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algebra since the very beginning of the subject and the famous Gau6 
algorithm is one of its numerical answers. Today there exists a tremen­
dous number of algorithms which solve this problem for different types 
of linear equations. However, actual implementations in floating point 
arithmetic keep exhibiting numerical instabilities for ill-conditioned in­
puts. This situation raises the question which of these instabilities are 
intrinsic, thus caused by the very nature of the problem, and which 
are just side effects of specific algorithms. To approach this principle 
question we revisit linear equations from the rigorous point of view of 
computability. Therefore we apply methods of computable analysis, 
which is the Turing machine based theory of computable real number 
functions. It turns out that, given the coefficients of a system of linear 
equations, we can compute the space of solutions, if and only if the 
dimension of the solution space is known in advance. Especially, this 
explains why there cannot exist any stable algorithms under weaker 
assumptions. 
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1. Introduction 
In this paper we want to study computability properties of systems of linear 

equations Ax = b, where A E !Rmxn is a real matrix, b E !Rm is a real vector and 
x E !Rn is a variable. Solving systems of linear equations effectively, that is, by 
means of some sort of computing machinery, has been a particularly prominent 
subject in both mathematics and computer science. GauB, when inventing his 
now famous algorithm, considered real numbers as entities which, in one step, 
can be operated on exactly. This idea has been captured, in order to analyze 
the complexity of other numerical algorithms as well, by Blum, Cucker, Shub, 
and Smale's model of real number computation [1]. 

In contrast, numerical mathematics takes into account properties of float­
ing point numbers by tracing propagation of rounding errors throughout the 
computational process. There, the input is presumed to be exact (a rational 
number of for example type float) and one asks for the required accuracy 
(e.g., double) for intermediate computations in order to obtain the result with 
desired precision (say, float again). Notice that, strictly speaking, no reals 
but only rational numbers are involved for input, processing, and output. 

Numerical analysis provides a large number of algorithms to solve linear 
equations, such as GauB' elimination algorithm, Cholesky's decomposition al­
gorithm and many others. Unfortunately, the applicability of these algorithms 
is limited by their numerical instability and error analysis is a non-trivial topic 
of research (cf. [12] as a standard text on this topic). 

In the present work, we consider a truly real model of computation based on 
approximation by sequences of rational numbers. This model takes into account 
that, in practice, input data like 1.6 · w-19 {negative charge, in Coulomb, of 
an electron) in fact is not exact but has been obtained, for instance, by a 
physical measurement (here: by R.A. Millican, 1911) together with some error 
bound (say, ±0.1·10-19). Improved experimental technique later yielded better 
approximations like (1.6022±0.0001) ·10-19; a further increase in precision can 
be expected for the future. 

This observation is captured in a model of real number computation intro­
duced by Alan Turing [9) and Grzegorczyk [4) which nowadays forms the basis 
of Computable Analysis [8, 6, 10]: A real number x E IRis fed into a computer 
by means of an infinite sequence of rationals qn and corresponding error bounds 
en such that lx-qnl ~ en -t 0. Upon this input, it computes result y = f(x) 
if it outputs two corresponding rational sequences (pn) and (6n) for y E lR. 

One advantage of this approach is that it allows to unify the development 
of algorithms and their stability analysis in a single model. And although real 
numbers are represented by approximations in this model, one can still consider 
them as entities to operate on algorithmically: The feasible real RAM model, 
introduced in [2), characterizes the Turing machine approach in terms of real 
RAMs. 

Since Turing's seminal work, a vast number of publications have investi­
gated of various problems over real numbers from areas ranging from Classical 
Analysis [8] over Geometry, Theory of Fractals [7, 5] to Physics [8, 11]. In 
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fact, several of them turned out to be uncomputable with respect to this model 
and thus explained for numerical instabilities experienced in actual software 
implementations. 

