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Abstract In this paper we consider a constrained version of the range assign­
ment problem for wireless ad hoc networks, where the value the node 
transmitting ranges must be assigned in such a way that the resulting 
communication graph is strongly connected and the energy cost is mini­
mum. We impose the further requirement of symmetry on the resulting 
communication graph. We also consider a weaker notion of symmetry, 
in which only the existence of a set of symmetric edges that renders the 
communication graph connected is required. Our interest in these prob­
lems is motivated by the fact that a (weakly) symmetric range assign­
ment can be more easily integrated with existing higher and lower-level 
protocols for ad hoc networks, which assume that all the nodes have 
the same transmitting range. We show that imposing symmetry does 
not change the complexity of the problem, which remains NP-hard in 
two and three-dimensional networks. We also show that a weakly sym­
metric range assignment can reduce the energy cost considerably with 
respect to the homogeneous case, in which all the nodes have the same 
transmitting range, and that no further (asymptotic) benefit is expected 
from the asymmetric range assignment. Hence, the results presented in 
this paper indicate that weak symmetry is a desirable property of the 
range assignment. 

Introduction 
Recent emergence of affordable, portable, wireless communication and com­

putation devices has resulted in the rapid growth of mobile wireless networks. 
Among these, ad hoc networks, i.e. networks of mobile, untethered units com­
municating with each other via radio transceivers, are receiving increasing at­
tention in the scientific community. Ad hoc networks can be used wherever a 
wired backbone is not viable, e.g. in mobile computing applications in areas 
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where other types of infrastructures are unavailable, to provide communications 
during emergencies, or to monitor remote geographical regions. 

In ad hoc networks, every node u is characterized by a transmitting range 
ru: when u sends a message, all the nodes at distance at most ru from u can 
potentially receive the message. If the recipient is not an immediate neighbor of 
u, the message must be routed to the destination through a multi-hop path. For 
this reason, ad hoc networks are also called multi-hop packet radio networks. 

One of the major concerns in wireless ad hoc networks is reducing node 
power consumption. In fact, nodes are usually equipped with a limited capac­
ity battery, and battery recharge and/or replacement is very difficult or even 
impossible in many application scenarios (e.g., wireless sensor networks [23]). 
Hence, reducing power consumption is often the only way to extend network 
lifetime. It is known that one of the main sources of power consumption in 
a wireless node is communication, and that the power Pu required by node 
u to transmit data is related to its transmitting range ru (10]. Thus, node 
transmitting ranges should be set as small as possible consistently with some 
requirement (e.g., strong connectivity) on the resulting network topology. 

Given a transmitting range assignment (range assignment for short) for each 
node in the network, the communication graph G is defined, where directed edge 
(u, v) exists in G if and only if v is at distance at most ru from u. Although 
current transceivers and communication protocols are designed for a fixed trans­
mitting range (e.g., 250 meters in the widely used IEEE 802.11 standard [1]), 
a scenario in which the transmitting range is not fixed is fully compatible with 
current technology. The range assignment could be decided prior to node de­
ployment in the case of stationary networks when information on the physical 
node placement are available, or it can be varied dynamically in presence of mo­
bility or when the physical node placement is unknown. Distributed topology 
control protocols aimed at dynamically changing the transmitting range assign­
ment in order to keep the network connected and minimize energy consumption 
have been recently presented in [17, 24, 26]. 

The problem of assigning transmitting range to nodes in such a way that 
the resulting communication graph is strongly connected and the energy cost is 
minimized is called the range assignment problem (RA), and was first studied 
in [18]. In [18], it is shown that RA for one-dimensional networks (i.e., nodes 
in a line) is in P, while it is NP-hard in the case of three-dimensional networks. 
For two-dimensional networks, the problem remains NP-hard [7]. 

Results concerning a variant of RA in which the range assignment induces 
a communication graph of diameter at most h, for some constant h, were also 
derived in [7, 8, 9, 18]. However, we believe this version of the problem is less 
interesting from a practical point of view. In fact, imposing a topology which 
is "too connected" would often cause communication interference to occur even 
between nodes that are far apart, thus decreasing the network capacity. This 
phenomenon is confirmed by theoretical as well as experimental results [13, 15, 
16], which show that the communication graph in wireless ad hoc networks 
should be as sparse as possible, while preserving connectivity. 
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A simpler version of RA, in which all the units must have the same trans­
mitting ranger, was also investigated. We call this problem the homogeneous 
range assignment problem (HRA). The value of r ensuring connectivity with 
high probability when nodes are distributed in a given region according to some 
probability distribution was derived in [4, 14, 20, 21, 22, 27]. 

