
IEC 61499 ARCHITECTURE, 
ENGINEERING METHODOLOGIES AND 

SOFTWARE TOOLS 

James H. Christensen 
Rockwell Automation Advanced Technology 

JHChristensen@ra.rockwell.com 

The IEC 61499 standard defines an architecture and software tool 
requirements for the encapsulation, embedding, deployment and integration of 
intellectual property (IP) in intelligent devices, machines and systems. A 
reference framework and engineering methodology is presented for the use of 
IEC 61499 in the design, development, simulation, testing and implementation 
of distributed control and automation systems employing intelligent 
mechatronic components. 

1. INTRODUCTION 

Advances in hardware and software technology have made possible the embedding 
of unprecedented levels of functionality in end devices (sensors and actuators) for 
industrial control and automation. In turn, this has generated significant technical 
and commercial opportunities for system architectures, engineering methodologies 
and software toolkits capable of supporting the cost-effective development and 
widespread deployment of intellectual property (IP) in such devices and their 
composition into scalable, flexible automated (SFA) systems. The principal 
requirements for such architectures, methodologies and toolkits include: 

software component orientation for IP encapsulation, reuse and portability; 
device interoperability; 
the ability to distribute and integrate applications; 
functional completeness; 
scalability; 
extendability; and 
flexible reconfigurability. 

Over the past ten years, Technical Committee 65 (TC65) of the International 
Technical Commission (lEC) has been developing a series of architectural standards 
for the use of function blocks to meet these requirements (lEC, 2001, 2002). This 
paper presents an overview of this architecture and illustrates its use in conjunction 
with an appropriate engineering methodology and software tools to meet these 
requirements. 

© Springer Science+Business Media New York 2002
V. Mařík et al. (eds.), Knowledge  and Technology  Integration  in Production  and Services



222 Balancing Knowledge and Technology in Manufacturing and Services 

2. IEC 61499 ARCHITECTURE 

The fundamental unit of software encapsulation and reuse in lEe 61499 is the 
function block, considered to be an instance of a function block type. As illustrated 
in Figure 1, an lEe 61499 function block type includes event inputs and outputs as 
well as the more traditional data inputs and outputs as seen, for example, in the lEe 
61131-3 standard (lEe, 2002) for programmable controller languages. In this way 
lEe 61499 is able to account explicitly for the synchronization between data transfer 
and control algorithm execution in distributed as well as centralized systems. 

EVENT START CMD --i~EVENT 

EVENT SENSE 

EVENT ESTOP 

MECH_CTL 

BOOL SINGLE FWD M t-BOOL 

BOOL HOME REV Yt-BOOL 

BOOL END 

Figure 1 - Example of an lEe 61499 function block type 

At the lowest level (the so-called basic function block type), intellectual property 
(IP) is encapsulated in the form of control algorithms. Each algorithm expresses a 
mapping from the current set of values of input, output and internal variables of the 
function block to a new set of values for its output and internal variables. These 
algorithms may be expressed in the programming languages of lEe 61131-3, or 
other procedural languages as appropriate. 

Additional IP may be encapsulated in the Execution Control Chart (ECC) of a 
basic function block type. An Eee is an event-driven state machine determining the 
relationships among current state and input event occurrences, transitions between 
states, and the algorithm(s) to be executed and output event(s), if any, to be issued 
upon entering a new state. 

lEe 61499-1 also provides composite function block types for the encapsulation 
of new IP developed through the functional composition of existing IP. 

An important mechanism for interfacing to services provided by the underlying 
operating environment (called a resource in lEe 61499) is defined through the 
service interface function block (SIFB) construct of lEe 61499-1. This provides 
interfaces to such services as graphic user interface (GUI) components, timing and 
event handling, communications, and sensor/actuator interfaces. The externally 
visible behaviors of SIFBs are documented by their provider in the form of service 
sequence diagrams following the format defined by ISO 8509 (ISO, 1987), thus 
providing for complete protection of the encapsulated IP. The use of SIFBs in 
conjunction with basic or composite function blocks to provide the local portion of a 
distributed control application in a resource is illustrated in Figure 2. 



lEe 61499 Architecture, Engineering Methodologies and Software Tools 223 

I Communication Services J 
I' Local application 

Commun iCiltion mapping (or local part of distributed application) 

Events l::-r :Y '-c~ I 
~ ~ ILl' ... 

