential application contributions of
the component. Additionally, we consider that the design of suitable policies
is strongly related to the vulnerabilities of the application and that the vulner­
abilities depend on the application's component architecture as well as on its
application functions. Dealing with these requirements we analyze an exam­
ple application, recognize the general suitability of state-based policies, and
identify helpful policy conceptions and patterns.

In more detail, we specify state-based policies by state transition systems and
apply the temporal logic specification language cTLA (Herrmann and Krumm,
2000a) for the modular definition of behavior constraints. The example appli­
cation is a typical e-business application. We study a component-structured ap­
plication which supports a traditional shop and which emerges to an e-business
application of type business-to-business by integration of e-procurement com­
ponents.

2. RELATED WORK

The security problems of the integration of non-trusted components are re­
lated with security of migrating code. With respect to that various approaches
were recently developed in order to protect host computers against attacks by
mobile programs. The methods mainly focus on control flow safety, memory
safety, and stack safety (cf. Kozen, 1999). Besides of isolating security-critical
operations in a protected system kernel (e.g. Bershad et al., 1995) and using
cryptography for the transit of code, code instrumentation gained attraction in
the last years. Here, machine code is altered in a way that critical operations
can be analyzed before or monitored during the execution of the code in order
to detect attacks. An example is software fault isolation (e.g., Wabbe et al.,

198 State-Based Security Policy Enforcement

1993) where non-trusted code is executed and monitored in a safe system part
where it cannot cause damage.

Another code instrumentation-based approach is pursued by (Schneider,
1997), who models policies formally by so-called security automata. More­
over, a security automaton can be used to enforce a policy by simulating it
simultaneously to the execution of the code. The code is only permitted to
perform an execution step if that corresponds to a transition of the automaton.
The automata based enforcement extends the early approach of state dependent
security specifications (cf. Biskup and Eckert, 1994).

Language based security is another kind of code instrumentation. Here,
special security-related information about migrating code is obtained during
parsing or other program analysis'. The user utilizes this information in order
to check the code for compliance with his security policies. An example is
the Java byte code verifier which proves Java byte code for type correctness
and other security-related properties. Another method is proof carrying code
(cf. Kozen, 1999) which enables formal program verification. The program
developer annotates the code with a formal specification (e.g., pre- and post­
conditions of functions or loop invariants) and hands this information over to the
user who proves the code formally. Examples for utilizing proof carrying code
are the touchstone compiler (Necula, 1998) and the efficient code certification
(Kozen, 1998). Moreover, this method was used for more specialized verifica­
tion purposes as type checking (Morrisett et al., 1998; Tarditi et al., 1996) and
information flow analysis (Ferrari et al., 1997; Myers and Liskov, 1998).

Since the information used for code verification is produced by the code
developer, it may be distorted in order to mask malicious code. Thus, one
has to check that the program complies to the additional information used for
verification. Here, the concept of generic software wrappers proves helpful.
In this approach a program is extended by a software checking the code exe­
cution during runtime for security properties. Generic software wrappers are
used with firewalls and intrusion detection (Avolio and Ranum, 1994; Goldberg
et al., 1996; Monroe, 1993). Moreover they can also be applied for protect­
ing component-structured software from malicious system calls (Fraser et al.,
1999).

As our approach, (Khan et al., 2001), extend component contracts by security
aspects. Unlike us, however, they concentrate on the modeling of requirement­
assurancerelationships between components. The model has a relatively simple
structure and does not represent behavioral properties. Thus, it cannot deal with
detailed enforcement policies.

Peter Herrmann, Lars Wiebusch, and Heiko Krumm

Watches

Figure 1. Security Wrapper Architecture

Jan
Steurity

3. SECURITY WRAPPER ARCHITECTURE

199

Security wrappers (Herrmann and Krumm, 2001) are a useful means to en­
force security policies in component-structured software. The interface behav­
ior of non-trusted components is observed and checked for compliance with
the security objectives described in the component contract. Figure 1 depicts
a wrapper implementation (Mallek, 2000) for component-structured systems
based on Java Beans. The system consists of adapters, observers, an adapter
generator, a monitor, the built-in Java Security Manager, and a trust manager.
Each scrutinized bean is wrapped by an adapter component discerning all events
passing the bean interface. Moreover, the adapter may seal the bean by blocking
all events if the bean is regarded malicious.