In the present work, we address one of the very basic problems in Linear 
Algebra: Solving systems of linear equations Ax = b. The set of solutions of 
such equations are exactly the affine subsets L £; JRn and any such subset can 
equivalently be characterized by an affine basis. But are these characteriza­
tions also computably equivalent? In other words: Can some Turing Machine 
effectively convert between the following representations for an affine subspace 
L£;1Rn: 

a) matrix A E JRmxn and vector bE JRm, given by rational approximations 
and error bounds such that L = { x E JRn : Ax = b}; 

b) affine basis x 1, ... , Xd E JRn and x0 E JRn, given by rational approx. and 
error bounds, such that L = {xo + A1X1 + ... + AdXd: A; E JR}; 

c) distance function dL: lRn -t JR,y 1-+ inf{llx- Yll: x E L}, given by a 
"program" of dL (or, equivalently, by approximating rational WeierstraB 
polynomials). 

Converting from a) to b) or c) means finding all solutions x to Ax= bin a more 
ore less explicit way, that is, 'solving' the equation. Our main result shows that 
this conversion is possible, if and only if the dimension of the solution space is 
known in advance (that is, if rank( A, b) = rank( A) is given as additional input 
information). 

Since by Church's thesis the Turing machine model characterizes those func­
tions which are realizable on physical machines, our results imply certain in­
trinsic limitations of algorithmic solutions of systems linear equations: there 
is no general algorithm which could be performed on a physical machine and 
which solves systems of linear equations without knowing the dimension of the 
solution space in advance. And actually, our conclusions are in best confor­
mity with the practical knowledge in numerical analysis. But since numerical 
analysis does not use any formal model of computation, it was not before such 
a theoretical study that this heuristic knowledge on principal limitations could 
be expressed in form of concise theorems. 

In a previous paper [13] we have started to link linear algebra to computable 
analysis and we have investigated the question in which sense the dimension 
of a linear subspace can be computed. The present article continues along 
this line. The following section contains a short introduction to computable 
analysis and our previous results. Section 3 contains the technical main part of 
the paper and discusses how certain types of information on linear subspaces 
can be computably translated into each other. Finally, Section 4 applies the 
results to linear equations in order to study their computability properties. 

2. Computable Analysis and Linear Algebra 
In this section we briefly present some basic notions from computable analy­

sis and some direct consequences of well-known facts. We will use Weihrauch's 
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representation based approach to computable analysis, the so-called 7}jpe-2-
Theory of Effectivity, since it allows to express computations with real num­
bers, continuous functions and subsets in a highly uniform way. For a precise 
and comprehensive reference we refer the reader to [10]. Roughly speaking, 
a partial real number function f :~ an -+ a is computable, if there exists a 
Turing machine which transfers each sequence p E Ew that represents some 
input X e an into some sequence FM(p) which represents the output f(x). 
Since the set of real numbers has continuum cardinality, real numbers can only 
be represented by infinite sequences p E Ew (over some finite alphabet E) and 
thus, such a Thring machine M has to compute infinitely long, but eventually 
it transfers each input sequence pinto an appropriate output sequence FM(p). 
It is reasonable to allow only one-way output tapes for infinite computations 
since otherwise the output after finite time would give no information on the 
final result (because it could possibly be replaced later by the machine). It is 
straightforward how this notion of computability can be generalized to other 
sets X with a corresponding representation, that is a surjective partial mapping 
6 :~ EW-+ X. 

Definition 1 (Computable functions) Let 6,6' be representations of X, Y, 
respectively. A function f :~ X -+ Y is called (6, 6')-computable, if there exists 
some Thring machine M such that 6'FM(p) = f6(p) for all p e dom(/6). 

Here, FM :~ Ew -+ Ew denotes the partial function, computed by the Thring 
machine M. It is straightforward how to generalize this definition to functions 
with several inputs and it can even be generalized to multi-valued operations 
f :~ X =I Y, where f(x) is a subset of Y instead of a single value. In this 
case we replace the condition in the definition above by 6' FM(p) e f6(p). We 
can also define the notion of (6, 6')-continuity by replacing FM by a continuous 
function F :~ Ew-+ Ew (with respect to the Cantor topology on Ew). 

Already in case of the real numbers it appears that the defined notion of com­
putability sensitively relies on the chosen representation of the real numbers. 
The theory of admissible representations completely answers the question how 
to find "reasonable" representations of topological spaces [10]. We will make no 
formal use of admissibility,· and hence the reader may ignore all corresponding 
information. Let us just mention that for admissible representations 6, 6' each 
(6, 6')-computable function is necessarily continuous (with respect to the final 
topologies of 6, 6'). 

