
Optimized Querying of
Integrated Data over the Web

Andrea Call and Diego Calvanese
Dipartimento di Informatica e Sistemistica

Universitd di Roma "La Sapienza"

Via Salaria 113, 1-00198 Roma, Italy

lastname@dis.uniroma1.it

Abstract: Information Integration is the problem of providing a uniform access to multiple
and heterogeneous data sources. The most common approach to this task, called
global-as-view, consists in providing a global schema of the data, in which each
relation is defined as a view over a set of data sources. Recent works deal with
this problem in the case of limited source capabilities, where, in general, sources
can only be accessed respecting certain binding patterns for their attributes. In
this case, computing the answer to a user query over the global schema cannot
be done by simply substituting the concepts appearing in the query with their
definitions. Instead, it may require the evaluation of a suitable recursive Datalog
program.

In this paper we study the evaluation of conjunctive queries in the global-as­
view approach with limited source capabilities. We first present an algorithm for
optimizing query answering which takes into account the structure of the query
together with the binding patterns in order to compute an optimized query plan.
The optimization allows for excluding from the query plan the sources that are
not relevant for the answer. We then study online optimization of query answer­
ing by taking into account full inclusion and functional dependencies between
sources. Such an optimization, at a certain step of the answering process, uses
the dependencies together with the data retrieved so far to avoid unnecessary
accesses to the sources.

Keywords: Data integration, global-as-view, query planning

1. INTRODUCTION
Information Integration is the problem of combining data residing at differ­

ent, heterogeneous sources, by providing the user with a uniform access to the
data (Hull, 1997). The integration system provides an integrated, reconciled
view of the data, usually called global schema, in terms of which user queries
are formulated. Thus the user is freed from the knowledge on where the data

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35614-3_21

© IFIP International Federation for Information Processing 2002
C. Rolland et al. (eds.), Engineering Information Systems in the Internet Context

http://dx.doi.org/10.1007/978-0-387-35614-3_21

286 Andrea Call and Diego Calvanese

are, how data are structured at the sources, and how the sources have to be
accessed.

To specify the relation between the (materialized) data sources and the (vir­
tual) global schema, two basic approaches have been used, called Global­
as- View (GAV) and Local-as-View (LAV)) respectively (Ullman, 1997; Levy,
1999; Chawathe et aI., 1994; Hull and Zhou, 1996; Abiteboul and Duschka,
1998; Levy et aI., 1995). In the GAV approach, the global schema is expressed
in terms of the data sources, by associating to every relation of the mediated
schema, a view over the data sources specifying its meaning in terms of the
data at the sources. In the LAV approach, the global schema is specified in­
dependently from the sources, and each source is defined as a view over the
global schema.

When a user query is posed, the data integration system constructs a query
plan with which sources are accessed; then the answers are assembled together
in order to issue the final answer to the user. In the GAV approach the gener­
ation of the query plan is generally considered simple because usually it can
be performed by unfolding the original query by replacing each global relation
with the corresponding view (Ullman, 1997).

Information integration has typically been addressed in the relational set­
ting, which is the one we consider in our paper. We assume that non-relational
data sources are accessed via special programs, called wrappers, that export a
relational view of the data.

A prominent application field for information integration is the integration
of data over the Web (Florescu et aI., 1998). Often in that context, no direct
access to the underlying database is provided. Data are accessible only via
forms, where typically certain fields are required to be filled in by the user
in order to obtain a result. Limitations on how sources can be accessed sig­
nificantly complicate query processing (Rajaraman et aI., 1995; Li and Chang,
2000; Florescu et aI., 1999; Duschka and Levy, 1997), since in this case simply
unfolding the global relations in the query with their definitions is in general
not sufficient. As shown in (Rajaraman et aI., 1995; Li and Chang, 2000; Li
and Chang, 2001), query answering in the presence of limited access patterns
in general requires the evaluation of a recursive query plan, which can be suit­
ably expressed in Datalog.

Since source accesses are costly, an important issue is how to minimize
the number of accesses to the sources while still being guaranteed to obtain
all possible answers to a query. (Li and Chang, 2000; Li and Chang, 2001)
discuss several optimizations that can be made at compile time, during query
plan generation. However, the presented techniques are not applicable in the
case where user queries and view definitions are arbitrary conjunctive queries.