The compliance checks are performed by observer components. An observer
simulates a formal specification modeling a security objective defined in the
contract of the bean in question. If an adapter discerns an interface event, it
blocks the event temporarily and notifies the observers which check if the event
is in compliance with the specifications. If all observers accept the event, it is
released and forwarded by the adapter. Otherwise, the application administrator
is notified and the adapter blocks the bean.

Adapters are created automatically by the adapter generator which utilizes the
Java inspection mechanism to detect the event structure of a bean. The monitor
acts as the interface to the application administrator. The Java Security Manager
is used to prevent hidden data channels of a wrapped bean by permitting only
events which pass the corresponding adapter.

The trust manager may be used to reduce the monitoring expenditure de­
pending on the experience, other users gained from the bean. It is linked to a

200 State-Based Security Policy Enforcement

trust information service (Herrmann, 2001) which stores trust values (cf. Jjjsang
and K.napskog, 1998) of registered beans according to the amount of positive
resp. negative evaluation reports. In intervals the trust manager retrieves the
current trust values of the observed beans and decides about full observation,
spot checks, or complete removal of the adapters. Moreover, the trust infor­
mation service informs all interested trust managers about reported malicious
behavior. Thus, often a trust manager may cause an adapter to seal a malicious
bean before it does any harm.

4. SECURITY POLICY PATTERNS
A malicious component may easily spoil a component-based application by

performing confidentiality, integrity, availability, or non-repudiation attacks.
With respect to confidentiality the flow of data may be changed in a way that
a data unit is forwarded to a component granting access to humans who are
not allowed to read the data. This threat is particularly relevant in distributed
component -structured systems since the components reside on various network­
connected computers with different user-access policies. Besides of data flow
attacks, confidentiality may be attacked by utilizing hidden channels. The ille­
gally forwarded information is either concealed in transferred data (steganog­
raphy) or in the order, number, or execution time of interface events between
components. Integrity attacks modify application functionality and information
by incorrect component operations, by malicious data base updates, and by ma­
nipulations of application configuration parameters. Attacks on the availability
of components may be performed in two ways: At first, a service provided by
another component is called very often. In consequence, the called component
cannot serve other components anymore (denial-of-service attack). At second,
a component may block a partner temporarily or continuously by refusing to
perform a desired interface action. While waiting for this action, the part­
ner cannot serve other components. Finally, with respect to non-repudiation a
component vendor may later deny that the component has triggered or received
certain interface events.

To protect an application from component attacks, one has to define security
objectives and to enforce corresponding policies. The policies constrain the
component behavior in a way that attacks are either prevented or made more
difficult. To avoid a confidentiality attack, the flow of data between two com­
ponents must be restricted in order to forward data only to components which
prevent reading by not authorized persons. The danger of hidden channels
may be reduced by preventing non-deterministic interface behavior (cf. Zollner
et al., 1998). Therefore a corresponding security policy defines a functional de­
pendency between forwarded data units and previous events to avoid steganog­
raphy. Other policies restrict the order, number, and execution time of events.

Peter Herrmann, Lars Wiebusch, and Heiko Krumm 201

Security policies counteracting integrity attacks restrict the execution of inter­
face events. They constrain arguments of events and apply plausibility checks.
In order to prevent denial-of-service attacks, a protecting security policy may
schedule a minimum waiting time between two service requests. Thus, the
called component gains some time to serve other components. With respect to
blocking other components, a security policy may require that a desired event
is executed within a maximum waiting time. The guarantee of non-repudiation
is difficult since legally binding proofs of event executions are necessary. A
step towards such a proof is the incorporation of an independent trusted third
party providing for a logging service and a security policy enforcing the log­
ging of interface events. Log-entries contain digital signatures identifying the
originating component.

The security wrappers introduced in Sec. 3 can only check the events at
the interface of a component but not the internal attribute settings and internal
events. Therefore, enforceable security policies concentrate on the interface
behavior. Thus, we can define four basic policy patterns which correspond to
the four basic aspects of component interfaces:

• Enabling condition: The enabling of interface events and the argument
values of the events are constrained.

• Enabling history: The enabling conditions of interface events depend
on the context of preceding interface events.

• Minimum waiting time: Interface events may only be executed if some
minimum waiting time periods elapsed since preceding events.

• Maximum waiting time: Interface events have to occur before a maxi­
mum waiting time expired since preceding events.

These four patterns serve as a basis for more specific policy patterns which
are directly devoted to the security objectives listed above. With respect to
confidentiality we use the following patterns:

• Data Bow access: A data unit may only be forwarded to a component if
a corresponding read access permission exists.

