
COMPUTABILITY OF LINEAR
EQUATIONS

Vasco Brattka*
Theoretische Informatik 1, FernUniversitiit Hagen
58084 Hagen, Germany
Vasco.Brattka@FernUni-Hagen.de

Martin Ziegler**
Heinz Nixdorf Institute, University of Paderborn
33095 Paderborn, Germany
ziegler@uni-paderborn.de

Abstract Do the solutions of linear equations depend computably on their coef­
ficients? Implicitly, this has been one of the central questions in linear
algebra since the very beginning of the subject and the famous Gau6
algorithm is one of its numerical answers. Today there exists a tremen­
dous number of algorithms which solve this problem for different types
of linear equations. However, actual implementations in floating point
arithmetic keep exhibiting numerical instabilities for ill-conditioned in­
puts. This situation raises the question which of these instabilities are
intrinsic, thus caused by the very nature of the problem, and which
are just side effects of specific algorithms. To approach this principle
question we revisit linear equations from the rigorous point of view of
computability. Therefore we apply methods of computable analysis,
which is the Turing machine based theory of computable real number
functions. It turns out that, given the coefficients of a system of linear
equations, we can compute the space of solutions, if and only if the
dimension of the solution space is known in advance. Especially, this
explains why there cannot exist any stable algorithms under weaker
assumptions.

Track 1: Algorithms, Complexity and Models of Computation.

Keywords: Computable Analysis, Linear Equations.

*Work partially supported by DFG Grant BR 1807/4-1
••work partially supported by DFG Grant Me 872/7-3

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002

96

1. Introduction
In this paper we want to study computability properties of systems of linear

equations Ax = b, where A E !Rmxn is a real matrix, b E !Rm is a real vector and
x E !Rn is a variable. Solving systems of linear equations effectively, that is, by
means of some sort of computing machinery, has been a particularly prominent
subject in both mathematics and computer science. GauB, when inventing his
now famous algorithm, considered real numbers as entities which, in one step,
can be operated on exactly. This idea has been captured, in order to analyze
the complexity of other numerical algorithms as well, by Blum, Cucker, Shub,
and Smale's model of real number computation [1].

In contrast, numerical mathematics takes into account properties of float­
ing point numbers by tracing propagation of rounding errors throughout the
computational process. There, the input is presumed to be exact (a rational
number of for example type float) and one asks for the required accuracy
(e.g., double) for intermediate computations in order to obtain the result with
desired precision (say, float again). Notice that, strictly speaking, no reals
but only rational numbers are involved for input, processing, and output.

Numerical analysis provides a large number of algorithms to solve linear
equations, such as GauB' elimination algorithm, Cholesky's decomposition al­
gorithm and many others. Unfortunately, the applicability of these algorithms
is limited by their numerical instability and error analysis is a non-trivial topic
of research (cf. [12] as a standard text on this topic).

In the present work, we consider a truly real model of computation based on
approximation by sequences of rational numbers. This model takes into account
that, in practice, input data like 1.6 · w-19 {negative charge, in Coulomb, of
an electron) in fact is not exact but has been obtained, for instance, by a
physical measurement (here: by R.A. Millican, 1911) together with some error
bound (say, ±0.1·10-19). Improved experimental technique later yielded better
approximations like (1.6022±0.0001) ·10-19; a further increase in precision can
be expected for the future.

This observation is captured in a model of real number computation intro­
duced by Alan Turing [9) and Grzegorczyk [4) which nowadays forms the basis
of Computable Analysis [8, 6, 10]: A real number x E IRis fed into a computer
by means of an infinite sequence of rationals qn and corresponding error bounds
en such that lx-qnl ~ en -t 0. Upon this input, it computes result y = f(x)
if it outputs two corresponding rational sequences (pn) and (6n) for y E lR.

One advantage of this approach is that it allows to unify the development
of algorithms and their stability analysis in a single model. And although real
numbers are represented by approximations in this model, one can still consider
them as entities to operate on algorithmically: The feasible real RAM model,
introduced in [2), characterizes the Turing machine approach in terms of real
RAMs.