An example of an admissible representation of the real numbers is the so­
called Cauchy representation p :~ Ew -+ R, where roughly speaking, p(p) = x 
if pis an (appropriately encoded) sequence of rational numbers (qi)ieN which 
converges rapidly to x, i.e. lqi- qkl ~ 2-A: for all i > k. By standard coding 
techniques this representation can easily be generalized to a representation of 
then-dimensional Euclidean space pn =~ I;W -+an and to a representation of 
m X n matrices pmxn :~ Ew -+ Rmxn. A vector x ERn or a matrix A E Rmxn 
will be called computable, if it has a computable pn-, pmxn_name, i.e. if there 
exists a computable p E Ew such that x = pn(p) or A= pmxn(p), respectively. 
A function I : ~ an -+ R is just called computable, if it is (pn, p )-computable. 
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If o and o' are admissible representations of topological spaces X and Y, 
respectively, then there exists a canonical representation [o, o'] :s;:; Ew -t X x Y 
of the product space X x Y and a canonical function space representation 
(o -t o'] :s;:; Ew -t C(X, Y) of the set C(X, Y) of total continuous functions 
f : X -t Y. We mention that these representations allow evaluation and type 
conversion. Evaluation means that the evaluation function C(X, Y) x X -t Y, 
(!, x) I-t f(x) is ([[o -to'], o], o')-computable and type conversion means that a 
function f : Z x X -t Y is ([o", 8], o')-computable, if and only if the canonically 
associated function I': Z -t C(X, Y) with f'(z)(x) := f(z,x) is (8", [8 -t 8'])­
computable. As a direct consequence we obtain that matrices A E lRmxn can 
effectively be identified with linear mappings f E Lin{lRn, lRm ), see Proposition 
2.1 and 2.2 below. Especially, a matrix A is computable, if and only if the 
corresponding linear mapping is a computable function. 

To express weaker computability properties, we will use two further repre­
sentations P<,P> :s;:; Ew -t JR. Roughly speaking, p<(p) = x if pis an (appro­
priately encoded) list of all rational numbers q < x. {Analogously, P> is defined 
with q > x.) It is known that a mapping f :s;:; X -t lR is {o,p)-computable, 
if and only if it is (8,p<)- and (8,p>)-computable [10]. The (pn,p<)-, and 
the (pn, P> )-computable functions f : lRn -t lR are called lower and upper 
semi-computable, respectively. 

Moreover, we will also need a representation of the space ,en of linear sub­
spaces V s;:; lRn. Since all linear subspaces are non-empty closed spaces, we 
can use well-known representations of the hyperspace An of all closed non­
empty subsets A s;:; lRn (cf. (3, 10]). One way to represent such spaces is via 
the distance function dA : lRn -t lR, defined by dA (x) := infaeA d(x, a), where 
d : lRn X lRn -t lR denotes the Euclidean metric of lRn. Altogether, we define 
three representations '1/Jn,'lf;~,'lf;~ :s;:; Ew -tAn. We let 'lf;n(p) =A, if and only 
if [pn-+ p](p) = dA. In other words, p encodes a set A w.r.t. '1/Jn, if it encodes 
the distance function dA w.r.t. [pn -t p]. Analogously, let 'lf;~(p) = A, if and 
only if [pn -t P>](p) = dA and let 'lf;~(p) =A, if and only if [pn-+ p<](p) = dA. 
One can prove that '¢~ encodes "positive" information about the set A (all 
open rational balls B(q,r) := {x E lRn : d(x,q) < r} which intersect A can 
be enumerated}, and '¢~ encodes "negative" information about A {all closed 
rational balls B(q,r) which do not intersect A can be enumerated). The final 
topology induced by '1/Jn on An is the so-called Fell topology. It is a known fact 
that a mapping f :s;:; X -tAn is (8, '1/Jn)-computable, if and only if it is (8, '¢~)­
and (8, '¢~)-computable [10]. 