Moreover, an important point that has not been addressed before, is whether
one can optimize query-plans at run-time, possibly exploiting additional in-

Optimized Querying of Integrated Data over the Web 287

formation available about the sources. Indeed, by exploiting knowledge about
integrity constraints present on the sources, one may detect during query evalu­
ation that a certain access to a source is useless, in the sense that it may provide
only answers that are already known from previous accesses. Relevant classes
of integrity constraints that may be considered are functional dependencies
and full inclusion dependencies (see, e.g., (Abiteboul et aI., 1995), Chapters 8
and 9).

In this paper we address the problem of query plan optimization for sources
with limited capabilities from various points of view. In particular we obtain
the following results:

1 We propose a technique to optimize a query plan at the time of its gener­
ation. Such an optimization technique exploits the knowledge about the
structure of the query and the binding patterns of the sources to compute
a query plan which eliminates dependencies between sources and thus
avoids unnecessary accesses which may be performed at query plan ex­
ecution time. Moreover, it allows to exclude from the query plan those
sources that cannot contribute to the result of the query. The technique
is applicable in the case where both user queries and view definitions are
given in terms of conjunctive queries (CQs).

2 We address the problem of run-time query plan optimization in the case
where both the queries defining relations in the global schema and the
user query are conjunctive queries, and constraints over sources are as­
serted. We model such constraints by means of functional and full inclu­
sion dependencies, and we show that the implication problem for such
dependencies is decidable in polynomial time. We present a necessary
and sufficient condition to determine, given the dependencies, whether
during query evaluation a given source has to be accessed or not.

After having constructed an efficient query plan by result (1), by result (2)
we can derive all possible full inclusion and functional dependencies that hold
for a set of sources, and exploit such dependencies for run-time query plan
optimizati on.

The rest of the paper is organized as follows. In Section 2 we present the
technical preliminaries. In Section 3 we present a technique to construct an
optimized query plan for query answering. In Section 4 we discuss implication
of functional and full inclusion dependencies. In Section 5 we present the
condition for minimizing run-time source accesses and prove its correctness
and completeness. Finally, in Section 6 we conclude the paper.

288 Andrea Call and Diego Calvanese

2. PRELIMIN ARIES
We present the formal framework in which we address query optimization.

We address information integration in the global-as-view (GAV) approach,
where sources have access limitations, and both the queries establishing the
mapping between relations in the global schema and the sources and the user
query are conjunctive queries (CQs). A conjunctive query q of arity n over a
set R of relations is written in the form

where conj(XI , ... , X n , Yl, ... , Ym) is a conjunction of atoms involving
the variables X I, ... , X n , YI , ... , Y m and constants, and the predicate sym-
bols of the atoms are in R. We assume that the query is safe, i.e., that each
variable Xj appears in at least one atom in conj.

Given a database DB, the answer qDB of q over DB is the set of tuples
(CI, ... , cn) of constants in DB such that there are constants dl , ... , dm in
DB, such that each atom in conj(cl, ... , Cn, d l , ... , dm) holds in DB.

To each attribute in a relation we associate a domain, which specifies the
legal values for that attribute. Instead of using concrete domains, such as In­
teger or String, we deal with abstract domains, which have an underlying
concrete domain, but represent information at a higher level of abstraction,
which is needed to distinguish, e.g., strings representing person names from
strings representing plate numbers.

Formally, we have:

• a set S of relational sources, each with an associated arity, a tuple of
abstract domains, and a binding pattern. The binding pattern specifies
which subset of the attributes of the relation must be bound by a constant
in order to query the source. In the examples we underline the abstract
domains in the positions of the source attributes that must be bound.

• a set g of global relations, each with an associated query, which is a CQ
over S;

• a user query, which is a CQ over g.

The actual data are stored in the sources, whereas the relations in the global
schema are not materialized. The user query is specified over the global
schema, and in order to answer it, one has to compute a query plan specifying
how to access the sources.

In the case where the sources do not have access limitation, computing the
query plan in the GAV approach amounts to a simple unfolding of the global
relations in the query with their definitions. This is shown in the following
example, adapted from (Levy, 1999).