Since Turing's seminal work, a vast number of publications have investi­
gated of various problems over real numbers from areas ranging from Classical
Analysis [8] over Geometry, Theory of Fractals [7, 5] to Physics [8, 11]. In

Computability of Linear Equations 97

fact, several of them turned out to be uncomputable with respect to this model
and thus explained for numerical instabilities experienced in actual software
implementations.

In the present work, we address one of the very basic problems in Linear
Algebra: Solving systems of linear equations Ax = b. The set of solutions of
such equations are exactly the affine subsets L £; JRn and any such subset can
equivalently be characterized by an affine basis. But are these characteriza­
tions also computably equivalent? In other words: Can some Turing Machine
effectively convert between the following representations for an affine subspace
L£;1Rn:

a) matrix A E JRmxn and vector bE JRm, given by rational approximations
and error bounds such that L = { x E JRn : Ax = b};

b) affine basis x 1, ... , Xd E JRn and x0 E JRn, given by rational approx. and
error bounds, such that L = {xo + A1X1 + ... + AdXd: A; E JR};

c) distance function dL: lRn -t JR,y 1-+ inf{llx- Yll: x E L}, given by a
"program" of dL (or, equivalently, by approximating rational WeierstraB
polynomials).

Converting from a) to b) or c) means finding all solutions x to Ax= bin a more
ore less explicit way, that is, 'solving' the equation. Our main result shows that
this conversion is possible, if and only if the dimension of the solution space is
known in advance (that is, if rank(A, b) = rank(A) is given as additional input
information).

Since by Church's thesis the Turing machine model characterizes those func­
tions which are realizable on physical machines, our results imply certain in­
trinsic limitations of algorithmic solutions of systems linear equations: there
is no general algorithm which could be performed on a physical machine and
which solves systems of linear equations without knowing the dimension of the
solution space in advance. And actually, our conclusions are in best confor­
mity with the practical knowledge in numerical analysis. But since numerical
analysis does not use any formal model of computation, it was not before such
a theoretical study that this heuristic knowledge on principal limitations could
be expressed in form of concise theorems.

In a previous paper [13] we have started to link linear algebra to computable
analysis and we have investigated the question in which sense the dimension
of a linear subspace can be computed. The present article continues along
this line. The following section contains a short introduction to computable
analysis and our previous results. Section 3 contains the technical main part of
the paper and discusses how certain types of information on linear subspaces
can be computably translated into each other. Finally, Section 4 applies the
results to linear equations in order to study their computability properties.

2. Computable Analysis and Linear Algebra
In this section we briefly present some basic notions from computable analy­

sis and some direct consequences of well-known facts. We will use Weihrauch's

98

representation based approach to computable analysis, the so-called 7}jpe-2-
Theory of Effectivity, since it allows to express computations with real num­
bers, continuous functions and subsets in a highly uniform way. For a precise
and comprehensive reference we refer the reader to [10]. Roughly speaking,
a partial real number function f :~ an -+ a is computable, if there exists a
Turing machine which transfers each sequence p E Ew that represents some
input X e an into some sequence FM(p) which represents the output f(x).
Since the set of real numbers has continuum cardinality, real numbers can only
be represented by infinite sequences p E Ew (over some finite alphabet E) and
thus, such a Thring machine M has to compute infinitely long, but eventually
it transfers each input sequence pinto an appropriate output sequence FM(p).
It is reasonable to allow only one-way output tapes for infinite computations
since otherwise the output after finite time would give no information on the
final result (because it could possibly be replaced later by the machine). It is
straightforward how this notion of computability can be generalized to other
sets X with a corresponding representation, that is a surjective partial mapping
6 :~ EW-+ X.

Definition 1 (Computable functions) Let 6,6' be representations of X, Y,
respectively. A function f :~ X -+ Y is called (6, 6')-computable, if there exists
some Thring machine M such that 6'FM(p) = f6(p) for all p e dom(/6).