A closed set A s;:; lRn is called r.e., co-r. e. or recursive, if it is empty or if 
there is a computable p E Ew such that A= 'lf;~(p), A= 'lf;~(p), A= 'lf;n(p), 
respectively. Thus, the non-empty r.e., co-r.e. or recursive subsets A s;:; an 
are exactly those with upper, lower semi-computable or computable distance 
function dA : lRn -t lR, respectively and a closed set is recursive, if and only if 
it is r.e. and co-r.e. By duality, an open subset U s;:; an is called r.e., co-r. e. or 
recursive, if and only if its complement lRn \ U is co-r.e., r.e. or recursive. Given 
a representation o of X, we will say more generally that a subset U s;:; Y s;:; X 
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is 6-r.e. open in Y, if 6-1(U) is r.e. open in 6-1(Y). Here a set A~ B ~ I:w is 
called r.e. open in B, if there exists some computable function f :~ I:w -t I:* 
with dom{f) n B = A. Intuitively, a set U is 6-r.e. open in Y, if and only if 
there exists a Turing machine which halts for an input z E Y given w.r.t. 6, if 
and only if z E U. It is known that a set U ~ Rn is pn-r .e. open in Rn , if and 
only if it is r.e. open. H a set U ~X is 6-r.e. open in X, then we will say for 
short that it is 6-r.e. open. 

We close this section with a short survey on computability results in linear 
algebra which have been established in our previous paper [13]: 

Proposition 2 Consider the following canonical mappings from linear algebra: 

1. Lin(Rn,r) -t Rmxn is ([pn -t pm],pmxn)-computable, 

2. Rmxn -t Lin(Rn,Rm) is (pmxn,[pn -t pml)-computable, 

3. ker : Rm x n -t An is (pm x n, '1/J~) -computable, 
4. span : Rm x n -t Am is (pm x n, '1/J~) -computable, 

but neither (pmxn,.,p;:)-computable, nor -continuous, 
5. det: Rnxn -t R is (pnxn,p)-computable, 

6. rank: Rmxn -t R is (pmxn,P<)-computable, 
but neither (pmxn,P>)-computable, nor -continuous, 

7. dim:~ An-t R is (1/J~,P<)- and ('1/J~,P>)-computable. 

3. Linear Subspaces and their Dimension 
Considering the computability results about linear algebra known so far from 

Proposition 2, what can be said about linear equations? H we consider only 
homogeneous equations Ax = 0 in the first step, then we obtain the solution 
space L = ker(A) and we can deduce from Proposition 2.3 that there exists 
a Turing machine which takes A as input with respect to pmxn and which 
computes the space of solutions with respect to 1/J~. Unfortunately, this type 
of "negative" information about the space of solutions is not very helpful; in 
general it does not even suffice to find a single point of the corresponding space 
(cf. [10]). Thus, it is desirable to obtain the "positive" information (i.e. a t/J~­
name) about the space of solutions too. On the other hand we can deduce from 
rank(A) = n- dimker(A) and Proposition 2.6 and 2.7 that ker: pxn -tAn 
is not (pmxn,.,p~)-continuous. In other words: without any additional input 
information, positive information about the solution space is not available in 
principle. 

What kind of additional information could suffice to obtain positive infor­
mation about the solution space? We will show that it is sufficient to know the 
dimension of the solution space, i.e. codim(A) = dimker(A) in advance. More 
precisely, the following theorem states that given a linear subspace V ~ Rn 
with respect to 1/J~ and given its dimension dim(V), we can effectively find a 
t/J~-name of V. The remaining part of this section will be devoted to the proof 
of the following theorem, separated in several lemmas. 
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Theorem 3 There exists a Turing machine which on input of a linear subspace 
V ~ JR.n and d = dim(V) with respect to '1/J~ and p, respectively, outputs V with 
respect to '1/J~, more precisely, the function 

with dom(/) := {(V,d) E An X JR.: v E en and d = dim(V)} is (['1/J~,p],'I/J~)­
computable. 

The main technical tool for the proof of this theorem is given in the following 
definition. Here and in the following lxl := v'.E~1 Ixil 2 denotes the Euclidean 
norm of x = (x1, ... , Xn) E JR.n. 

Definition 4 Let W ~ !Rn be a linear subspace and c > 0. Denote by 

We:= U B(w,clwl) = {x E JR.n: (3w E W) ix- wi < clwl} 
wEW 

the relative blow-up of W by factor c with respect to Euclidean norm. 

