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It was in the late fifties when we ran one of the first application programs 
on the computer we just had finished at the Technical University of Vienna. 
We were a group of young people led by Heinz Zemanek, engaged in one of 
the early university computer projects of those times. The computer became 
known under the poetic name of 'Mailuefterl' and was the first one in 
Europe built entirely with transistor technology. Mailuefterl had fifty words 
of core store, 10.000 words of drum store, paper tape input and typewriter 
output, and an internal speed of 2.000 words per second [16] [04]. 

The program in question was written and run for a musician, a composer 
interested in the set of those twelve-tone sequences that satisfied certain 
constraints he had established. Mailuefterl, by the way, ran overnight to 
complete the job, despite clever optimization Peter Lucas, the programmer, 
had designed into the program. 

The program was run only once, which makes this an extreme example 
of a computer usage pattern: one programmer transforming a class of 
problems out of a certain universe (music) into computer digestible form (the 
program), solving a particular case by computer, interpreting the results, 
handing them over to the one interested party (the composer). 

Mailuefterl was used for a number of applications in similar patterns and 
also for a number of more durable ones. It was moved to IBM Vienna in 
1961, and members of the University group then formed the kernel of a 
newly established IBM Science Group in Vienna, again under the leadership 
of Heinz Zemanek. This group of two dozen people developed into the IBM 
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Vienna Laboratory, which until a few years ago has served various missions 
in different IBM organizations, ranging from programming technology to 
advanced system development and program product development with 
roughly 120 people peak plus auxiliary work force. I was manager of the 
laboratory from 1976 to 1992 and I am glad now to give you my personal 
views on some of the highlights of our work. 

Goals and achievements changed over the years. The stable factor, 
maybe, was the urge to remain current in the advances of at least certain 
sections of information technology, if not trying to be ahead of the main 
stream. Paradigm changes in information technology used to set new 
priorities. 

1. PARADIGM CHANGES 

The above mentioned application out of musical theory belongs to the 
independent computing paradigm featuring a human user, a problem world 
and a computer system as three separate domains. Solutions for classes of 
problems out of the problem world were formulated as programs and, 
characteristically, executions of a program for different specific cases were 
independent of one another. A programming language expressing the 
program (an assembler language in our early case) was the formal carrier of 
information from the human user to the computer. It was the only formal 
carrier. The transformation of a case out of the problem world to a program, 
and the interpretation of the results of the program run on a computer into a 
form meaningful for the problem world, was human effort and not grasped 
by any formalism. The programming language here was the sole mediator 
between humans, their problems, and the computer. This made programming 
languages and their compilers the central subjects of interest and research in 
(the software section of) information technology. Language design and 
language definition methodology were the key disciplines. 

The vast expansion of application areas in the early sixties boosted the 
development of 'machine independent' languages, general purpose as well 
special languages intended to serve special fields of application. The 
decisive development, however, was the emergence of file and data base 
systems which preserved data in between the computer runs. Data based 
computing became the paradigm of expansion and success of the computing 
field. 

A data base encodes statements about facts in a certain universe of 
concern. Facts and rules do model the that universe. In certain cases the 
computer not only contains statements about facts, but it embodies the facts: 
think of a stored bank account - changing it does not just change information 
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about a fact, it does change the fact. The problem universe of concern and 
the computer system partially overlap (which imposes a new dimension of 
reliability requirements on computer systems). 

Data base systems had their own definition and access languages to 
which programming languages had to establish interfaces. But, alas, 
programming language development was earlier than data base development 
and so in most cases we just saw bridges from one to the other rather than 
integral language solutions. 

The emerging every day life significance of computing added another 
dimension: the significance of the computer interface to the user. A business 
area normally is served by a centrally managed computer system, containing 
a data base, programmed transactions corresponding to standard business 
transactions, and work places of users. The transaction processing 
paradigm has to serve the operating requirements of human users who are 
not computer professionals. Human properties with respect to the digestible 
amount of information handled in a transaction, the adequacy of information 
layout for human comprehension, and acceptable response time did enter 
information technology. Design and development of the user interfaces of 
terminals and, later on, of workstations received attention. 