Here, FM :~ Ew -+ Ew denotes the partial function, computed by the Thring
machine M. It is straightforward how to generalize this definition to functions
with several inputs and it can even be generalized to multi-valued operations
f :~ X =I Y, where f(x) is a subset of Y instead of a single value. In this
case we replace the condition in the definition above by 6' FM(p) e f6(p). We
can also define the notion of (6, 6')-continuity by replacing FM by a continuous
function F :~ Ew-+ Ew (with respect to the Cantor topology on Ew).

Already in case of the real numbers it appears that the defined notion of com­
putability sensitively relies on the chosen representation of the real numbers.
The theory of admissible representations completely answers the question how
to find "reasonable" representations of topological spaces [10]. We will make no
formal use of admissibility,· and hence the reader may ignore all corresponding
information. Let us just mention that for admissible representations 6, 6' each
(6, 6')-computable function is necessarily continuous (with respect to the final
topologies of 6, 6').

An example of an admissible representation of the real numbers is the so­
called Cauchy representation p :~ Ew -+ R, where roughly speaking, p(p) = x
if pis an (appropriately encoded) sequence of rational numbers (qi)ieN which
converges rapidly to x, i.e. lqi- qkl ~ 2-A: for all i > k. By standard coding
techniques this representation can easily be generalized to a representation of
then-dimensional Euclidean space pn =~ I;W -+an and to a representation of
m X n matrices pmxn :~ Ew -+ Rmxn. A vector x ERn or a matrix A E Rmxn
will be called computable, if it has a computable pn-, pmxn_name, i.e. if there
exists a computable p E Ew such that x = pn(p) or A= pmxn(p), respectively.
A function I : ~ an -+ R is just called computable, if it is (pn, p)-computable.

Computability of Linear Equations 99

If o and o' are admissible representations of topological spaces X and Y,
respectively, then there exists a canonical representation [o, o'] :s;:; Ew -t X x Y
of the product space X x Y and a canonical function space representation
(o -t o'] :s;:; Ew -t C(X, Y) of the set C(X, Y) of total continuous functions
f : X -t Y. We mention that these representations allow evaluation and type
conversion. Evaluation means that the evaluation function C(X, Y) x X -t Y,
(!, x) I-t f(x) is ([[o -to'], o], o')-computable and type conversion means that a
function f : Z x X -t Y is ([o", 8], o')-computable, if and only if the canonically
associated function I': Z -t C(X, Y) with f'(z)(x) := f(z,x) is (8", [8 -t 8'])­
computable. As a direct consequence we obtain that matrices A E lRmxn can
effectively be identified with linear mappings f E Lin{lRn, lRm), see Proposition
2.1 and 2.2 below. Especially, a matrix A is computable, if and only if the
corresponding linear mapping is a computable function.

To express weaker computability properties, we will use two further repre­
sentations P<,P> :s;:; Ew -t JR. Roughly speaking, p<(p) = x if pis an (appro­
priately encoded) list of all rational numbers q < x. {Analogously, P> is defined
with q > x.) It is known that a mapping f :s;:; X -t lR is {o,p)-computable,
if and only if it is (8,p<)- and (8,p>)-computable [10]. The (pn,p<)-, and
the (pn, P>)-computable functions f : lRn -t lR are called lower and upper
semi-computable, respectively.