The following Figure 1 shows the blow-up We of a one-dimensional subspace 
W ~ JR3 by factor c = 1/4 together with a one-dimensional subspace V ~ 
W~ U {0}. The first useful property of the blow-up is given in the following 

Figure 1. The blow-up W. of a linear subspace 

lemma, which roughly speaking states that each linear subspace is contained 
in an arbitrarily small blow-up of a linear subspace of the same dimension but 
with rational basis. 

Lemma 5 Let V ~ JRn be a linear subspace of dimension d and c > 0. Then 
there are w17 ••• , Wd E l(1l such that V ~ WeU{O}, where W := span(w1, ... ,wd)· 

We leave the proof of this and the following three lemmas to the reader. 
Before we formulate the next property of the blow-up, we state an intermediate 
lemma about linear independence. 
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Lemma 6 For each n ~ 1 there exists a constant A > 0 such that, whenever 
b1, ... , bd E JRn are pairwise orthogonal normed vectors and Xt, ... , Xd E lRn with 
ib; - x;i < A fori = 1, ... , d, then (x1, ... , xd) is linearly independent. 

From now on we assume without further mentioning that A < 1 is a fixed 
rational constant as in the previous lemma (where we consider n ~ 1 to be 
arbitrary but fixed). The next lemma formulates another property of the blow­
up which roughly speaking states that if a linear subspace V is contained in a 
sufficiently small blow-up of a linear subspace W of the same dimension, then 
this blow-up already approximates V quite well. 

Lemma 1 Let V, W ~ JRn be linear subspaces of equal dimension d and let 
c > 0 with r5 := 2.,fd · c/(1- c) < A. If V ~ w. U {0}, then B(w,r5iwi) 
intersects V for any wE W \ {0}. 

Now we formulate the last lemma of this section which states an effectivity 
property of the blow-up. Roughly speaking, the property V ~ w. U {0} can be 
recognized by a Turing machine in a certain sense. 

Lemma 8 There exists a Turing machine which, on input of linear subspaces 
V, W ~ JRn with respect to representations 1/J~ and 1/J~ and c > 0 halts, if and 
only if V ~ w. U { 0}, more precisely 

{(V, W, c) E An X An x lR: V ~ W. U {0} and c > 0} 

is [1/J~, 1/J~, pj-r. e. open in en X en X JR. 

Finally, we can combine Lemma 5, 7 and 8 to a proof of Theorem 3. 

Proof of Theorem 3. Let V ~ JRn be a linear subspace and let d = 
dim(V) > 0. We claim 

B(q,r) n V =f. 0 {::::::> (3wll ... ,wd E Q")(3.Xt, ... ,Ad E Q)(3c > 0) 
r5 <A, (wt, ... , wd) is linearly independent, 

V s;; w. U {0} and B(w,r5iwi) ~ B(q,r), 

where W := span(w1, ... , wd), w := Et=l .X;w; =f. 0 

and r5 := 2.,fd · c/(1- c) 

for all q E Q'l and r E Q with r > 0. By Lemma 7 it is clear that "<=" holds. 
Let on the other hand B(q,r) n V =f. 0 with q E Q'l andrE Q with r > 0. 
Then there exists some v E V n B(q, r), v =f. 0. Let r5(c) := 2.,fd · c/(1- c) for 
all c > 0. Since iq - vi < r there is some c with 0 < c < 1 such that 

( 1 + •i~~l) iq - vi + •i~~l iqi < r. 

Let r5 := r5(e). By Lemma 5 there exist Wt, ... ,wd E Q'l such that V ~ W.u{O} 
with W := span(wt, ... ,wd)· Thus, there is somew E W\{0} with iv-wi < ciwi 
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and without loss of generality we can even assume that there are .X1, ... , Ad E Q 
with w = 2:1=1 AiWi· We obtain lq- wl :::.; lq- vi+ lv- wl < lq- vi+ e:lwl and 
lwl :::.; lq- wl + lql :::.; lq- vi+ e:lwl + lql, and hence lwl :::.; 1/(1- e:)(lq- vi+ lql) 
and thus 

lq- wl + tSiwl < lq- vi + (c + tS)Iwl :::.; ( 1 + ~) Jq- vi + ~lql < r, 

i.e. B(w, &lwl) ~ B(q, r). Thus, "=>" holds too and the above equivalence is 
proved. 

