GENERATION OF WEB APPLICATIONS
FROM ANNOTATION-BASED
DEFINITIONS

Kazuhiro Asami and Takehiro Tokuda
Department of Computer Science

Tokyo Institute of Technology

Meguro, Tokyo 152-8552, Japan

{asami, tokuda } @tt.cs.titech.ac.jp

Abstract Construction of Web applications usually requires much knowledge about pro-
tocols, programming languages and databases. We present a new method for
generation of Web applications. We first construct HTML page templates for
intended Web applications. Then we give annotations to these HTML page tem-
plates. Annotations are for session management, input data checking, database
handling and communications with external programs. From HTML page tem-
plates with annotations, we automatically generate CGI-based Web applications.

Our method is simple but general enough to describe typical Web applica-
tions such as guest book systems, room booking systems, shopping cart sys-
tems, glossary systems and user registration systems. Without using detailed
knowledge of Web programming, anybody who understands HTML, constraint
expressions, SQL, SOAP and XSLT can easily develop Web applications.

Keywords: Web Applications, Annotations, Software Generators

1. Introduction

Construction of Web applications, such as online shopping systems, database
query systems, and reservation systems, usually requires detailed knowledge
about HTTP, HTML, SQL, CGI, Servlet (1), PHP (2), JSP (1), and ASP (3)
as well as procedural programming languages such as Perl, C, Java, and VB-
Script. Also we must manually write extra codes for the check of input values
and consistency of the session.

We present a new method for generation of Web applications as follows.

1 We first construct HTML page templates for intended Web applications.
We give annotations to these HTML page templates. Annotations are

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35614-3_21
C. Rolland et al. (eds.), Engineering //{ﬂ);‘;//zzr//)// Systems in the Internet Context

© IFIP International Federation for Information Processing 2002

http://dx.doi.org/10.1007/978-0-387-35614-3_21

70 Kazuhiro Asami and Takehiro Tokuda

[start | [HTML page templates | [D-Web source files | [Web applications]

<Web page composer D-Web system

1 Create HTML page 2 (a) Annotate HTML 3 Generate Web applica-
templates using ordinary page templates to define tions by D-Web system
Web page composers processing of intended automatically

Web applications using
our annotation editor

(b) Convert annotated
Web page templates to
D-Web source files by
our annotation editor
automatically

Figure 1. Flow of development of Web applications in our approach

for session management, input data checking, database handling, and
communications with external programs.

2 Annotations for session management, input data checking, and database
handling enable us to construct most typical Web applications we need
everyday. Annotations for communications with external programs en-
able us to construct other types of Web applications which require exist-
ing programs handling complex logic.

3 From HTML page templates with annotations, we automatically gen-
erate CGl-based Web applications using a Web application generator
called D-Web system (4). Extra codes for security and session manage-
ment are also generated automatically.

Our flow of development of Web applications is shown in Figure 1.

Our method is simple but general enough to describe typical Web applica-
tions such as guest book systems, room booking systems, shopping cart sys-
tems, glossary systems, and user registration systems. Without using detailed
knowledge about Web programming, anybody who understands HTML, con-
straint expressions, and SQL or who understands HTML, constraint expres-
sions, SQL, SOAP (5), and XSLT (6) can easily construct these standard Web
applications or advanced Web applications respectively.

The organisation of the rest of the paper is as follows. In Section 2, we
describe our annotation-based definitions of Web applications. In Section 3,
we describe a generation method of Web applications from our definitions. In
Section 4, we compare our approach with related work. In Section 5, we give
our conclusion.

Generation of Web Applications from Annotation-Based 71
Definitions

2. Annotation-based definitions of Web
applications

In our approach, HTML page templates are created using Web page com-
posers and then the HTML page templates are annotated using a special anno-
tation editor. We describe HTML page templates and annotations below.