The picture of the business professional initiating and handling 
transactions naturally extends to that of a team of people working together to 
handle complex problems. People may assume different roles within the 
group. Their work does depend on the work results of other people and the 
timing of their actions may depend on conditions arising during the work 
process. In general they will share common data as well as use their own 
private data. I call this the workflow paradigm. Systems have been 
developed the last several years which support these working scenarios. 
They offer facilities for defining workflows in workflow models, used for 
the control of the actual workflows, for binding appropriate services to the 
workflows, and for building user workplaces corresponding to the roles the 
users play. This paradigm includes users and their workplaces into the 
problem area of concern. The world of users, the problem universe, and the 
computer system overlap. The overall working system is one of 
asynchronously cooperating human users and computer services. Difficult 
questions do arise here: what are adequate workflow models for certain 
application areas, which type of interface and interaction is acceptable to 
users, how can a running workflow be changed to adapt to changed 
conditions, or recover from an unforeseen situation, how can workflow 
management cope with time and resource planning? 

Paradigm changes have changed work content and work style of the 
Vienna laboratory over time. Certain areas, nevertheless, formed continuous 
threads of activity over many years. I would like to sketch some of them. 
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2. THE PROGRAMMING LANGUAGE THREAD 

Programming language development started with machine and assembler 
languages, whose structure was fairly simple, programs consisting of equally 
formed statements whose meaning was determined by the status and the 
changes of the hardware components they referred to. (We, of course, had an 
assembler on our Mailuefterl machine.) Higher level languages then were 
aimed at referring to elements of a problem area rather than to the 
components of a computer. The situation of early language designers was 
more difficult than they themselves thought at that time. They did not have 
to start from nothing: there was the mathematical notion of an algorithm, and 
numerical mathematics was an established field. Many basic elements could 
be drawn from there: variables, arithmetic expressions, functions, iteration. 
Yet we know that variables, expressions, and functions in mathematics are 
not quite the same as variables, expressions, and functions in computing. In 
addition, running programs depend on certain properties of the real 
computer: the finite precision of number representation, the implemented 
order of expression evaluation, storage properties, the available input/output 
operations, exception handling, and others. To which extent should these 
properties be visible or controllable in the programming language? 
Languages were designed following different philosophies, ranging from: 
keep the language definition 'clean' and implementation properties simply 
open, to at least partially addressing implementation properties within the 
language. Were these questions ever resolved to satisfaction? I think not. 
Only more recently, the internet begins to enforce more fully defined 
languages with compatible implementations across systems. 

We concentrated on a different aspect in Vienna. The question was how 
to define the meaning of a programming language, whether well-designed or 
not. The languages were announced as being machine independent, but the 
manuals failed to say on what these languages now depended, if it was not 
the real machine. Understanding language manuals relied on obvious 
analogies with arithmetics or real machine constructs, and on manually 
following and interpreting the program text. The question began to be 
recognized in the early sixties. The community was in search for well 
founded language definitions to serve as input to compiler writing, to 
investigate the correctness of programs, and to improve the conceptual 
understanding and teaching of programming languages. The feeling for the 
lack of these foundations was building up in Vienna in the course of writing 
a compiler for the ALGOL60 language, completed in 1961. 

The syntax of languages was the first area for which solutions appeared, 
it even triggered the interest of mathematicians and a wealth of publications 
was the consequence. New concepts for the semantic description of 
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languages came manyfold. Various attempts were made to use well known 
explications of the notion of an algorithm as the basis. Certain language 
features could be mapped on the Lambda calculus, on Markoff chains or 
abstract automata, leading to natural correspondences in some cases, 
unsatisfactory ones in others. It was John McCarthy who first formulated the 
concept of an abstract machine, to replace the real machine as the 
definitional vehicle [11]. 