• Data Bow history: A data unit may only be forwarded in the context of
certain preceding interface events.

• Hidden channel functional dependency: A forwarded data unit de­
pends on previously transferred data according to a data dependency
function.

• Hidden channel enabling history: The enabling condition of an inter­
face event and its arguments depend on the context of preceding events
according to a occurrence dependency function.

202 State-Based Security Policy Enforcement

• Hidden channel execution time: An interface event has to be executed
after a preceding interface event within a certain time period.

Patterns enforcing integrity security objectives are listed in the sequel:

• Integrity enabling condition: The enabling conditions of interface events
and their arguments are constrained in order to guarantee plausible com­
ponent interaction.

• Integrity enabling history: The enabling conditions of interface events
and their arguments depend on the context of preceding interface events
in order to guarantee plausible component interaction.

Security objectives avoiding the two types of availability attacks are enforced
by the policy patterns listed below:

• Denial-of-service minimum waiting time: An interface event may only
be executed if a minimum waiting time period elapsed since a similar
event was executed.

• Denial-of-service enabling history: The enabling condition of an inter­
face event depends on the context of certain preceding interface events
and additionally on a minimum waiting time period.

• Blocking maximum waiting time: An interface event has to be executed
before a maximum waiting time period expired since a certain preceding
interface event.

• Blocking enabling history: According to the context of certain pre­
ceding interface events an interface event has to be executed before a
maximum waiting time period expired.

In order to support non-repudiati?n we use the following pattern:

• Event logging: A component has to log an executed or received event
together with a unique signature with a trusted third party logging service.

All of these security policies can be modeled formally as state transition sys­
tems. The policy enforcement wrappers (cf. Sec. 3) implement corresponding
state machines by means of state representations and state change operations (
Herrmann and Krumm, 2001). During run-time, the occurrences of component
interface events trigger state changes. Thus, the state machines keep track of
the execution history and the compliance of interface events with the security
policies can be checked.

For the specification of the policies, we used the formal specification tech­
nique cTLA (cf. Herrmann and Krumm, 2000a) which facilitates specifications
of safety, liveness, and real-time (Herrmann and Krumm, 2000b) properties
in a process style similar to high-level programming languages. Furthermore,

Peter Herrmann, Lars Wiebusch, and Heiko Krumm 203

cTLA supports the design of constraint-oriented specifications (cf. Vissers et al.,
1988). Thus, different security policies may be specified and observed sepa­
rately. Moreover, we like to mention that cTLA can additionally be used for
verifying that the combination of the implemented policy enforcements of an
application guarantees abstract application security properties.

We propose, that component vendors add cTLA specifications of suitable se­
curity policies to component contracts. Before incorporating a component into
an application, an application developer may check and extend the proposed
security policies. The detailed policy specifications used in the following e­
requisitionerexamplecan be accessed via WWW (URL: ls4-www.informatik.uni­
dortmund.de/RVS/P-SACS/eReq). The transformation of these cTLA specifi­
cations to implementing Java code has been performed manually since a suitable
cTLA-to-Java compiler is not yet operational.

5. COMPONENT-STRUCTURED E-PROCUREMENT
APPLICATION

To support standardization of electronic procurement (e-procurement) pro­
cedures, the OBI consortium issued a set of specifications for Open Buying
on the Internet (OBI, 1999). According to these specifications the architec­
ture for e-procurement activities consists of a buying organization, a selling
organization, a payment authority, and a requisitioner. In behalf of the buying
organization the requisitioner carries out orders of goods at the selling organi­
zation which are paid by means of the payment authority. The corresponding
OBI business-to-business (B2B) model consists of seven successive steps:

1 The requisitioner asks the buying organization for hyper links to merchant
servers of selling organizations.

2 The requisitioner requests the selling organization to offer tenders for the
desired goods.

3 Each selling organization creates a tender and maps it into an OBI order
request which is compatible to the EDI standard (DISA, 2001) and trans­
fers it to the buying organization either via the requisitioner or directly.

4 Based on the tenders, the requisitioner and possibly other entities of the
buying organization select a winning selling organization and generate
an order.

5 The completed order is formatted as an EDI -compatible OBI order object
and is transferred to the winning selling organization.

6 The selling organization fulfills the order.

7 In behalf of the selling organization the payment authority issues an
invoice to the buying organization and receives a payment.