Optimized Querying of Integrated Data over the Web 289

Example 1 Suppose we have two sources without access limita­
tions: 51(Title, Year, Artist), which stores data about songs, and
52 (A rtist , Nation), which stores artists with their nationality. Let the
global view be defined as follows:

The query

50ng(T, Y, A) <-- 51 (T, Y, A)
italian(A) <-- 52(A, italian)

q(T) <-- 50ng(T, 1998, A), italian(A)

asking for titles of songs produced in year 1998 and interpreted by an Italian
artist, after unfolding becomes

q'(T) <-- 51(T, 1998,A), 52(A,italian)

•
In the presence of access limitations on the sources, simple unfolding is in

general not sufficient to extract all obtainable answers from the sources, as
shown by the following example.

Example 2 Consider again Example 1, with the same sources redefined with
access limitations: 51 (Title, Year, Artist) and 52 (Artist, Nation). In this
case, given the same user query q, the unfolded query q' cannot be imme­
diately evaluated over the sources, since S2 requires the first attribute to be
bound to a constant. Therefore, simple unfolding produces an empty answer
to q, for any extension of the source relations. However, we could use artist
names extracted from S1 to access S2 an extract tuples that may contribute to
the answer. •

Given a query over the data sources, an algorithm exists (Li and Chang,
2000) that retrieves all the obtainable tuples in the answer to the query. Such
an algorithm consists in the evaluation of a suitable Datalog program which
extracts all obtainable tuples starting from a set of initial values. The Datalog
program is constructed by first unfolding the query in the traditional way, and
then encoding in Datalog clauses the limitations on the sources that must be
respected during evaluation of the query. The evaluation of the Datalog pro­
gram is done as follows: starting from the initial values in the query, we access
all the sources we can, according to their binding patterns. With the new tu­
ples obtained (if any), we obtain new values with which to access the sources
again, getting from them new tuples, and so on, until we have no way of do­
ing accesses with new constants. The program extracts all tuples obtainable
while respecting the binding patterns, but there may be tuples in the sources
that cannot be retrieved.

290 Andrea Call and Diego Calvanese

3. QUERY PLANNING
Given an unfolded query q over a set of sources S, we want to construct a

query plan which allows us to retrieve all obtainable answers to q. We present
now a technique which allows us to determine which subset of the sources in
S is not relevant for q and to minimize the number of accesses to the relevant
sources. On the basis of this optimization, we provide a query plan that pro­
vides the best set of answers to the query q. This problem has already been
addressed in the case of a subclass of the class of conjunctive queries (Li and
Chang, 2000); the improvements provided by our approach are the following:

• our optimization technique considers user queries and queries in the
mapping to be in the full class of conjunctive queries;

• our technique for determining the relevant sources to a query is refined
by exploiting the knowledge about the structure of the query.

In particular, we observe that, having extracted a number of values at a cer­
tain point of the query answering process, and given a source 8 to be accessed
using the values extracted so far as bindings, not all the possible accesses to 8

are necessary in order to calculate the answer to the query. This is illustrated
in the following example.

Example 3 Let S = {81' 82,83} with

81(A,B)
82(B, C)
83(C,B)

For simplicity, suppose we have a distinct abstract domain for each attribute
name. Consider the following unfolded query:

We easily observe that it is not useful to use the values obtained from 82 to
access 83 in order to obtain new values of domain C with which to access 82

again. In fact, due to the join condition between 81 and 82, the only tuples
extracted from 82 which can be used to construct a tuple of the answer to q are
those obtained by binding the attribute B of 82 with a value extracted from 81 .

•

In order to optimize the query plan, we are interested in keeping only those
attribute that can actually contribute to the result of the query. More precisely,
we say that an attribute is relevant for a query, if there exists an instance of
the source database such that the values of the attribute for that instance can

Optimized Querying of Integrated Data over the Web 291

provide values that are used for constructing the answer to the query or for
accessing other sources that are in tum relevant.

First of all, we want to operate only with the queryable sources, i.e., the
sources that can be accessed at least once for at least one instance of at least
one source database, starting from the values in the query. For a description
of how to calculate the queryable sources we refer to (Li and Chang, 2000),
since the method described there still applies to the framework presented here.
We exclude a priori all non-queryable sources from the construction of the
optimized query plan.

We show how to construct a query plan for a CQ over the sources. To do so,
we define the dependency graph of q wrt a set S of sources, denoted by Gf
Such a graph allows us to eliminate unnecessary accesses to the sources.