In this paper, we consider RA with the constraint that the range assignment 
be symmetric, i.e. such that edge (u,v) is in G if and only if (v,u) is in 
G. We call this problem the symmetric range assignment problem (SRA). We 
will also investigate a weaker version of the problem, called weak symmetric 
range assignment (WSRA), in which the requirement for symmetry applies 
only to a well defined subset of the edges. We are aware of only one paper 
addressing the symmetric range assignment problem (6], where the authors 
present a (1 + ln2 +e) approximation algorithm for a problem equivalent to 
WSRA. Our interest in studying SRA and WSRA will be clearly motivated in 
the next section. 

First, we show that SRA (and, hence, WSRA) remains NP-hard in two 
and three-dimensional networks. Hence, imposing (weak) symmetry does not 
change the complexity of the problem. Then, we investigate the asymptotic 
cost of the solution of WSRA. We prove that the solutions to RA and WSRA 
have the same asymptotic cost, thus showing that imposing weak symmetry 
on the communication graph has only a marginal influence on its energy cost. 
Finally, we determine bounds on the magnitude of this cost for two typical in­
stances of the problem, i.e. the random instance, in which nodes are distributed 
uniformly at random in (0, 1]d, and the (~,a)-instance, in which the maximum 
and minimum mutual distances between nodes are~ and 6, respectively. The 
bounds presented in this paper can be compared to similar bounds for different 
variants of RA obtained in (4, 7, 8, 9, 18]. 

1. Motivation 
While transceivers with dynamically changing transmitting range are com­

patible with current technology, most of the existing wireless devices, which are 
commonly based on either the IEEE 802.11 or the Bluetooth standard, have a 
fixed transmitting range. As a consequence, most of existing work on routing, 
clustering and broadcasting protocols for ad hoc networks assume that all the 
nodes have the same transmitting range (3, 11, 25]. 

Observe that routing, broadcasting and clustering protocols are not con­
cerned with the network topology, but they simply assume that transmitting 
ranges are set in such a way that the resulting communication graph is con­
nected. This means that the presence of an intermediate-level topology control 
service that dynamically changes node transmitting ranges in order to maintain 
connectivity while reducing power consumption can be considered. However, 
due to the homogeneous range assignment assumption, most of the protocols 
rely (either implicitly or explicitly) on the fact that whenever u sends ames­
sage to v, v is capable of communicating directly with u, e.g. to acknowledge 
the message reception. Hence, a topology control mechanism which returns 
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a symmetric range assignment is transparent to higher level protocols, which 
can continue to operate as the range assignment was homogeneous. Further 
motivations for studying SRA can be found in the full version of the paper [5]. 

From the discussion above it is clear that the symmetry of the range as­
signment is a useful property in the design of protocols for wireless ad hoc 
networks. However, it should be noted that what is really important is the 
existence of a set of symmetric edges that connect all the nodes in the net­
work. In other words, there could exist further edges for which symmetry is 
not guaranteed, but removing these edges from the communication graph does 
not cause disconnection. We call a range assignment with this property weakly 
symmetric. 

It is important to note that while imposing weak symmetry does not impair 
connectivity, it has a beneficial effect on both node power consumption and 
network capacity. For a given set of nodes, it can be easily seen that the cost 
of the optimal symmetric range assignment is higher than that of the weakly 
symmetric one. Although quantifying the relation between these costs is not 
immediate, examples can be found in which the cost reduction is considerable. 
For instance, consider the node placement depicted in Figure 1. For the network 
to be connected, nodes u and v1 must have a transmitting range of at least no. If 
the range assignment must be symmetric, the transmitting range of Vn+l must 
be no too. Hence, all the vi's, for i = 2, ... , n + 1 must have a transmitting 
range that enables them to reach the farther between node v1 and Vn+b which 
is 9(nt5). Assuming that the energy cost is proportional to the square of the 
transmitting range (see the next section for a definition of the energy cost), 
we have that the cost of the symmetric range assignment must be 9(n3 c52). 