Moreover, we will also need a representation of the space ,en of linear sub­
spaces V s;:; lRn. Since all linear subspaces are non-empty closed spaces, we
can use well-known representations of the hyperspace An of all closed non­
empty subsets A s;:; lRn (cf. (3, 10]). One way to represent such spaces is via
the distance function dA : lRn -t lR, defined by dA (x) := infaeA d(x, a), where
d : lRn X lRn -t lR denotes the Euclidean metric of lRn. Altogether, we define
three representations '1/Jn,'lf;~,'lf;~ :s;:; Ew -tAn. We let 'lf;n(p) =A, if and only
if [pn-+ p](p) = dA. In other words, p encodes a set A w.r.t. '1/Jn, if it encodes
the distance function dA w.r.t. [pn -t p]. Analogously, let 'lf;~(p) = A, if and
only if [pn -t P>](p) = dA and let 'lf;~(p) =A, if and only if [pn-+ p<](p) = dA.
One can prove that '¢~ encodes "positive" information about the set A (all
open rational balls B(q,r) := {x E lRn : d(x,q) < r} which intersect A can
be enumerated}, and '¢~ encodes "negative" information about A {all closed
rational balls B(q,r) which do not intersect A can be enumerated). The final
topology induced by '1/Jn on An is the so-called Fell topology. It is a known fact
that a mapping f :s;:; X -tAn is (8, '1/Jn)-computable, if and only if it is (8, '¢~)­
and (8, '¢~)-computable [10].

A closed set A s;:; lRn is called r.e., co-r. e. or recursive, if it is empty or if
there is a computable p E Ew such that A= 'lf;~(p), A= 'lf;~(p), A= 'lf;n(p),
respectively. Thus, the non-empty r.e., co-r.e. or recursive subsets A s;:; an
are exactly those with upper, lower semi-computable or computable distance
function dA : lRn -t lR, respectively and a closed set is recursive, if and only if
it is r.e. and co-r.e. By duality, an open subset U s;:; an is called r.e., co-r. e. or
recursive, if and only if its complement lRn \ U is co-r.e., r.e. or recursive. Given
a representation o of X, we will say more generally that a subset U s;:; Y s;:; X

100

is 6-r.e. open in Y, if 6-1(U) is r.e. open in 6-1(Y). Here a set A~ B ~ I:w is
called r.e. open in B, if there exists some computable function f :~ I:w -t I:*
with dom{f) n B = A. Intuitively, a set U is 6-r.e. open in Y, if and only if
there exists a Turing machine which halts for an input z E Y given w.r.t. 6, if
and only if z E U. It is known that a set U ~ Rn is pn-r .e. open in Rn , if and
only if it is r.e. open. H a set U ~X is 6-r.e. open in X, then we will say for
short that it is 6-r.e. open.

We close this section with a short survey on computability results in linear
algebra which have been established in our previous paper [13]:

Proposition 2 Consider the following canonical mappings from linear algebra:

1. Lin(Rn,r) -t Rmxn is ([pn -t pm],pmxn)-computable,

2. Rmxn -t Lin(Rn,Rm) is (pmxn,[pn -t pml)-computable,

3. ker : Rm x n -t An is (pm x n, '1/J~) -computable,
4. span : Rm x n -t Am is (pm x n, '1/J~) -computable,

but neither (pmxn,.,p;:)-computable, nor -continuous,
5. det: Rnxn -t R is (pnxn,p)-computable,

6. rank: Rmxn -t R is (pmxn,P<)-computable,
but neither (pmxn,P>)-computable, nor -continuous,

7. dim:~ An-t R is (1/J~,P<)- and ('1/J~,P>)-computable.

3. Linear Subspaces and their Dimension
Considering the computability results about linear algebra known so far from

Proposition 2, what can be said about linear equations? H we consider only
homogeneous equations Ax = 0 in the first step, then we obtain the solution
space L = ker(A) and we can deduce from Proposition 2.3 that there exists
a Turing machine which takes A as input with respect to pmxn and which
computes the space of solutions with respect to 1/J~. Unfortunately, this type
of "negative" information about the space of solutions is not very helpful; in
general it does not even suffice to find a single point of the corresponding space
(cf. [10]). Thus, it is desirable to obtain the "positive" information (i.e. a t/J~­
name) about the space of solutions too. On the other hand we can deduce from
rank(A) = n- dimker(A) and Proposition 2.6 and 2.7 that ker: pxn -tAn
is not (pmxn,.,p~)-continuous. In other words: without any additional input
information, positive information about the solution space is not available in
principle.