In order to simplify the construction of the dependency graph, we take into
account values appearing in the query as follows. For each value a appearing
in q we introduce a new source Sa with a single free attribute, whose domain is
that of the value; the content of Sa is the single tuple (al' We then replace all
occurrences of a in the query with a fresh variable X a , and we add the conjunct
sa(Xa) to the body of q. The intuition is that a value acts as a source whose
content is completely known, and amounts only to the value itself.

The set of nodes of is determined as follows. For each atom in q, we
have a set of nodes in one for each attribute of the corresponding source
relation. We call such nodes black. Moreover, for each source not appearing
in q, we have a set of nodes, one for each attribute of the source. We call such
nodes white. Both types of nodes have two labels, determined as follows:

• A binding constraint, which can be either bound or free. A node is
marked as bound if the corresponding attribute is bound, and it is marked
as free otherwise.

• An abstract domain, which is the one associated to the corresponding
attribute.

As for the edges, has an edge from a node Ul to a node U2 when

• Ul and U2 have the same abstract domain,

• Ul is free, and

• U2 is bound.

Intuitively, the edges denote dependencies between source attributes, indicat­
ing that a source with limited source capabilities needs values which can be
retrieved from other sources (or can be in the query).

Our aim is to divide the edges of into two types, which we call strong
and weak edges. A weak edge (Ul, U2) denotes that (the attribute associated

292 Andrea Cali and Diego Calvanese

to) Ul can provide values to be used in U2 to retrieve useful tuples; a strong
edge denotes a stronger dependency, i.e., that all the useful tuples that can be
retrieved from the source to which U2 belongs are extracted using only values
coming from Ul. Intuitively, determining that an edge (Ul,U2) is strong al­
lows for reducing source accesses, since the bindings of U2 can be restricted
to values coming from Ul. On the graph when a node has an incoming
strong edge, then all other incoming edges that are not strong themselves must
be deleted.

To determine a maximal set of strong edges (which allows for deleting as
many edges as possible), we first determine, based on the structure of the query,
a set of edges that are candidates to become strong. An edge (Ul' U2) is a
candidate edge if both uland u2 are black and if in the query the same variable
is associated to the corresponding attributes (i.e., the two attributes are joined).
Such an edge can become strong only if the source to which U2 belongs is not
to provide arbitrary values to another source.

An edge which is not candidate, and from which no black node is reachable
by traversing edges and moving among nodes belonging to the same source,
can be deleted. Intuitively, we are avoiding accesses to sources that cannot
provide values that can contribute to the answer.

Based on the above observations, we present in Figure 1 an algorithm to
determine whether a candidate edge is strong. The algorithm makes use of
two mutually recursive functions that perform a (partial) depth-first visit of the
graph, having the side-effect of marking edges either as strong or as deleted.
Function isStrong starts by assuming that the edge is strong and checks whether
such an assumption is consistent with the necessary conditions for an edge to
be strong. In visiting the graph, other candidate edges are marked as strong
(recursive calls to isStrong) and certain non candidate edges are deleted (re­
cursive calls to deleteEdge), and again the consistency of these assumptions is
verified. The function outEdges takes a node U as input and returns the set of
all edges whose origin is a node in the same source as u.

Since isStrong and deleteEdge perform a straightforward visit of never
visiting an edge twice, they run in polynomial time in the size of More­
over, in order to determine all strong edges, one needs to make successive calls
to isStrong. If a call returns true, edges that have been marked (either strong or
deleted) can keep their mark. This is due the fact that "strong-ness" of edges is
a monotone property: a strong edge can never become weak due to the fact that
some other edge has been marked strong. On the contrary, if a call returns false
this means that the assumptions about strong and deleted edges made during
the visit were not consistent with the conditions on such edges, and hence need
to be retracted.

Optimized Querying of Integrated Data over the Web

isStrong ((u, u '): candidate edge): bool
if (u, u') is marked as strong then return true;
mark (u, u') as strong;
foreach (v, Vi) E outEdges (u')

if ((v, Vi) is candidate and not isStrong(v, Vi)) or
((v, Vi) is non-candidate and not deleteEdge(v, Vi))

then return false;
return true;

deleteEdge ((u, u'): non-candidate edge): bool
if (u, u') is marked as deleted then return true;
mark (u, u') as deleted;
if u' is black
then choose a candidate edge (v, u');

if no such edge exists then return false;
if not isStrong(v, u') then return false;
mark all candidate edges (Vi, u') as strong;
mark all non-candidate edges (v", u') as deleted;
return true;

else foreach (v, Vi) E outEdges(u')
if not deleteEdge(v, Vi) then return false;

return true;

Figure 1. Algorithm to determine whether an edge is strong

Example 4 LetS = {Sl,S2}, with

sl(A,B)
s2(A, B)

293

Suppose again that we have a distinct abstract domain for each attribute name.
Consider the unfolded query q, defined as follows:

q(X) <- sl(a, X).