Thus, given V by 1/J'; and d = dim(V) by p, we can recursively enumerate 
all q E «:r, r E Q with r > 0 such that B(q, r) n V ::f. 0 by virtue of Lemma 8. 
In this way we obtain a 1fJ<-name of V. D 

Using Theorem 3 we can improve the statement of Corollary 1 in [13] in the 
following way. 

Corollary 9 The multi-valued mapping basis :~ An x 1R =t An, 

(V,d) f-+ {{bt, ... ,bd} ~ !Rn: (bt, ... ,bd) is a basis ofV} 

with dom(basis) := {(V,d) : d = dim(V)} is ([1/J<,p],'I/Jn)-computable and 
([1/J';, p], 1/Jn) -computable. 

Here, the ([1/J<, p], 1/Jn)-computability of basis has been proved in [13] and the 
([1/J';, p], 1/Jn )-computability follows with Theorem 3. Roughly speaking, we can 
deduce that the following equivalences hold for different types of information 
about linear subspaces: 

positive + dimension = negative + dimension = positive + negative = basis 

These equivalences could be made precise by defining corresponding represen­
tations of .en and by proving their equivalence, but we are not going to discuss 
this here. Instead of that, we mention that for single linear subspaces one 
obtains the following less uniform corollary. 

Corollary 10 A linear subspace V ~ !Rn is r.e., if and only if it is co-r. e., if 
and only if it is recursive, if and only if it admits a computable basis. 

Since the dimension is always a computable number, the proof of this corol­
lary follows directly from the previous corollary and the fact that the mapping 
span:~ !Rnxd -tAn, restricted to linear independent inputs (b1 , ... ,bd), is 
(pnxd, 1/Jn)-computable, which has been proved in [13]. 

4. Linear Equations 
In this section we want to apply the results of the previous section to solve 

linear equations Ax= b. It is a well-known and obvious fact from linear algebra 
that such a linear equation is solvable, if and only if rank( A) =rank( A, b). The 
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following theorem is the main result of this paper. It states that the solution 
operator of solvable linear equations is computable, provided that the rank of 
the linear equation is given as additional input. 

Theorem 11 There exists a Turing machine which takes a solvable linear 
equation Ax = b together with d = rank( A, b) as input and which computes 
the space of solutions L = {x: Ax= b}. More precisely, the function 

solve:~ IRmxn x IRm x IR-+ An, {A, b,d) t-tL= {x E IRn :Ax= b} 

with dom(solve) := {(A,b,d) E IRmxn x IRm x IR: rank(A) = rank{A,b) = d} is 
([pm x n, pm, p], .,pn) -computable. 

Proof. Notice that x E L, if and only if, in homogeneous coordinates, x is 
a solution to (A, b)· t(x, -1) = 0. We therefore may determine the kernel of 
(A, b) E IRmx(n+l) and scale the results x such that Xn+l = -1. 

To realize this idea precisely, we perform several steps: let A E IRmxn be 
given by pmxn, let b E IRm be given by pm and let d = rank( A) = rank( A, b) 
be given by p. First, we determine ker(A, b) w.r.t. 1/J~+l, which is possible by 
Proposition 2.3. Then we can use Theorem 3 and the formula dimker(A,b) = 
n + 1- d to determine a 1/J~+l-name of ker(A, b). Especially, this name allows 
to find effectively a point z = (z11 ... , ZnH) E ker(A, b) w.r.t. pn+l such that 
Zn+l < 0. Let c; := Zi/lzn+ll fori= 1, ... ,n. Then c := {c1, ... ,en) is a solution 
of Ax= band L = {x: Ax= b} = c+ker(A). Since dimker(A) = n-dwe can 
compute a .,pn-name of ker(A) by Proposition 2.3 and Theorem 3. Finally, we 
note that the function IRn x An-+ An, (x,A) t-t x +A:= {x +a E IRn :a E A} 
is ([pn, .,pn], .,pn)-computable. Altogether, this allows us to compute a .,pn-name 
~L o 

Regarding the proof and Corollary 9 we can even conclude the following 
corollary, which states that given a solvable linear equation together with its 
rank we can effectively find a specific solution and a basis for the homogeneous 
equation. 