What kind of additional information could suffice to obtain positive infor­
mation about the solution space? We will show that it is sufficient to know the
dimension of the solution space, i.e. codim(A) = dimker(A) in advance. More
precisely, the following theorem states that given a linear subspace V ~ Rn
with respect to 1/J~ and given its dimension dim(V), we can effectively find a
t/J~-name of V. The remaining part of this section will be devoted to the proof
of the following theorem, separated in several lemmas.

Computability of Linear Equations 101

Theorem 3 There exists a Turing machine which on input of a linear subspace
V ~ JR.n and d = dim(V) with respect to '1/J~ and p, respectively, outputs V with
respect to '1/J~, more precisely, the function

with dom(/) := {(V,d) E An X JR.: v E en and d = dim(V)} is (['1/J~,p],'I/J~)­
computable.

The main technical tool for the proof of this theorem is given in the following
definition. Here and in the following lxl := v'.E~1 Ixil 2 denotes the Euclidean
norm of x = (x1, ... , Xn) E JR.n.

Definition 4 Let W ~ !Rn be a linear subspace and c > 0. Denote by

We:= U B(w,clwl) = {x E JR.n: (3w E W) ix- wi < clwl}
wEW

the relative blow-up of W by factor c with respect to Euclidean norm.

The following Figure 1 shows the blow-up We of a one-dimensional subspace
W ~ JR3 by factor c = 1/4 together with a one-dimensional subspace V ~
W~ U {0}. The first useful property of the blow-up is given in the following

Figure 1. The blow-up W. of a linear subspace

lemma, which roughly speaking states that each linear subspace is contained
in an arbitrarily small blow-up of a linear subspace of the same dimension but
with rational basis.

Lemma 5 Let V ~ JRn be a linear subspace of dimension d and c > 0. Then
there are w17 ••• , Wd E l(1l such that V ~ WeU{O}, where W := span(w1, ... ,wd)·

We leave the proof of this and the following three lemmas to the reader.
Before we formulate the next property of the blow-up, we state an intermediate
lemma about linear independence.

102

Lemma 6 For each n ~ 1 there exists a constant A > 0 such that, whenever
b1, ... , bd E JRn are pairwise orthogonal normed vectors and Xt, ... , Xd E lRn with
ib; - x;i < A fori = 1, ... , d, then (x1, ... , xd) is linearly independent.

From now on we assume without further mentioning that A < 1 is a fixed
rational constant as in the previous lemma (where we consider n ~ 1 to be
arbitrary but fixed). The next lemma formulates another property of the blow­
up which roughly speaking states that if a linear subspace V is contained in a
sufficiently small blow-up of a linear subspace W of the same dimension, then
this blow-up already approximates V quite well.

Lemma 1 Let V, W ~ JRn be linear subspaces of equal dimension d and let
c > 0 with r5 := 2.,fd · c/(1- c) < A. If V ~ w. U {0}, then B(w,r5iwi)
intersects V for any wE W \ {0}.

Now we formulate the last lemma of this section which states an effectivity
property of the blow-up. Roughly speaking, the property V ~ w. U {0} can be
recognized by a Turing machine in a certain sense.

Lemma 8 There exists a Turing machine which, on input of linear subspaces
V, W ~ JRn with respect to representations 1/J~ and 1/J~ and c > 0 halts, if and
only if V ~ w. U { 0}, more precisely

{(V, W, c) E An X An x lR: V ~ W. U {0} and c > 0}

is [1/J~, 1/J~, pj-r. e. open in en X en X JR.

Finally, we can combine Lemma 5, 7 and 8 to a proof of Theorem 3.