The dependency graph gt for q is shown in Figure 2. Note that the source 8 a

has been added to take into account the value a in q. Edge e1 is candidate to
be strong, and in fact this assumption is consistent, because, if we assume that
e3 is deleted, then e2 is deleted as well, since no black node is reachable from
them. The intuition is that source 81 does not have to provide arbitrary values
to 82; in fact, due to the join condition in q, accessing 81 with values provided
by 82 would not provide tuples that could be used to answer the query q. The
optimized dependency graph, without deleted edges and without source 82, is
shown in Figure 3; the strong edge e1 is denoted by a thick line. •

294 Andrea Call and Diego Calvanese

Figure 2. Dependency graph for Example 4

From the resulting optimized dependency graph we construct the optimized
query plan, expressed in Datalog notation, as follows: For each source atom
over predicate s of arity n in S (respectively for each source relation s of arity
n not appearing in the query), we introduce two predicates s, and s, both of
arity n. The predicate s corresponds to the actual data source, and it has access
limitations; the predicate s is a sort of cache in which we store, during the
query answering process, all the tuples extracted from s.

Using these predicates, we construct the optimized query plan as follows.

• The unfolded query mantains its stucture, but it is expressed over the
caches Si'

• For each predicate s of arity n, we introduce a set of nonrecursive Dat­
alog rules. Each rule corresponds to a choice of exactly one incoming
edge in the graph for each of the bound attributes of the atom. The rule
has the form

where

- §1 (A 1), ... , §k (Ak) are the atoms whose nodes are predecessors
of the bound nodes of s (A) wrt to the edges selected in the choice;

- the variables in the body of the rule reflect the joins expressed by
the edges of the graph.

Figure 3. Optimized dependency graph for Example 4

Optimized Querying of Integrated Data over the Web 295

Example 5 We refer to Example 4. From the optimized dependency graph
relative to q we construct the following plan:

q(X) sa(X), S1(X, Y)
sa(X) sa(X)
S1(X) S1(X, Y),sa(X)

•

Such a Datalog program ensures that the bindings for the bound attributes
of s are obtained from values retrieved from the relations Si and stored in the
caches Si.

The following theorem states that the optimized query plan is indeed sound,
i.e., it returns only tuples that are in the answer to the query, and complete, i.e.,
it does not miss any answer obtainable from the sources, taking into account
the binding patterns.

Theorem 6 Given an unfolded query q and a set oj sources with binding pat­
terns, the Datalog program constructedJrom q as specified above computes all
the answers to q obtainable Jrom the sources, given the binding patterns on
them.

4. FUNCTIONAL AND FULL INCLUSION
DEPENDENCIES

We formally introduce the kind of integrity constraints that we use for source
access optimization. In the following we denote sets of attributes (i.e., posi­
tions) with boldface letters, and we use A(s) to denote the set of attributes of
source s. Given a relation s, a set of attributes A A(s), and a tuple t in the
extension of s, we denote with t[A] the projection of t over A. Finally, given
a database DB, we denote the extension of s in DB with sDB.

AJull inclusion dependency between two sources S1 and S2, which must be
of the same arity, has the form

Such an inclusion dependency is satisfied in a database DB, written DB 1= S1,
if sfB sfB.

AJunctional dependency over a source s has the form

s:A--->B

with A, B A(s). Such a dependency is satisfied in a database DB if for any
pair of tuples it, t2 E sDB we have that t1 [A] = t2 [A] implies that tdB] =
t2[B].