Dota 
Service I Algonthm I Se,,,;ce 

Interlace Interlace 
fundion furdiDn 

Block Bpcl< 

r I' I] 
Process mapping 

I Ma ch ine,!', OCBSS 110 Sa tv ices I , Scheduling Function ~ 
Figure 2 -IEC 61499 resource model (IEC, 2000) 

The final element of the IEC 61499 architecture is the device, which serves as a 
container for mUltiple resources and provides them with interfaces to 
communication networks, sensors and actuators; the services provided by these 
interfaces are delivered by SIFBs in the resources to support the implementation of 
distributed applications. The communication networks in turn provide the means for 
integration of the devices into complete control and automation systems. 

3. ENGINEERING METHODOLOGY AND TOOLS 

IEC 61499-2 (lEC, 2001) defines general requirements for software tools for 
building elements defined in the IEC 61499-1 architecture (IEC, 2000). These 
requirements include but are not limited to: (i) reading and writing library elements 
(data types, function block types, resource types, device types, system 
configurations, etc.) in the standard XML (W3C, 1998) formats defined in IEC 
61499-2; (ii) manipulating the declarations contained in the library elements; (iii) 
configuring devices and resources according the declarations contained in 
corresponding system configurations; and (iv) simulating and validating the 
operation of various library elements. 

Specific software tool requirements will depend on the particular engineering 
methodologies employed. One such methodology (Christensen, 2000) proposed an 
extension of the well-known ModelNiew/Controller (MVC) user interface 
framework to encompass the development, simulation and deployment of IEC 
61499-based systems. In this framework, each of the following elements would be 
represented as an instance of a function block type: 

Model: A function block that represents the time-dependent logical behavior 
of the system or device being controlled. 
View: A function block that represents the graphical display associated with 
one or more Model types. 
Controller: A function block that encapsulates the control functions to be 
performed on one or more instances of associated Model types, and presents 



224 Balancing Knowledge and Technology in Manufacturing and Services 

appropriate event and data interfaces for integration of its functions with those 
of other Controller blocks. 

It was further suggested that as part of an associated engineering methodology, 
Model and View elements could be encapsulated together in composite MV 
function block types, and that a further encapsulation step could be used to produce 
MVC function block types. However, in practice this methodology has been found 
to have two major drawbacks: 

1. The use of MV composite elements leads to complex resource 
configurations because graphic display configuration data is intermixed 
with model configuration data and interconnections. This complexity is 
further increased by the use of MVC elements. 

2. The use of MVC composites makes it difficult to separate the Controller 
element from the MV element when configuring an actual system by 
replacing the MV element with appropriate actuator and sensor interfaces. 

The layered architecture in Figure 3 overcomes these problems by placing functional 
elements of each type in a separate layer and explicitly adding a layer for 
human/machine interface (HMI). Elements within each layer communicate with 
each other via normal event and data connections. Communications between 
adjacent layers are implemented using communications service interface function 
blocks (CSIFBs) as defined in IEC 61499-1, enabling the contents of individual 
layers to be allocated to different devices as required. When adjacent layers are 
allocated to the same device, communications are implemented in an optimized way 
using specialized parameters of the CSIFBs. 

HMI 
parameters 

control 
parameters 

model 
parameters 

rendering data user input 

Figure 3 - Revised MVC framework 



lEe 61499 Architecture, Engineering Methodologies and Software Tools 225 

This framework enables the use of the following simplified version of the 
engineering methodology described in (Christensen, 2000), with the modified step 
numbers shown in bold face: 
1. Start with a sketch of the machine or process to be controlled, along with a 

verbal description of the desired behavior. 
2. From the sketch, develop and test a number of Views that present visually the 

essential information about the states of the controlled devices. 
3. Utilizing the View testing mechanism in Figure 4(a), integrate the views into a 

static animation of the system to be controlled, and utilize the animation to 
develop descriptions of the desired operational sequences of the system under 
both normal and abnormal conditions. 

4. For each view, develop and test one or more Models capable of simulating the 
dynamic behavior of the associated machine or process equipment in response 
to external stimuli and commanding the associated View to display the 
corresponding equipment states. 

(a) 
HMI 

parameters 

(b) 
HMI 

parameters 

sensor inputs actuator outputs 

model 
parameters 

rendering data user input 

Figure 4 - Testing frameworks for: (a) Views, (b) Models 



226 Balancing Knowledge and Technology in Manufacturing and Services 

5. Use the Model testing mechanism shown in Figure 4(b) in conjunction with the 
previously tested Views to verify that the Models provide the correct behaviors 
in response to actuator inputs. 