Corollary 12 The maps :~ amxn X am X IR =* IRn X An' (A, b, d) t-t S, where 
S is the set 

{(c, {bt, ... , bn-d}) E IRn X An : c + span{bt, ... , bn-d) = {x: Ax= b}}, 

and dom(s) := {(A,b,d) E I!Fxn x llF x IR: rank(A) = rank(A,b) = d < n}, 
is ([pmxn,pm, p], [pn, .,pn])-computable. 

Moreover, the previous theorem allows to deduce an immediate consequence 
about single linear equations. 

Corollary 13 If A E IRmxn is a computable matrix and bE IRm a computable 
vector, then L = { x E IR" : Ax = b} is a recursive set. If, additionally, Ax = b 
has a unique solution x E IRn, then this solution is computable. 
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It is interesting to note that our results also allow to handle the problem 
which is inverse to solving a linear equation: given an affine subspace, we can 
find a linear equation with this affine subspace as solution space. 

Theorem 14 There exists a Turing machine which takes an affine space L as 
input and computes a linear equation Ax = b with L = { x : Ax = b} as set of 
solutions. More precisely, the function solve admits a multi-valued right inverse 
r :~An~ !Rmxn x !Rm x 1R which is (?fon,[pmxn,pm,p])-computable, for any 
m~n. 

Proof. Let L be given w.r.t. ?fon. Then we can effectively find some point c E L 
w.r.t. pn. As in the proof of Theorem 11 we can compute L- c w.r.t. ?fon. By 
Corollary 1 from [13] we can find a basis (b1, ... ,bk) E lRnxk of L-cw.r.t. pnxk. 
If d := n- k = 0, then A = 0 and b = 0 defines a linear equation with L = !Rn. 
Otherwise, apply the Gram-Schmidt orthogonalization process to determine an 
orthogonal basis (o1 , ... , Ok) of L- c w.r.t. pnxk, i.e. 

'"'i bi+l 0 0; 01 := b1, oi+l := bi+1- ~· -
1

-
1
-2-o; •=1 0; 

for j = 1, ... , k- 1. Then, find some vectors vectors bk+l, ... , bn E !Rn w.r.t. 
pn such that (o1, ... , Ok, bk+1, ... , bn) is linear independent, which is possible by 
Lemma 4 in [13]. Then, apply the Gram-Schmidt orthogonalization process 
again to determine vectors Ok+b ... , On w.r.t. pn such that (o1, ... , on) is an or­
thogonal basis of !Rn . Thus, ( Ok+ 1 , ... , On) is an orthogonal basis of the orthog­
onal complement of L- c. Now, we can compute A:= t(ok+l• ... ,on,O, ... ,0) E 
JRmxn w.r.t. pmxn and b := Ac w.r.t. pm. Then we obtain ker(A) = L- c and 
L = {x: Ax= b}. Altogether, the procedure describes how to compute a right 
inverse r of the function solve. D 

Again we can deduce a simple fact about single spaces and equations. 

Corollary 15 If L ~ !Rn is a recursive non-empty affine subspace, then there 
exists a computable matrix A E lRm x n and a computable vector b E !Rm such 
that L = { x E lRn : Ax = b} for any m ~ n. 

5. Conclusion 
In this paper we have continued our project to investigate computability 

properties in linear algebra with rigorous methods from computable analysis. 
This project has been started with [13] and could be continued along several 
different lines. On the one hand, it would be interesting to extend the investi­
gation to complexity questions. Surely, this is possible as long as one considers 
some non-uniform versions of our results. However, the fully uniform versions 
would require complexity measures for asymmetric hyperspaces which are be­
yond the state of the art. On the other hand, it is a promising topic to study 
other parts of linear algebra such as spectral theory or linear inequalities. Some 
steps in this direction have been presented in [14, 15). 



106 

Last but not least, our results give further ground to the hope that com­
putable analysis can help to explain fundamental limitations of real number 
computations. Many practical observations of numerical analysis, e.g. the fact 
that numerical differentiation is much more difficult than numerical integra­
tion, already found natural explanations in computable analysis (see [10]). We 
have tried to extend these applications of computable analysis to linear algebra 
topics. 
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