296 Andrea Call and Diego Calvanese

Full inclusion dependencies tum out to be essential for modeling the com­
mon case of real data sources that can be accessed in different ways, e.g., a
database relation that can be accessed from a Web site using different forms.
We can represent in our model such a real data source as a set of distinct sources
81, ... , 8n , one for each different way of accessing it, with a binding pattern
that reflects the access modality. The fact that the sources 81, ... , 8n represent
the same data is expressed by means of a pair of full inclusion dependencies
8i 8j and 8j 8i between each pair of sources 8i and 8j. More generally,
by means of an inclusion dependency we can capture the case of a Web site in
which a form gives access to a subset of the data contained in the site.

A (full inclusion or functional) dependency 'Y is implied by a set of depen­
dencies r, if for every database DB satisfying r also 'Y is satisfied.

We discuss now implication of functional and full inclusion dependencies.
The following inference rules are the specialization of the more general sound
(but not complete) inference rules for (arbitrary) inclusion and functional de­
pendencies (Cosmadakis and Kanellakis, 1986) to the case where all inclusion
dependencies are full. We show that for such a case these inference rules are
not only sound but also complete.

1 If A B, with A, B A(8), then 8: A ---+ B.

2 If A ---+ B, then AC ---+ Be.

3 If 8 : A ---+ Band 8 : B ---+ C, then 8 : A ---+ e.

5 If 81 82 and 82 : A ---+ B, then 81 : A ---+ B.

We note that the only rule that makes full inclusion and functional dependen­
cies interact is rule 5.

The following theorem shows that functional dependencies do not influence
the implication of a full inclusion dependency. Hence, an inclusion depen­
dency can be derived only from the set of available inclusion dependencies.

Theorem 7 Given a set S of sources with 8, 8' E S, a set r i of full inclusion
dependencies, and a set r f of functional dependencies, we have that r i 1=
81 82 iff (ri U r f) 1= 81 82·

Next, we show that full inclusion and functional dependencies interact only
in a limited form.

Theorem 8 Let S = {80, 81, ... , 8 n } be a set of sources, let r be a set of full
inclusion dependencies of the form 80 8i, and of functional dependencies
of the form ri : Aij ---+ B ij , for i E {O, ... , n} and j E {I, ... , ni}' Then

Optimized Querying of Integrated Data over the Web 297

r F ro : A ----7 B if and only if {ro : Aij ----7 Bij liE {O, ... , n} and j E
{I, ... , ni}} Fro: A ----7 B.

Finally, to deal with functional dependencies within one relation we can
apply the following theorem (Beeri and Bernstein, 1979; Maier, 1980).

Theorem 9 (Beeri and Bernstein, 1979; Maier, 1980) The inference rules
1,2, and 3 are sound and complete for implication offunctional dependencies
within one relation.

From the previous results we can prove the following theorem, which, to the
best of our knowledge, is not covered by the known results about implication
of dependencies (Cosmadakis and Kanellakis, 1986; Cosmadakis et al., 1990).

Theorem 10 Implication offull inclusion dependencies andfunctional depen­
dencies can be decided in polynomial time.

5. ON-LINE OPTIMIZATION
In (Li and Chang, 2000) an optimization technique is presented, which can

be applied at query plan generation, and which identifies the sources that are
relevant for a query, thus avoiding useless accesses to non-relevant sources.

Instead, here we introduce further optimization techniques, which can be
applied during the query evaluation process. Such techniques take into ac­
count tuples already extracted from the sources at a certain step of the evalua­
tion of the Datalog program associated to a query. They exploit full inclusion
dependencies and functional dependencies on the source relations to know in
advance, at a certain step of the evaluation of the Datalog program, whether an
access is potentially useful for the answer, i.e. it could return tuples with new
values.

Example 11 Suppose we have a source s(AI' A2 , A3) (supposing for simplic­
ity to have a distinct abstract domain for each attribute) with the functional
dependency

s : Al ----7 A 2 , A3

Let t be a tuple previously extracted from s, having al as component of at­
tribute AI. Now, if we have another value a2 with which to bind attribute A2,
and we try to access 8 using (al, a2) as bindings, the access does not provide
any tuple (or provides just t itself if a2 t[A2D because of the functional
dependency. •

We can generalize the observation made in Example 11 with the following
result. We denote the bound attributes of a source 8 with 8(8).

298 Andrea Call and Diego Calvanese

Theorem 12 Given a source 8, let B = 6(8) and let

8 : K -> A(8)

be a functional dependency over 8, with K B. Let b be a binding for 8

(i.e., a set of values matching with the attributes of B). Then we have that
for any database, by accessing 8 with b, we do not get any tuple which was
not previously extracted from 8, if and only if there exists a tuple t, previously
extracted from 8, such that b[K] = t[K].