HTML page templates. HTML page templates are HTML pages in-
cluding special strings which are dynamically replaced by certain values. The
HTML page templates are grammatically same as HTML pages. The HTML
page templates can be created using ordinary Web page composers. Special
strings are strings which begin and end with characters “$” or “#” like “$vari-
ableName$” and “#fieldName#’. Special strings which begin and end with
“$” are replaced by input values of form controls or developer-defined val-
ues. Special strings which begin and end with “#” are replaced by values of
fields of tables in databases. Figure 2 shows examples of HTML page tem-
plates. This figure shows a user registration system. In this figure, the system
is represented by a diagram whose nodes are HTML page templates and whose
arrows are transitions between pages. In the page named Top of this system,
users input names, PIN numbers, ZIP codes and so on. In the page named
Complement, this system complements user’s prefecture, city and town using
an external program of ZIP code search and users complete their addresses. In
the page named Register, this system register users’ informations to a database
table. If users’ input strings are wrong, the page named Error is shown in their
Web browsers.

Annotations. In our approach, annotations are definitions of processing
of Web applications. We introduce five types of annotations: session, input
check, constraint, SQL., and SOAP. Table 1 shows the meanings of each an-
notation. To annotate HTML page templates, we use a special annotation edi-
tor. Our annotation editor is implemented as one of Web applications. To use
our annotation editor, we upload HTML page templates to our annotation edi-
tor. Our annotation editor embeds hyperlinks in each HTML page template to
Web pages where annotations are defined. We annotate HTML page templates
by following the embedded hyperlinks and by inputting items of annotations.
Figure 3a and Figure 3a show screen shots of our annotation editor. Figure 3a
shows the HTML page template named Top in which hyperlinks are embed-
ded. Figure 3a shows the Web page of an input check annotation for the input
field of PIN numbers. For our user registration system, we use a number of
annotations to define processing. In Top page, we have a session annotation,
seven input check annotations for each input field and a constraint annotation
whose expression is “pin eq $reenter Pin$” for checking sameness of PIN

72 Kazuhiro Asami and Takehiro Tokuda
Register
Registration is completed.
Top ey Rt
[Please input following items.. o " e 2
o p— e
(PO — PSS Sl volF Wiross,
o ——— g
: o Cavgcnt
11— Townbiowd.
ZeCode o s e
Prons Nusber [T
Sukall I
HREROIAE

Error | Your input has some errors.

Figure 2. HTML page templates of a user registration system

Table 1. Meanings of annotations

Annotation

Meaning

Session
Input check

Constraint

SQL
SOAP

Session management.

Definitions of valid input strings sent from form controls using con-
straints on length of input strings and regular expressions including
repeting operators such as +, * and ?, selecting operator(]) and char-
acter class operator(f]).

Relations among input values sent from form controls. Relations are
represented by Boolean expressions including a number of arithmetic
operators, logical operators, comparative operators and predicates re-
garding database tables.

Queries to database tables using SQL.

Communications with external programs representing business logic
using SOAP envelopes and transformations of results into HTML us-
ing XPATH (6) or XSLT.

and Re-enter PIN. In this case. In Complement page, we have a session anno-
tation, an input check annotation and a communication annotation for search
of ZIP codes. In Register page, we have a session annotation and an SQL
annotation to register user informations to a database table using an INSERT

statement of SQL. In Error page, we have a session annotation.

Generation of Web Applications from Annotation-Based 73
Definitions

10 x|
mmv S5O ATV ARANE VA uw =
e R L 2] %’J:i!.si

B B

Annotation{Session]

ApnotetionfSOL & SOAP] :

Please input following items.

Annstation[Conatraint] voot Cha [alolx
740 n@ RTW BRA® »

me: [am;ummmsl
ek $:2 000 BB I

Last Nacna: (___mﬂm.ﬂﬁﬂ

JInput Gheck Annotaiton
Gender; Mok ~ Fomale : _

-]
Figure 3a. Screen shot of our annota- Figure 3b. Screen shot of our annota-
tion editor: HTML page template with em- tion editor: Web page for input check an-
bedded hyperlinks notations
3. Generation of Web applications

We present how to generate Web applications from our annotation-based
definitions. Our generation method of Web applications consists of the follow-
ing two steps:

1 Conversion of annotated HTML pages to source files for a Web applica-
tion generator system called D-Web system

2 Generation of Web applications from D-Web source files

D-Web system is a Web application generator system which generates Web
applications from definitions consisting of HTML, constraints, SQL, and com-
munications with external programs. Views and user interfaces of Web appli-
cations are defined using HTML. Constraints define validness of values which
users input. SQL statements define transactions with databases. Communi-
cations with external programs are defined using SOAP envelopes. Using D-
Web system, Web applications are easily generated. The current version of
D-Web system generates HTML template files and CGI programs written in