This concept was taken up by Peter Lucas and colleagues in Vienna and 
successfully applied to various examples. In 1964 the IFIP Working 
Conference on Language Description Languages, organized by Heinz 
Zemanek and members of the Vienna Laboratory, surveyed the various 
proposed approaches in that area, all still within the philosophy of 
'independent computing'. For us the real challenge came with the emergence 
of the programming language PLII in 1965, the most complex language seen 
so far, meant to encompass numerical as well as business applications and 
giving access to all the system capabilities available at that time (file 
systems, input/output, exception handling, tasking, etc.), clearly supporting 
the data based computing paradigm. The Vienna laboratory accepted the 
challenge and started the project of developing a complete, formal 
description of PLII. We constructed an abstract machine which was 
characterized, like a real machine, by the set of states it can assume, and by 
the transitions from one state to the next. States were mathematical objects, 
which had components serving the definition of the various language 
aspects (stores, name scopes, evaluation stacks, etc.). Given a state, the state 
transition function defined the successor state (or in general: the set of 
possible successor states). Programs were represented in tree form according 
to an 'abstract syntax', which defined its meaningful parts, independent of 
the oddities of the concrete program representation as a character string. The 
program to be interpreted defined the initial state of the abstract machine, 
and the successive application of the transition function defined the 
computation steps until, hopefully, an end state is reached. The behavior of 
the abstract machine and, in particular, the end state defined the 'meaning' 
of the program [10]. 

The first version of the formal definition of PLII (called ULD: Universal 
Language Definition) was finished by the end of 1966. Two more versions 
followed which improved readability and included new extensions of PLII. 
Completing these definitions was a major engineering effort. We had to 
cooperate internationally with other mM departments (Language 
Development and Control, Compiler Development, User Representatives) 
distributed over various locations (before the advent of the internet). This 
cooperation had immediate value leading to clarifications, changes and 
simplifications of the language. Technically, it was important to take the 
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freedom to design the underlying abstract mechanism in a way best suitable 
for the problem, which means not to be constrained by a preconceived 
formalism. The notation invented for defining the abstract syntax, states and 
the state transitions became known as the VDL (the Vienna Definition 
Language) [09]. 

The ULD project demonstrated that formal definition of a language the 
size of PLiI was actually possible and it gave insights into properties of PLiI 
that were difficult to grasp without a formal notation. To note, the main 
cause of difficulties and tediousness to cope with was the fact that the 
language existed first, before the universe, or better call it the abstract 
system, was defined it was supposed to address. In hindsight, it is the wrong 
order to create notation first, and then to make the attempt to clarify its 
meaning by inventing an appropriate abstract system. I want to underline this 
here because the same mistake is being made again and again until today, 
just see some of the many design and modeling languages invented in recent 
years. 

VDL was not the final answer. A number of critical questions remained: 
- If the behavior of the abstract machine defines the meaning of a 

program, the meaning to an extent depends on the specific design of the 
machine. Is it sensible to define an 'essential meaning' based on a subset 
of the states or of the computational steps? 
- Is the definition adequate for attempts to formally prove general 

properties of the defined language? The principal answer is yes and 
practical feasibility was shown with smaller examples. Proofs, however, 
may become unsurmountably lengthy and tedious for a language the size 
ofPLlI. 
- Is the definition adequate for proving properties of individual programs 

written in the language defined? A similar answers applies. 
These questions gave rise to other approaches. The approach often called 

'denotational semantics' (as opposed to the 'operational semantics' of the 
VDL) was triggered be Dana Scott [03] and Christopher Strachey [12] and 
investigated and used in Vienna by Hans Bekic, Peter Lucas, later by Dines 
Bjoerner, Cliff Jones and colleagues. It avoids the concept of computational 
steps and associates meaning to a language term in the form of a 
mathematical object, where the meaning of a composite term in general is 
built up from the meanings of the components of the term. Denotational 
semantics offers elegant explications for certain language concepts (e.g. 
procedures), less elegant ones for others (e.g. goto's), and in many cases 
makes it easier to construct mathematical proofs. The definition of a PLiI 
subset was completed in Vienna using a notation built from elements of 
VDL but also influenced by denotational semantics [01]. It was done in 
preparation for a compiler project for a new machine architecture, so it was 
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critical to find the right style for the definition to serve multiple purposes: as 
communication vehicle among language designers and machine architects, 
as a basis for arguing formally about programs, and as the precise input to 
compiler design. 