Proof. "-¢:::" If there exists t extracted from 8 such that b[K] = t[K], all
tuples that may be extracted from 8 using b have the same values over K,
due to the fact that K B. Then, because of the functional dependency
8: K -> A(8), any tuple extracted from 8 using b has the same values as t
over A(8), i.e., it coincides with t.

"=>" Accessing 8 using b as binding, we obtain at most one tuple, being K
the key of 8 and K B. If we obtain no tuple, the theorem is true. If we
obtain one, this must have been previously extracted from 8, and it is the tuple
t we were searching for. 0

Now we illustrate a further optimization technique which exploits also full
inclusion dependencies.

Example 13 Suppose we have the following sources:

82(Code, Surname, City)
81 (Code, Surname, City)

where 81 stores data about employees and 82 stores data about persons, with
81 82. The attribute with domain City represents the city where the corre­
sponding person (or employee) lives. We also have the functional dependency

Code -> City, Surname

on both 82 and 81. Suppose that 81 and 82 have both the following extension:

I Code I Surname I City
2 brown sidney
5 williams london
7 yamakawa kyoto
1 wakita kyoto
9 marietti rome

Optimized Querying of Integrated Data over the Web 299

If our set of initial values is rome and kyoto, at the first step we access 82 and
we get the following tuples:

I Code I Surname I City I
7 yamakawa kyoto
1 wakita kyoto
9 marietti rome

Now we have six new values: the three codes 1,7, and 9 and the three surnames
yamakawa, wakita, and marietti. With these values we could access source
82 to try and get other values (we may get only cities, as other attributes are
bound). But we can easily observe that, because of the functional dependency
cited above, if we bind the attribute with domain Code with one of the known
values, we get a tuple we had already obtained from 82. Therefore the access
to 81 is useless, once we have accessed 82. Instead, if we get a code 2 and a
surname brown from another source, we could access 82 and get new tuples .•

The following theorem provides a characterization, in terms of a necessary
and sufficient condition, of the source accesses that are useless, in the sense
that they do not provide new values.

Theorem 14 Given two sources 81 and 82, let B1 = 8(8t) and B2 = 8(82)'

Suppose we have the following dependencies:

81 82

81 : C -) D

with C B1 and D B 2. Let b be a binding for 81 (i.e., a set of values
matching with the attributes of Bd. Then we have that, for any database,
by accessing 81 with b, we do not obtain any tuple which was not previously
extracted from 82 if and only if there exists a tuple t, previously extracted from
82, such that b[C] = t[C].

Proof. "{=" If there exists a tuple t extracted from 82 such that b[C] = t[C],
then, being C B1 and because of the dependency 81 : C -) D, we have
that any tuple t/ extracted from 81 using b is such that t/[D] = t[D]. Now,
being B2 D, we obviously have that t/[B2] = t[B2]' Observe that, as twas
extracted from 82, all tuples of 82 coinciding with t on B2 have been extracted
as well. Due to the inclusion dependency 81 82, we can conclde that every
tuple t' that we may get from 81 using b as binding was already extracted from
82·

"*" If we access 8 using b as binding, we get in general a set of tuples. If
this set is empty, the theorem is proved. Instead, consider any tuple t/ extracted
from 81 using b as binding; obviously, t/ [C] = b[C]. By hypothesis t/ must

300 Andrea Cali and Diego Calvanese

have been previously extracted from 82, and thus it is the tuple we are searching
0

From the previous theorem we can prove the following upper bound for
verifying whether a source access may be useful for getting new tuples.

Theorem 15 One can check in polynomial time in the number of functional
and full inclusion dependencies and the number of attributes in all sources,
whether accessing a source with a certain tuple of values may provide new
tuples.

6. CONCLUSIONS
We have studied the problem of query planning in the global-as-view ap­

proach, where user queries and view definitions are CQs, and in the presence
of source access limitation. We have presented a novel query planning tech­
nique, applicable to conjunctive queries, in order to obtain an optimized query
plan which exploits the structure of the user query to avoid unnecessary ac­
cesses to the sources. We have provided a polynomial time algorithm for im­
plication of full inclusion dependencies and functional dependencies, which
we use to model data sources accessible through Web forms. We have shown
that the presence of such kinds of dependencies allows one to avoid unneces­
sary accesses to the sources, and we have provided a necessary and sufficient
condition to optimize the query evaluation process at query evaluation time.