74 Kazuhiro Asami and Takehiro Tokuda

Perl. D-Web system can generate secure Web applications in the meaning that
users’ input values are checked. Without checks of input values, Web applica-
tions may be downed by malicious users (7). D-Web system can automatically
generate codes for session management and consistency management. In D-
Web system, consistency management is to avoid mismatches of HTML pages
shown in users’ Web browsers and states of sessions. These mismatches may
occur when users make use of Web browsers’ back buttons. D-Web source
files, input of D-Web system, are HTML files including a number of extended
tags. Session management, constraints, SQL statements, and communications
with external programs are defined by the extended tags. We show an example
of D-Web source files in Figure 4.
We describe the two steps of generation in Section 3.1 and Section 3.2.

3.1. Conversion of annotated HTML pages to
D-Web source files

Annotated HTML page templates need to be converted to use D-Web system
for generation of Web applications. The conversion is done by our annotation
editor using the following rules:

1 Session annotations
Session annotations are converted into D-Web extended tags <session>.

2 Input check annotations
Input check annotations are converted into D-Web extended attributes
“domain” and “error”, and the attributes are appended to input fields
which the annotations correspond to.

3 Constraint annotations
Constraint annotations are converted into D-Web extended tags
<constraint>. The form elements which the annotations correspond to
include the tags <constraint>.

4 SQL annotations
If SQL statements are SELECT statements, SQL annotations are con-
verted into both of D-Web extended tags, <sql> and <sqlfor>. Other-
wise, annotations are converted into D-Web extended tags <sql>. Ex-
tended tags <sql> define SQL statements. Extended tags <sqlfor> de-
fine templates to list up all rows of the results of database queries.

5 SOAP annotations
The annotations are converted into D-Web extended tags <soap> and
<set>. Extended tags <soap> define SOAP envelopes and XSLT. Ex-
tended tags <set> define mappings of SOAP results and special strings.

Generation of Web Applications from Annotation-Based
Definitions

75

We show an example of D-Web source files in Figure 4. This source file is
generated from the annotated HTML page template named Complement. Ex-
tended tags added by our annotation editor are indicated using boldface. Fig-
ure 5 shows an example of SOAP envelopes. This SOAP envelope represents
search of addresses from ZIP codes. This SOAP envelope is referred by the
extended tag <soap> in the annotated HTML page template named Comple-

ment.

<html>
<head>
<title>User Registration(2/3) </title >
<session type="check” />
</head>
<body>
<soap envelope="getZIPInfoByZipcode.soap”
url="http://hostname.domain/soap/serviet/rpcrouter” >
<set name="prefecture”
xpath="/Envelope/Body/getZIPInfoByZipcodeResponse/return/item/prefname” />
<set name="city”
xpath="/Envelope/Body/getZIPInfoByZipcodeResponse/return/item/cityname” />
<set name="town”
xpath="/Envelope/Body/getZIPInfoByZipcodeResponse/return/item/townname” />
</soap>
<h2>Please complete your address.</h2>
<form action="register.html” >
<p>Zip Code: zip<input type="hidden” name="zip” value="zip” /></p>
<p>Prefecture: $prefecture$
<input type="hidden”” name="prefecture” value="$prefecture$” /> </p>
<p>City: $city$<input type="hidden” name="city” value="$city$” /> </p>
<p>Town: $town$<input type="hidden” name="town” value="$town$” /> </p>
<p>Address: <input type="text” name="address”
domain="/.*/$$.length(1, 100}’ error="error.html”’ /></p>
<p><input type="submit” value="Register” />
<input type="hidden” name="firstName” value="$firstName$” />
<input type="hidden” name="lastName” value=""$lastName$” />
<input type="hidden” name="gender” value=""$gender$” />
<input type="hidden” name="birthDate” value="$birthDate$” />
<input type="hidden” name="pin” value="pin” />
<input type="hidden” name="zip” value="zip" />
<input type="hidden” name="prefecture” value="$prefecture$” />
<input type="hidden” name="city” value="$city$” />
<input type="hidden” name="town” value="$town$” />
<input type="hidden” name="phone” value="$phone$” />
</p>
</form>
</body>
</html>