204

Selling
Organization

State-Based Security Policy Enforcement

Buying Organization

Figure 2. E-Procurement System

Our example system performs the commodity management of fast-food fran­
chise restaurants. It was developed on the basis of the SalesPoint-Framework
(Schmitz, 1999). This framework is non-profit and facilitates the construction
of various shop systems. It supports business functions like buying, selling, or
leasing goods as well as administrative functions like accounting, storekeep­
ing, and management of product catalogs. The framework is implemented in
Java but was originally not component-structured Therefore we adapted the
commodity management system and created three Java Bean-based compo­
nents which realize the sale functions of the restaurant, the management of the
counting stock, and the catalog of offered products.

To enable automated e-procurement of the food and beverages, we created
and added three other components making the restaurant to an OBI buying or­
ganization (cf. Fig. 2). First we extended the OBI specification in order to
integrate automated procurement which in contrast to OBI is not performed
by humans but by an electronic requisitioner component OBI-E-Requisitioner.
Moreover, we added a Directory of Sellers containing the addresses and range
of goods for sale of the selling organizations. Finally, the OBI-Buying Adapter
manages the formatting of tender requests, tenders, and orders according to the
OBI specification and acts as an interface to the selling organization. The com­
position of the six components realizes the buying system. Moreover, a group of
selling systems was developed based on the SalesPoint-Framework. Finally, we
created a trusted third party logging service in order to support non-repudiation
of transactions. Since we are mainly interested in the order process, we omit­
ted the payment authority for the sake of simplicity. The components can
be downloaded from the WWW-project page (URL: ls4-www.informatik.uni­
dortmund.de/RVS/P-SACS/eReq).

Peter Herrmann, Lars Wiebusch, and Heiko Krumm 205

Due to the integration of automated procurement we had to extend OBI by
format definitions for machine-processable tender request messages. Since the
EDI standard (DISA, 2001) does not support tender requests, we encoded tender
requests, tenders, and orders in commercial eXtensible Markup Language (
cXML, 2001). This more modem B2B encoding standard is based on the
popular XML and supports not only purchase orders and tenders but also tender
requests.

The realization of the procurement steps is delineated by the edge labels in
Fig. 2. Since the e-requisitioner manages not only the procurement process
but also the decision, when to order, the procurement starts with a new step 0.
Here, the e-requisitioner inspects the counting stock in intervals. If new goods
are needed, it requests the addresses of selling organizations from the directory
of sellers (step 1). Thereafter tender requests are generated and forwarded to
the selling organizations via the buying adapter (step 2). The sellers react with
tenders which are sent to the buying adapter and delivered to the e-requisitioner
(step 3). In step 4 the e-requisitioner consults the catalog and the counting
stock beans, makes a procurement decision based on the tenders, the stock
volume, and the sale prices, and creates the order objects. Finally, the orders
are sent to the buying adapter which forwards them to the corresponding selling
organizations (step 5). The steps 6 and 7 realizing the payment are omitted. In
order to log the tender requests, incoming tenders, and orders, in the steps 2, 3,
and 5 the requisitioner sends the corresponding log data to the logging service.

6. COMPONENT BEHAVIOR ENFORCEMENT

Since the procurement process is controlled by the electronic requisitioner,
correct and secure execution of this component is crucial for the whole appli­
cation. Malicious behavior of the OBI-E-Requisitioner may lead to various
security violations like forwarding of competitor's tenders to preferred selling
organizations, ordering not from the least expensive seller, hurting the buyer by
too large, too small, resp. too late orders, or repudiation of orders. Assuming
that the e-requisitioner was procured from a possibly not trustworthy company,
we applied the security patterns described in Sec. 4. Under instantiation of
these patterns, a set of suitable policies were designed and described by cTLA
specifications. The cTLA specifications were transformed to Java code which
was integrated into the wrapper of the e-requisitioner component.

Following confidentiality protecting policies are used:

• A tender request contains only articles which, according to the directory
of sellers, are in the range of articles offered by the particular seller (Data
flow access).

• A tender is requested only from sellers contained in the directory of sellers
(Data flow access).

206 State-Based Security Policy Enforcement

• The order amount for an article depends unambiguously from the amount
of the particular article in the stock (Hidden channel functional depen­
dency).

• A tender request and an order may be executed only if the last order was
carried out in the meantime (Hidden channel enabling history).

The first two policies guarantee that information about the portfolio of the
buying organization and the existence of the procurement procedure are only
forwarded to appropriate sellers. The two other security policies make the
use of hidden channels (e. g., for information about competitors' tenders) more
difficult by avoiding non-deterministic interface behavior.