We are currently implementing the query planning and query evaluation
algorithms, and we are working on incorporating the proposed optimization
techniques in the query evaluation phase.

REFERENCES
Abiteboul, S. and Duschka, O. (1998). Complexity of answering queries using materialized

views. In Proc. of the 17th ACM SIGACT SIGMOD SlGART Symp. on Principles of
Database Systems (PODS'98), pages 254-265.

Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of Databases. Addison Wesley Pub!.
Co., Reading, Massachussetts.

Beeri, C. and Bernstein, P. A. (1979). Computational problems related to the design of normal
form relational schemas. ACM Trans. on Database Systems, 4(1):30-59.

Chawathe, S. S., Garcia-Molina, H., Hammer, 1., Ireland, K., Papakonstantinou, Y., Ullman,
J. D., and Widom, J. (1994). The TSIMMIS project: Integration of heterogeneous informa­
tion sources. In Proc. of the 10th Meeting of the Information Processing Society of Japan
(IPSJ'94), pages 7-18.

Cosmadakis, S. S. and Kanellakis, P. C. (1986). Functional and inclusion dependencies - A
graph theoretical approach. In Kanellakis, P. C. and Prep arata, F. P., editors, Advances in
Computing Research, Vol. 3, pages 163-184. JAI Press.

Cosmadakis, S. S., Kanellakis, P. c., and Vardi, M. (1990). Polynomial-time implication prob­
lems for unary inclusion dependencies. J. of the ACM, 37(1):15-46.

Optimized Querying of Integrated Data over the Web 301

Duschka, O. M. and Levy, A. Y. (1997). Recursive plans for information gathering. In Proc. of
the 15th Int. Joint Can! on Artificial Intelligence (/lCAJ'97), pages 778-784.

Florescu, D., Levy, A., and Mendelzon, A. (1998). Database techniques for the World-Wide
Web: A survey. SIGMOD Record, 27(3):59-74.

Florescu, D., Levy, A. Y., Manolescu, 1., and Suciu, D. (1999). Query optimization in the pres­
ence of limited access patterns. In Proc. of the ACM SIGMOD Int. Can! on Management of
Data, pages 311-322.

Hull, R. (1997). Managing semantic heterogeneity in databases: A theoretical perspective. In
Proc. of the 16thACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS'97).

Hull, R. and Zhou, G. (1996). A framework for supporting data integration using the materi­
alized and virtual approaches. In Proc. of the ACM SIGMOD Int. Can! on Management of
Data, pages 481-492.

Levy, A. Y. (1999). Answering queries using views: A survey. Technical report, University of
Washinghton.

Levy, A. Y., Mendelzon, A. 0., Sagiv, Y., and Srivastava, D. (1995). Answering queries us­
ing views. In Proc. of the 14th ACM SIGACT SlGMOD SIGART Symp. on Principles of
Database Systems (PODS'95), pages 95-104.

Li, C. and Chang, E. (2000). Query planning with limited source capabilities. In Proc. of the
16th IEEE Int. Can! on Data Engineering (ICDE 2000), pages 401-412.

Li, C. and Chang, E. (2001). On answering queries in the presence of limited access patterns. In
Proc. of the 8th Int. Can! on Database Theory (ICDT 2001), pages 219-233.

Maier, D. (1980). Minimum covers in the relational database model. J. of the ACM, 27(4):664-
674.

Rajaraman, A., Sagiv, Y., and Ullman, J. D. (1995). Answering queries using templates with
binding patterns. In Proc. of the 14th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS'95).

Ullman, J. D. (1997). Information integration using logical views. In Proc. of the 6th Int. Can!
on Database Theory (ICDT'97), volume 1186 of Lecture Notes in Computer Science, pages
19-40. Springer.

	Optimized Querying ofIntegrated Data over the Web
	1. INTRODUCTION
	2. PRELIMIN ARIES
	3. QUERY PLANNING
	4. FUNCTIONAL AND FULL INCLUSIONDEPENDENCIES
	5. ON-LINE OPTIMIZATION
	6. CONCLUSIONS
	REFERENCES