Figure 4. Example of D-Web source files

76 Kazuhiro Asami and Takehiro Tokuda

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance”
xmlns:xsd="http://www.w3.0org/1999/XMLSchema” >
<SOAP-ENV:Body >
<nsl:getZIPInfoByZipcode xmlns:ns1="urn:zipsearch-service”
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”’ >
<zipcode xsi:type="xsd:string” >1528552</zipcode >
</nsl:getZIPInfoByZipcode>
</SOAP-ENV:Body >
</SOAP-ENV:Envelope>

Figure 5. Example of SOAP envelopes(getZIPInfoByZipcode.soap)

3.2. Generation of Web applications from
D-Web source files

D-Web system generates Web applications from HTML files including a
number of D-Web extended tags. CGI programs generated by D-Web system
consist of the following four parts in the order of execution:

1 Check that constraints are satisfied
2 Manage sessions and consistency
3 Execute SQL statements and Communicate with external programs.
4 Output HTML pages
Check that constraints are satisfied. Codes for checking that con-

straints are satisfied are generated using specified constraint expressions. For
all specified constraint expressions, D-Web system generates codes as follows:

if (!(specified_constraint expression)) {
goto output specified error page,
}

Manage sessions and consistency. CGI programs generated by D-
Web system manage sessions and consistency using hidden controls, input el-
ements whose attributes “type” are “hidden”. To manage sessions, we use
session IDs to identify which session HTTP requests belong to. D-Web system
generates codes for session management as follows:

1 Add hidden controls whose names are “_sessionld” to form elements.
Generate codes to embed each user’s session ID to the added hidden
controls.

Generation of Web Applications from Annotation-Based 77
Definitions

2 Generate codes for creation of unique session IDs and management of
the created session IDs using a database table for session management.

3 Generate codes to check users have valid session IDs.

To manage consistency, reexecution of CGI programs from HTML pages
before the last side effects to databases occur is avoided. We give unique num-
bers to all output HTML pages and embed the numbers in each output HTML
page using hidden controls. Pairs of the numbers where the last side effects
occur and session IDs are stored in a database table. By comparison of the
numbers sent from Web browsers and the numbers in the database table, we
can detect inconsistency.

Execute SQL statements. We can generate codes for execution of
SQL statements using database drivers. Generated codes written in Perl using
a database connection module DBI are as follows:

use DBI,
$dbh = DBI—>connect(’dbi:$databaseType:”
. "host=$host
. ’dbname=$dbname”, $userName);
$sth = $dbh— >prepare($sqlStatement);
$result = $sth—>execute();
$dbh—>disconnect();

Communicate with external programs. D-Web system are given
SOAP envelopes from definitions of Web applications. We can communicate
with external programs by sending the SOAP envelopes just as they are to
SOAP servers.

Output HTML pages. Output HTML pages are defined by HTML
page templates. Output HTML pages are quite same as HTML page templates
except for special strings and templates to list the results of SELECT state-
ments. Special strings are replaced by the actual values. Templates to list the
results of SELECT statements are implemented using “for” statements as fol-
lows:

for ($i =0; $i < $result— >ntuples; $i++) {
$replaced_template =
replace_special string to actual -values(
$template, $result— >get_row($i));
output($replaced template);

}

78 Kazuhiro Asami and Takehiro Tokuda

4. Comparison

Among many approaches to Web application construction, we give compar-
ison with four approaches.

A method for development of Web applications is to write processing pro-
grams manually (with certain level of automated facilities) and to create HTML
pages using Web page composers. To write processing programs, developers
need detailed knowledge about programming languages and Web program-
ming. In our approach, we need only five types of knowledge at most. For
construction of most typical Web applications, we need only three types of
knowledge.