Another school of thought advocated the 'axiomatic approach'. R.W. 
Floyd [06] and c.A.R. Hoare [07] were the main proponents and important 
contributions came from E.W. Dijkstra [05]. The aim was to be able to talk 
about the effects of executing a program, or the component of a program, 
without setting up a mechanism for doing the execution. The building blocks 
of this scheme are sentences of the form "if P is true before the execution of 
a piece of a program then Q is true after the execution, provided the 
execution terminates", where P and Q are propositions about the state of the 
computation. This builds up a methodology for proving the correctness of 
programs. The proof theory then consists of a proof rule for each syntactic 
form of the language. This thinking also influenced the projects in Vienna. 

After the PLiI project emphasis in Vienna shifted from language 
definition to advanced system development and to program development. 
Formal methods carried over to programming methodology. 

To be mentioned along the programming language thread are several 
language compilers which were developed in Vienna over time, ranging 
from an experimental ALGOL 60 compiler to compilers for RPG II, for a 
subset PLlI, and for REXX, the mM command language, for various 
systems and for commercial use. Correctness proofs for the design of certain 
central compiler features were performed especially for ALGOL 60 and for 
PLiI. 

3. THE PROGRAM DEVELOPMENT THREAD 

Programming methodology developed out of an art performed by 
individuals. A considerable skills base had developed already by the end of 
the fifties, primarily for applications in numerical mathematics and string 
manipulation, supporting the independent computing paradigm, but writing 
correct programs was not yet really a teachable discipline. Testing was 
considered the verification of program correctness by many. 

The problem of correctness of programs was made a theme in Vienna 
early on. The thinking was: if a program is supposed to realize a 
mathematical function, and if the meaning of the program is formulated in 
mathematical terms, it must be possible to mathematically prove the 
correctness of the program by proving the equivalence of the two. Initial 
steps were taken to show the practical feasibility for non-trivial. yet small 
programs. 



84 Kurt Walk 

The application of these methods to larger programs soon hit limits of 
size and complexity. Also, whereas programming already was supported by 
tools like editors, compilers, and debuggers, this was not the case for the 
development of formal proofs. This is one of the reasons why attempting 
correctness proofs of larger programs was not a practical proposition. But, 
maybe, there were ways for writing correct programs in the first place? 
Given a formal specification of what a program is supposed to achieve, we 
could look for ways of transforming this specification into a form which is 
closer to the terms of the chosen programming language. These steps then 
could be repeated until a valid program is reached. This is the idea of 
stepwise refinement, where the correctness of each individual step should be 
verifiable. 

Main application area in Vienna was the formal description of compiler 
concepts and the verification of their correctness (sometimes even more 
significantly: their incorrectness) with respect to the language definition, 
also proofs of the equivalence of compiler concepts. Significant practical 
results were achieved. The method, however, is not restricted to compilers. It 
was broadly applied and became a subject taught at universities [02], [08]. 

Appropriate notation was developed in Vienna for expressing program 
specifications at an abstract level and for arguing the correctness of 
development steps. The approach together with the specific notation became 
known as the Vienna Development Method (VDM). The Vienna laboratory 
did not work in isolation, VDM was extensively discussed in the scientific 
community, in particular also in the IFIP Working Groups 2.2 and 2.3. 

Around mid of the seventies, further developments of this methodology 
moved out of Vienna, together with the key contributors Peter Lucas, who 
joined IDM Research in San Jose, Dines Bjoerner and Cliff Jones, who 
accepted positions as University professors. There is an active, international 
scientific community in this area. New developments and applications of 
formal methods are being discussed in annual conferences (International 
Symposia of VDM Europe, later called Formal Methods Europe) which 
bring together active researchers in the area of formal methods and 
representatives of the industry. Formal methods are a living subject and there 
is a tendency now that it is returning from academia to industry. 
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4. THE PROGRAM PRODUCT DEVELOPMENT 
THREAD 

85 

The development of programs for commercial use, in Vienna started in 
the seventies, added new dimensions to our understanding of the 
programming profession: 

- Interfaces to system facilities and resources, key to data based and 
transaction computing, were not defined within the scope of programming 
languages. They needed separate investigation. 