Proof of Theorem 3. Let V ~ JRn be a linear subspace and let d =
dim(V) > 0. We claim

B(q,r) n V =f. 0 {::::::> (3wll ... ,wd E Q")(3.Xt, ... ,Ad E Q)(3c > 0)
r5 <A, (wt, ... , wd) is linearly independent,

V s;; w. U {0} and B(w,r5iwi) ~ B(q,r),

where W := span(w1, ... , wd), w := Et=l .X;w; =f. 0

and r5 := 2.,fd · c/(1- c)

for all q E Q'l and r E Q with r > 0. By Lemma 7 it is clear that "<=" holds.
Let on the other hand B(q,r) n V =f. 0 with q E Q'l andrE Q with r > 0.
Then there exists some v E V n B(q, r), v =f. 0. Let r5(c) := 2.,fd · c/(1- c) for
all c > 0. Since iq - vi < r there is some c with 0 < c < 1 such that

(1 + •i~~l) iq - vi + •i~~l iqi < r.

Let r5 := r5(e). By Lemma 5 there exist Wt, ... ,wd E Q'l such that V ~ W.u{O}
with W := span(wt, ... ,wd)· Thus, there is somew E W\{0} with iv-wi < ciwi

Computability of Linear Equations 103

and without loss of generality we can even assume that there are .X1, ... , Ad E Q
with w = 2:1=1 AiWi· We obtain lq- wl :::.; lq- vi+ lv- wl < lq- vi+ e:lwl and
lwl :::.; lq- wl + lql :::.; lq- vi+ e:lwl + lql, and hence lwl :::.; 1/(1- e:)(lq- vi+ lql)
and thus

lq- wl + tSiwl < lq- vi + (c + tS)Iwl :::.; (1 + ~) Jq- vi + ~lql < r,

i.e. B(w, &lwl) ~ B(q, r). Thus, "=>" holds too and the above equivalence is
proved.

Thus, given V by 1/J'; and d = dim(V) by p, we can recursively enumerate
all q E «:r, r E Q with r > 0 such that B(q, r) n V ::f. 0 by virtue of Lemma 8.
In this way we obtain a 1fJ<-name of V. D

Using Theorem 3 we can improve the statement of Corollary 1 in [13] in the
following way.

Corollary 9 The multi-valued mapping basis :~ An x 1R =t An,

(V,d) f-+ {{bt, ... ,bd} ~ !Rn: (bt, ... ,bd) is a basis ofV}

with dom(basis) := {(V,d) : d = dim(V)} is ([1/J<,p],'I/Jn)-computable and
([1/J';, p], 1/Jn) -computable.

Here, the ([1/J<, p], 1/Jn)-computability of basis has been proved in [13] and the
([1/J';, p], 1/Jn)-computability follows with Theorem 3. Roughly speaking, we can
deduce that the following equivalences hold for different types of information
about linear subspaces:

positive + dimension = negative + dimension = positive + negative = basis

These equivalences could be made precise by defining corresponding represen­
tations of .en and by proving their equivalence, but we are not going to discuss
this here. Instead of that, we mention that for single linear subspaces one
obtains the following less uniform corollary.

Corollary 10 A linear subspace V ~ !Rn is r.e., if and only if it is co-r. e., if
and only if it is recursive, if and only if it admits a computable basis.

Since the dimension is always a computable number, the proof of this corol­
lary follows directly from the previous corollary and the fact that the mapping
span:~ !Rnxd -tAn, restricted to linear independent inputs (b1 , ... ,bd), is
(pnxd, 1/Jn)-computable, which has been proved in [13].

4. Linear Equations
In this section we want to apply the results of the previous section to solve

linear equations Ax= b. It is a well-known and obvious fact from linear algebra
that such a linear equation is solvable, if and only if rank(A) =rank(A, b). The

104

following theorem is the main result of this paper. It states that the solution
operator of solvable linear equations is computable, provided that the rank of
the linear equation is given as additional input.

Theorem 11 There exists a Turing machine which takes a solvable linear
equation Ax = b together with d = rank(A, b) as input and which computes
the space of solutions L = {x: Ax= b}. More precisely, the function

solve:~ IRmxn x IRm x IR-+ An, {A, b,d) t-tL= {x E IRn :Ax= b}

with dom(solve) := {(A,b,d) E IRmxn x IRm x IR: rank(A) = rank{A,b) = d} is
([pm x n, pm, p], .,pn) -computable.