With respect to integrity following policies are used:

• An order may be generated only after a certain minimum number of
tenders were received (Integrity enabling history).

• The requisitioner orders one of the least expensive tenders (Integrity en­
abling history).

• The values in the counting stock, the catalog, the directory of sellers, the
OBI-Buying Adapter, and the logging service are not changed (Integrity
enabling condition ''false" for modifying operations).

• The amount ordered is in an interval between a certain minimum and
maximum (Integrity enabling condition).

The first two security policies guarantee that all selling organizations have a fair
chance to win an order. Attacks against other components are avoided by the
third objective while the last one prevents orders with unreasonable amounts of
an article.

To prevent attacks against the availability of the system, the security policies
below are used:

• Operations of the counting stock, the catalog, the directory of sellers, and
the buying adapter are called only after minimum waiting time intervals
(Denial-of-service minimum waiting time).

• The counting stock is polled within maximum waiting time intervals
(Blocking maximum waiting time).

• If, according to the counting stock, the number of a certain article is low,
a procurement process for this article is started within a maximum time
interval (Blocking enabling history).

• After receiving the threshold number of tenders an order is executed
within a maximum waiting time (Blocking enabling history).

Peter Herrmann, Lars Wiebusch, and Heiko Krumm 207

Denial-of-service attacks against the partner components are prevented by the
first security objective while the other specifications guarantee that orders are
executed timely to avoid cleared stocks.

Finally, to assure that the buying organization can audit requested and in­
coming tenders as well as all orders, the following non-repudiation security
policy is used:

• Tender requests, tender deliveries, and orders are logged at the logging
service (Event logging).

7. CONCLUDING REMARKS

We reported on the use of formal security policy specifications in component
contracts. The compliance of the real behavior with the contracts is enforced
at run-time by means of wrappers. In our e-procurement example the run-time
enforcement causes a performance penalty between 5 and 10%. While this
penalty seems acceptable, it can be reduced by using a trust manager which
controls the amount of observation according to the current trust value, which
is assigned to the component by a trust information service (cf. Herrmann,
2001). Current work concentrates on the development of a component system
security framework which - besides of enforceable policies - additionally
provides patterns for the specification of abstract application security properties.
Moreover, the framework contains proof theorems facilitating the formal proof
that the security properties of an application are fulfilled by its components.

8. REFERENCES
Avolio, F. M. and Ranum, M. J. (1994). A Network Perimeter with Secure External Access. In

Proceedings of the Internet Society Symposium on Network and Distributed System Security,
Glenwood.

Bershad, B., Savage, S., Pardyak, P., Sirer, E. G., Becker, D., Fiuczynski, M., Chambers, C., and
Eggers, S. (1995). Extensibility, safety, and performance in the SPIN operating system. In
Proceedings of the 15th Symposium on Operating System Principles, pages 267-284. ACM.

Beugnard, A., Jezequel, J.-M., Plouzeau, N., and Watkins, D. (1999). Making Components
Contract Aware. IEEE Computer, 32(7):38-45.

Biskup, J. and Eckert, C. (1994). About the enforcement of state dependent security specifica­
tions. In Keefe, T. and Landwehr, C., editors, Database Security, pages 3-17. Elsevier Science
(NorthHolland).

cXML (2001). cXML User's Guide. cXML.org, 1.2.006 edition.
DISA (2001). Xl2 Standard. Data Interchange Standards Association, release 4050 edition.

Ferrari, E., Samarati, P., Bertino, E., and Jajodia, S. (1997). Providing flexibility in information
flow control for object-oriented systems. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 130-140, Oakland.

Fraser, T., Badger, L., and Feldman, M. (1999). Hardening COTS Software with Generic Software
Wrappers. In Proceedings of the 1999 IEEE Symposium on Security and Privacy.

208 State-Based Security Policy Enforcement

Goldberg, I., Wagner, D., Thomas, R., and Brewer, E. (1996). A Secure Environment for Un­
trusted Helper Applications. In Proceedings of the 6th USENIX Security Symposium.

Herrmann, P. (2001). Trust-Based Procurement Support for Software Components. In Proceed­
ings of the 4th International Conference on Electronic Commerce Research (ICECR -4), pages
505-514, Dallas. ATSMA, IFIP.

Herrmann, P. and Krumm, H. (2000a). A Framework for Modeling Transfer Protocols. Computer
Networks, 34(2):317-337.