- Starting points of development more often than not were general 
requirements rather than formal specifications. Development of the 
specifications was the first phase in development, which in most cases is an 
iterative process. The specification method had to serve more than one 
purpose: communicating with controlling parties and prospective users, 
providing the basis for the planning of programming tasks and the 
communication among programmers, and being the formal input to 
programming development. This often led to adopting formal and informal 
methods that seemed best suitable just for the case at hand, no generally 
acceptable method for expressing requirements was developed. 

- Project planning, setting of checkpoints and committing to deadlines, 
controlling and re-planning, was seen as an art more than as a scientific 
discipline and personal experience was a key success factor. 
- Human aspects like communication in a project team and the 
motivation of team members are hardly less significant for success than' 

are technical education and experience. 
We soon learned that ignoring anyone of these dimensions would lead to 

disaster. An appropriate skills base could be built up and a series of products 
were developed by the Vienna laboratory. Besides compilers and utilities, 
there was a focus on the development of tools for the development and 
support of complex applications, specifically in two areas. Transaction 
computing was supported by products for the definition and maintenance of 
user interfaces on terminals and workstations, and workflow scenarios were 
the target of workflow products. 

The goals of using workflow products in an organization are to ensure the 
reliable and repeatable execution of established business processes, and to 
improve the efficiency of the organization by improving the processes over 
time [13]. Workflow products can improve the workplaces of users, offering 
tools and data for use just at the right time, and they can be used to enforce 
the rules established for the organization. Business processes can be 
embodied in workflow models, which define the relative positioning of 
activities performed either by people or by computer services. Workflow 
models are automatically interpreted by the workflow product. They can also 
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be used early on in the development cycle for the analysis and structuring of 
complex applications. This leads to a 'traceable' development, which means 
that components of the final implementation can be traced back to the terms 
and requirements introduced in the analysis phase. This is a property the 
workflow approach shares with object-oriented development, which allows 
tracing back implementation components to the objects meaningful during 
analysis (and for the user). One of our results was that the workflow and the 
object-oriented approach complement each other and must not be seen as 
alternative, or even conflicting disciplines.[l4]. 

Some of the Vienna products, not all of them, were commercially highly 
successful, and most of them were of outstanding quality. Leading edge 
quality even was reached by certain products being virtually defect-free. 
Still, the planning and control of complex development projects always 
remained a subject of concern. A project is a complex system of people 
playing various different roles, of development tools. computing resources 
and communication lines, and of development results in different states of 
completion. The system behaves in response to acting people and the 
performance of system services, guided by project plans and general 
development procedures. 

A development project, therefore, is itself a workflow system. Actual 
projects are usually supported by development environments providing tools 
at the workplaces of developers, but project guidance is normally not 
automated. A first step in this direction is the formal modeling of projects. 
Systems of asynchronously cooperating objects and activity flow models 
have been used for modeling standard project situations. They are the 
starting point for investigating the automation of projects [15]. Workflow 
products and object directories combined are the suggested way to go for 
formally controlling development project processes. 

Formal methods again will advance the art of programming. 

5. REMARK 

The Vienna laboratory is history. Paradigm changes in information 
technology have coined its proceedings. It has produced advanced 
technology and products, and also has shaped people who continued work in 
other places. There were also failures among the successes. Occasionally, 
projects were even too early for the general state of the art. For example, we 
had speech processing projects early on. It was too early and we returned to 
that subject only in the nineties, developing speech recognition products. 

What is the next computing paradigm? Maybe we shall see us all more 
and more as passive users in all-encompassing systems, interacting with the 
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system just by being at a certain place, or by changing position? Technology 
is certainly around, but the increasing dependency of most aspects of life 
(and of life itself) on information technology will further increase the 
significance of a solid foundation and of rigorous methodologies. 
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