6. Develop Controller blocks as necessary to achieve required functions, e.g., 
sequencing of the simulated equipment, event and data interfaces for integration 
with other controller blocks. Test the Controller blocks, in conjunction with the 
previously developed Models and Vies, in the overall framework of Figure 4. 

7. Implement the physical system as shown in Figure 5 by replacing the Model 
and View layers with the corresponding actual physical devices. Configure 
these devices to present to the ControlJer layer logical interfaces that are 
identical to the interfaces previously presented by the Model layer. 

HMI 
parameters 

control 
parameters 

interface 
parameters 

physical inputs physical output s 

Figure 5 - Deployment framework 

8. When possible, factor the ControlJer functions into Low Level Control (LLC) 
function blocks representing the control functions specific to physical devices 
and their interactions with other devices, and High Level Control (HLC) 
function blocks representing those functions which require interfaces with 
multiple devices, and which may utilize more complex technologies such as 
software agents. By allocating the LLC functionality to the physical devices, an 
architecture for intelligent "mechatronic" devices is created as illustrated in 
Figure 6, where the device boundaries are indicated by the dotted lines. 

9. When possible, generalize the LLC function blocks and make them available, 
along with appropriate service interfaces, for reuse in libraries of intelligent 
mechatronic devices. 



lEe 61499 Architecture, Engineering Methodologies and Software Tools 227 

HMI 
parameters 

HL control 
parameters 

device 
parameters Interface Interface Interface 

PhYSiCaJ:.,.~n_p_ut-+---+_+-1t---I---f_--+t--+-~I-P_h~-.;staJ outputs 

':-----..................•.....•. .... .,...................... . ........................... . 
Figure 6 - Mechatronic device architecture 

5. CONCLUSIONS 

IEC 61499, with appropriate software tools and engineering methodologies, can be 
an effective way to meet the requirements for future scaleable, flexible automation. 
The original (Christensen, 2000) framework and engineering methodology have 
been successfully applied in a number of simulated and physical testbeds. A formal 
validation methodology and toolkit have also been applied to the original framework 
(Vyatkin, 2000). In addition, an electromechanical design workbench has been 
developed around this framework and methodology (Jain, 2002). The adaptation of 
this previous work to the improved framework and methodology presented in this 
paper, and the migration of the associated toolkits to an updated (Java 2) platform, 
are currently in progress. 

6. ACKNOWLEDGMENTS 

The author is indebted to Mr. Franz Auinger and Mr. Werner Rumpl of Profactor 
GmbH for pointing out the weaknesses of the original MVC framework and 
demonstrating the required refactoring of functionality. An immeasurable debt of 
gratitude is also owed to the late Dr. Odo Struger of Allen-Bradley and Rockwell 
Automation for his unflagging support and encouragement. 



228 Balancing Knowledge and Technology in Manufacturing and Services 

7. REFERENCES 

I. Christensen, 1. "Design patterns for systems engineering with IEC 61499." In Verteilte 
Automatisierung - Modelle und Methoden fUr Entwurf, Verifikation, Engineering und 
Instrumentierung, Ch. Doschner, ed. Magdeburg, Germany: Otto-von-Guericke-Universitlit, 2000. 

2. IEC (International Electrotechnical Commission) 61499-1, Function blocks - Part I, Architecture, 
Geneva, 2000. 

3. IEC (International Electrotechnical Commission) 61499-2, Function blocks - Part I, Software tool 
requirements, Geneva, 2001. 

4. IEC (International Electrotechnical Commission) 61131-3, Programmable controllers - Part 3, 
Programming languages, Geneva, 2002. 

5. ISO (International Organization for Standardization) TR 8509, Information processing systems -
Open Systems Inter.connection - Service conventions, Geneva, 1987. 

6. W3C (W3 Consortium), eXtended Markup Language (XML) Specification, available at 
http://www.w3c.orgffRlI998/REC-xml-19980210, 1998. 

7. Vyatkin, V., H.M. Hanisch, P. Starke, and S. Roch, "Formalisms for verification of discrete control 
applications on example of IEC 61499 function blocks." In Verteilte Automatisierung - Modelle 
und Methoden fur Entwurf, Verifikation, Engineering und Instrumentierung, Ch. Doschner, ed. 
Magdeburg, Germany: Otto-von-Guericke-Universitlit, 2000. 

8. Jain, S., C. Yuan and P. Ferreira, "EMBench: A Rapid Prototyping Environment for Numerical 
Control Systems," accepted for presentation, ASME IMECE, New Orleans, November 2002. 