OpenZOLAR (8) is a system which interprets and executes extended HTML
files as a CGI program. The extended HTML called ZHTML includes a num-
ber of extended tags to query databases and to evaluate expressions. ZHTML
does not provide easy methods to manage sessions and to check input values.
In session management, developers have to implement it using a number of the
extended tags. In checking input values, developers have to implement it as
queries to databases which handle matching regular expressions. If available
databases do not handle regular expressions, input values can not be checked.
On the other hand, our system has annotations to manage sessions and to check
input values using constraints. Using our system, we can develop Web appli-
cations which manage sessions and check input values easily. In defining Web
applications, OpenZOLAR has no visual tool to create ZHTML files. The
extended tags of ZHTML are embedded in HTML files using ordinary text ed-
itors. In our approach, we can visually define processing of Web applications
using our annotation editor.

Microsoft FrontPage (9) is a tool to develop Web applications. FrontPage
handles Web page composition, form field validation and transaction with
databases. FrontPage allows us to define valid strings to input in each form
field by specifying types of characters such as alphabets, digits or symbols.
Form fields may require strings in certain formats such as phone numbers or
E-mail addresses. Using FrontPage, it is difficult to define Web applications
which validate these strings. On the other hand, our input check annotations
are defined using regular expressions. We can easily define Web applications
which validate these strings. FrontPage can generate Web applications which
transact with databases. Web applications generated by FrontPage need spe-
cial programs called FrontPage Server Extensions on Web servers. Web appli-
cations generated by our system run on any Web servers which handle CGI.
FrontPage does not provide an easy method to manage sessions. Our method
is easy to handle session management using session annotations.

JSP handles extended HTML files in which programs written in Java are
embedded. Developers need procedural programming to handle business logic.

Generation of Web Applications from Annotation-Based 79
Definitions

And JSP needs special programs called Servlet engines on Web servers. In our
approach, we can handle business logic without procedural programming by
using SOAP services. Web applications generated by our system run on any
Web servers which handle CGI.

5. Conclusion

We presented annotation-based definitions of Web applications and a method
for generation of Web applications from these definitions. We defined Web ap-
plications by HTML page templates with annotations. HTML page templates
define views and user interfaces of Web applications. Annotations define pro-
cessing of Web applications. Web applications are automatically generated
from annotated HTML page templates using our annotation editor and D-Web
system. Using our approach, we can define Web applications without knowl-
edge of detailed implementation methods or procedural programming.

The annotation editor and D-Web system are currently in the final stage of
implementation. We can generate Web applications from our annotation-based
definitions which consist of a subset of our features. In our approach, we
use two tools, Web page composers and our annotation editor, to define Web
applications. By combining Web page composer with our annotation editor,
we could define Web applications more efficiently.

Our annotation-based definitions are independent of implementation archi-
tecture such as CGI, JSP/Servlet and ASP. We plan to implement another sys-
tems which generates JSP/Servlet or ASP from same definitions for current
CGI version of our system.

References

M. Hall. Core Serviets and JavaServer Pages (JSP). (Prentice Hall PTR, 2000).

L. Atkinson. Core PHP Programming: Using PHP to Build Dynamic Web Sites. (Prentice Hall
PTR, 2000).

A. Homer, D. Sussman, B. Francis et al. Professional Active Server Pages 3.0. (Wrox Press,
1999).

K. Asami, and T. Tokuda. Generation of Web Applications from HTML Page Templates with
Annotations. Proceedings of the IASTED International Conference, APPLIED INFORMAT-
ICS, pp.295-300, 2002, Austria.

K. Scribner and M. C. Stiver. Understanding SOAP: The Authoritative Solution. (Sams, 2000).

D. Martin, M. Birbeck, M. Kay et al. Professional XML. (Wrox Press, 2000).

L. D. Stein. Web Security: A Step-by-Step Reference Guide. (Addison-Wesley Pub. Co., 1998).

International System Research Inc. The OpenZOLAR project.
http://www.isr.co.jp/openzolar/

J. Buyens. Microsoft FrontPage Version 2002 Inside Out. (Microsoft Press, 2001).

	GENERATION OF WEB APPLICATIONSFROM ANNOTATION-BASEDDEFINITIONS
	1. Introduction
	2. Annotation-based definitions of Webapplications
	3. Generation of Web applications
	3.1. Conversion of annotated HTML pages toD-Web source files
	3.2. Generation of Web applications fromD-Web source files
	4. Comparison
	5. Conclusion
	References