Proof. Notice that x E L, if and only if, in homogeneous coordinates, x is
a solution to (A, b)· t(x, -1) = 0. We therefore may determine the kernel of
(A, b) E IRmx(n+l) and scale the results x such that Xn+l = -1.

To realize this idea precisely, we perform several steps: let A E IRmxn be
given by pmxn, let b E IRm be given by pm and let d = rank(A) = rank(A, b)
be given by p. First, we determine ker(A, b) w.r.t. 1/J~+l, which is possible by
Proposition 2.3. Then we can use Theorem 3 and the formula dimker(A,b) =
n + 1- d to determine a 1/J~+l-name of ker(A, b). Especially, this name allows
to find effectively a point z = (z11 ... , ZnH) E ker(A, b) w.r.t. pn+l such that
Zn+l < 0. Let c; := Zi/lzn+ll fori= 1, ... ,n. Then c := {c1, ... ,en) is a solution
of Ax= band L = {x: Ax= b} = c+ker(A). Since dimker(A) = n-dwe can
compute a .,pn-name of ker(A) by Proposition 2.3 and Theorem 3. Finally, we
note that the function IRn x An-+ An, (x,A) t-t x +A:= {x +a E IRn :a E A}
is ([pn, .,pn], .,pn)-computable. Altogether, this allows us to compute a .,pn-name
~L o

Regarding the proof and Corollary 9 we can even conclude the following
corollary, which states that given a solvable linear equation together with its
rank we can effectively find a specific solution and a basis for the homogeneous
equation.

Corollary 12 The maps :~ amxn X am X IR =* IRn X An' (A, b, d) t-t S, where
S is the set

{(c, {bt, ... , bn-d}) E IRn X An : c + span{bt, ... , bn-d) = {x: Ax= b}},

and dom(s) := {(A,b,d) E I!Fxn x llF x IR: rank(A) = rank(A,b) = d < n},
is ([pmxn,pm, p], [pn, .,pn])-computable.

Moreover, the previous theorem allows to deduce an immediate consequence
about single linear equations.

Corollary 13 If A E IRmxn is a computable matrix and bE IRm a computable
vector, then L = { x E IR" : Ax = b} is a recursive set. If, additionally, Ax = b
has a unique solution x E IRn, then this solution is computable.

Computability of Linear Equations 105

It is interesting to note that our results also allow to handle the problem
which is inverse to solving a linear equation: given an affine subspace, we can
find a linear equation with this affine subspace as solution space.

Theorem 14 There exists a Turing machine which takes an affine space L as
input and computes a linear equation Ax = b with L = { x : Ax = b} as set of
solutions. More precisely, the function solve admits a multi-valued right inverse
r :~An~ !Rmxn x !Rm x 1R which is (?fon,[pmxn,pm,p])-computable, for any
m~n.

Proof. Let L be given w.r.t. ?fon. Then we can effectively find some point c E L
w.r.t. pn. As in the proof of Theorem 11 we can compute L- c w.r.t. ?fon. By
Corollary 1 from [13] we can find a basis (b1, ... ,bk) E lRnxk of L-cw.r.t. pnxk.
If d := n- k = 0, then A = 0 and b = 0 defines a linear equation with L = !Rn.
Otherwise, apply the Gram-Schmidt orthogonalization process to determine an
orthogonal basis (o1 , ... , Ok) of L- c w.r.t. pnxk, i.e.

'"'i bi+l 0 0; 01 := b1, oi+l := bi+1- ~· -
1

-
1
-2-o; •=1 0;

for j = 1, ... , k- 1. Then, find some vectors vectors bk+l, ... , bn E !Rn w.r.t.
pn such that (o1, ... , Ok, bk+1, ... , bn) is linear independent, which is possible by
Lemma 4 in [13]. Then, apply the Gram-Schmidt orthogonalization process
again to determine vectors Ok+b ... , On w.r.t. pn such that (o1, ... , on) is an or­
thogonal basis of !Rn . Thus, (Ok+ 1 , ... , On) is an orthogonal basis of the orthog­
onal complement of L- c. Now, we can compute A:= t(ok+l• ... ,on,O, ... ,0) E
JRmxn w.r.t. pmxn and b := Ac w.r.t. pm. Then we obtain ker(A) = L- c and
L = {x: Ax= b}. Altogether, the procedure describes how to compute a right
inverse r of the function solve. D

Again we can deduce a simple fact about single spaces and equations.