Herrmann, P. and Krumm, H. (2000b). A Framework for the Hazard Analysis of Chemical Plants.
In Proceedings of the II th IEEE International Symposium on Computer-Aided Control System
Design (CACSD2000), pages 35-41, Anchorage. IEEE CSS, Omnipress.

Herrmann, P. and Krumm, H. (2001). Trust-adapted enforcement of security policies in dis­
tributed component-structured applications. In Proceedings of the 6th IEEE Symposium on
Computers and Communications, pages 2-8, Hammamet. IEEE Computer Society Press.

Jjijsang, A. and Knapskog, S. J. (1998). A metric for trusted systems. In Proceedings of the 21st
National Security Conference. NSA.

Khan, K., Han, J., and Zheng, Y. (2001). A Framework for an Active Interface to Characterise
Compositional Security Contracts of Software Components. In Proceedings of the Australian
Software Engineering Conference (ASWEC'Ol), pages 117-126, Canberra. IEEE Computer
Society Press.

Kozen, D. (1998). Efficient code certification. Technical Report 98-1661, Computer Science
Department, Cornell University.

Kozen, D. (1999). Language-Based Security. In Kutylowski, M., Pacholski, L., and Wierzbicki,
T., editors, Proceedings of the Conference on Mathematical Foundations of Computer Science
(MFCS'99), Lecture Notes in Computer Science 1672, pages 284-298. Springer-Verlag.

Mallek, A. (2000). Sicherheitkomponentenstrukturierterverteilter Systeme: Vertrauensabhangige
Komponenteni.iberwachung (in German). Diploma Thesis, UniversiUit Dortmund, Informatik
IV, D-44221 Dortmund.

Monroe, M.A. (1993). Security Tool Review: TCPWrappers. ;login:, 18(6):15-16.
Morrisett, G., Walker, D., Crary, K., and Glew, N. (1998). From System F to typed assembly

language. In Proceedings of the 25th ACM SIGPLAN/SIGACT Symposium on Principles of
Programming Languages, pages 85-97, San Diego.

Myers, A. C. and Liskov, B. (1998). Complete, Safe Information with Decentralized Labels. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 186-197, Oakland.

Necula, G. C. (1998). Compiling with proofs. PhD thesis, Carnegie Mellon University.

OBI (1999). OBI Technical Specifications- Open Buying on the Internet. OBI Consortium,
draft release v2.1 edition.

Schmitz, L. (1999). The SalesPoint Framework- Technical Overview. WWW: ist. unibw­
muenchen.de/Lectures/SalesPoint/overview/english/TechDoc.htm.

Schneider, F. B. (1997). Towards fault-tolerant and secure agentry. In Proceedings of the 11th
International Workshop on Distributed Algorithms (WDAG '97), Lecture Notes in Computer
Science 1320, pages 1-14. ACM SIGPLAN, Springer-Verlag.

Szyperski, C. (1997). Component Software- Beyond Object Oriented Programming. Addison­
Wesley Longman.

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., and Lee, P. (1996). TIL: A type­
directed optimizing compiler for ML. In Proceedings of the Conference on Programming
Language Design and Implementation. ACM SIGPLAN.

Peter Herrmann, Lars Wiebusch, and Heiko Krumm 209

Vissers, C. A., Scollo, G., and van Sinderen, M. (1988). Architecture and specification style in
formal descriptions of distributed systems. In Agarwal, S. and Sabnani, K., editors, Protocol
Specification, Testing and Verification, volume VIII, pages 189-204, Elsevier. IFIP.

Wabbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. (1993). Efficient software-based
fault isolation. In Proceedings of the 14th Symposium on Operating System Principles, pages
203-216. ACM.

Zollner, J., Federrath, H., Klimant, H., Pfitzmann, A., Piotraschke, R., Westfeld, A., Wicke, G.,
and Wolf, G. (1998). Modeling the security of steganographic systems. In Proceedings of the
2nd Workshop of Information Hiding, LNCS 1525, pages 345-355, Portland. Springer-Verlag.

	13
State-Based Security PolicyEnforcement in ComponentBasedE-Commerce Applications
	1. INTRODUCTION
	2. RELATED WORK
	3. SECURITY WRAPPER ARCHITECTURE
	4. SECURITY POLICY PATTERNS
	5. COMPONENT-STRUCTURED E-PROCUREMENTAPPLICATION
	6. COMPONENT BEHAVIOR ENFORCEMENT
	7. CONCLUDING REMARKS
	8. REFERENCES