Corollary 15 If L ~ !Rn is a recursive non-empty affine subspace, then there
exists a computable matrix A E lRm x n and a computable vector b E !Rm such
that L = { x E lRn : Ax = b} for any m ~ n.

5. Conclusion
In this paper we have continued our project to investigate computability

properties in linear algebra with rigorous methods from computable analysis.
This project has been started with [13] and could be continued along several
different lines. On the one hand, it would be interesting to extend the investi­
gation to complexity questions. Surely, this is possible as long as one considers
some non-uniform versions of our results. However, the fully uniform versions
would require complexity measures for asymmetric hyperspaces which are be­
yond the state of the art. On the other hand, it is a promising topic to study
other parts of linear algebra such as spectral theory or linear inequalities. Some
steps in this direction have been presented in [14, 15).

106

Last but not least, our results give further ground to the hope that com­
putable analysis can help to explain fundamental limitations of real number
computations. Many practical observations of numerical analysis, e.g. the fact
that numerical differentiation is much more difficult than numerical integra­
tion, already found natural explanations in computable analysis (see [10]). We
have tried to extend these applications of computable analysis to linear algebra
topics.

References
[1] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real Computation,

Springer, New York 1998.

[2] V. Brattka and P. Hertling, Feasible real random access machines, J. Complexity
14 (1998) 49(}-526.

[3] V. Brattka and K. Weihrauch, Computability on subsets of Euclidean space I:
Closed and compact subsets, Theoret. Comp. Sci. 219 (1999) 65-93.

[4] A. Grzegorczyk, On the definitions of computable real continuous functions,
Fund. Math. 44 (1957) 61-71.

[5] H. Kamo, K. Kawamura, and I. Takeuti, Computational complexity of fractal
sets, Real Analysis Exchange 26 (2000/01) 773-793.

[6] K.-I. Ko, Complexity Theory of Real Functions, Birkhauser, Boston 1991.
[7] K.-I. Ko, On the computability of fractal dimensions and Hausdorff measure,

Ann. Pure Appl. Logic 93 (1998) 195-216.

[8] M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics,
Springer, Berlin 1989.

[9] A. M. Turing, On computable numbers, with an application to the "Entschei­
dungsproblem", Proc. London Math. Soc. 42 (1936) 23(}-265.

[10] K. Weihrauch, Computable Analysis, Springer, Berlin 2000.
[11] K. Weihrauch and N. Zhong, Turing computability of a nonlinear Schrodinger

propagator, in: J. Wang (ed.), Computing and Combinatorics, vol. 2108 of Lect.
Not. Comp. Sci., Springer, Berlin 2001, 596-599.

(12) J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press,
Oxford 1965.

[13) M. Ziegler and V. Brattka, Computing the dimension of linear subspaces, in:
V. Hlavac, K. G. Jeffery, and J. Wiedermann (eds.), SOFSEM 2000: Theory
and Practice of Informatics, vol. 1963 of Lect. Not. Comp. Sci., Springer, Berlin
2000, 45(}-458.

[14) M. Ziegler and V. Brattka, A computable spectral theorem, in: J. Blanck,
V. Brattka, and P. Hertling (eds.), Computability and Complexity in Analysis,
vol. 2064 of Lect. Not. Comp. Sci., Springer, Berlin 2001, 378-388.

(15) M. Ziegler and V. Brattka, Turing computability of (non-)linear optimization,
in: T. Biedl (ed.), Thirteenth Canadian Conference on Computational Geometry,
University of Waterloo 2001, 181-184.