However, if only weak symmetry is required, all the Vi's, fori = 2, ... , n + 1, 
have a transmitting range of o, and the total cost is 8(n2 t52).Thus, the saving 
with respect to the symmetric case is of a factor 9{n). 

Summarizing, we can say that considering WSRA instead of SRA reflects 
the requirement for a connected but as sparse as possible communication graph, 
and it is then fully consistent with the philosophy of wireless ad hoc networks. 

2. Preliminaries 
Let V = {v1, ... , vn} be a set of points in the d-dimensional Euclidean space. 

The set V represents the nodes of the network. For any two points Vi,Vj in V, 
d( Vt, Vj) denotes the Euclidean distance between them. 

A range assignment for V is a function RA : V ~ JR+. Given any range 
assignment RA for V, the communication graph induced by RA is the directed 
graph G = (V,E), where edge (vi,vj) E E if and only if d(vi,Vj) $ RA(vi)· A 
range assignment is said to be connecting if the resulting communication graph 
is strongly connected, and it is said to be symmetric if (vi, Vj) E E if and only 
if ( Vj, vi) E E. If the range assignment is symmetric, the communication graph 
can be regarded as undirected, and we are interested in characterizing con­
nectivity instead of strong connectivity. A particular case of symmetric range 
assignment is the r-homogeneous range assignment, defined as RA(v,) = r for 
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i = 1, ... , n, where r is a positive constant. Given a range assignment RA and 
the corresponding communication graph G, we define the symmetric restriction 
of G as the subgraph G s of G obtained by deleting non-symmetric edges, i.e. 
Gs = (V,Es), withEs= {(v;,vj)l(d(v;,vj) ~ RA(v;))/\(d(v;,v;) ~ RA(v;))}. 
A range assignment such that the symmetric restriction of its communication 
graph is strongly connected is said to be weakly symmetric. 

It is known [19] that the power p; required by node v; to correctly transmit 
data to node Vj must satisfy inequality p;jd(v;, v;Y" 2: /3, where a 2: 1 is the 
distance-power gradient and f3 2: 1 is the transmission quality parameter. In 
ideal conditions we have a= 2; however, in general it is 1 ~a ~ 6 depending 
on environmental conditions. 

Setting f3 = 1, we can define the cost of a range assignment RA as c(RA) = 
Lv;ev(RA(v;))"'. We are now ready to formally define the range assignment 
problems considered in this paper: 

Definition 1 Let V = { v1, ... , Vn} be a set of point in the d-dimensional space: 

RA Determine a connecting range assignment RA such that c(RA) is min­
imum. 

WSRA Determine a weakly symmetric range assignment RA such that c(RA) 
is minimum. 

SRA Determine a connecting symmetric range assignment RA such that 
c(RA) is minimum. 

HRA Determine the minimum value of r such that the r-homogeneous range 
assignment is connecting. 

In the following, the cost of the solutions of RA, WSRA, SRA and HRA will 
be denoted cR, cws, cs and cnR, respectively. By definition, it is immediate 
that CR ~ CWS ~ Cs ~ CHR· 

3. Complexity of SRA 
Due to space limitations, the proof that SRA (and, consequently, WSRA) 

for two and three-dimensional networks is NP-hard is not reported. See [5] for 
details. 

4. Bounds on cw s 
In this section we investigate the cost of the optimal solution of WSRA and 

its relation with the cost of the solutions of other versions of the problem. We 
start by showing that CR and cws have the same magnitude. 

Given a set V = {v1 , ... , vn} of points in the d-dimensional space, denote with 
CMST the cost of a minimum spanning tree on the same set of points, where 
edge (v;,v;) has cost d(v;,v;)a. The following theorem is a straightforward 
consequence of Theorem 3.2 of [18]. For the sake of completeness, we report 
part of its proof. 



76 

Theorem 1 Let V = { v1, ... , Vn} be a set of points in the d-dimensional space, 
ford= 2, 3. For every a ~ 1 we have CMST < CR ~ cws ~ 2CMST· 

Proof. 
1) cws ~ 2cMST· Given the MST T for V, we construct a range assignment 
RA' assigning to each node u a transmitting range equal to the a-th root 
of the maximum edge weight among the tree edges incident in u. Denote 
with G and G s the communication graph and the symmetric restriction of the 
communication graph induced by RA'. It can be easily seen that every edge 
of T corresponds to a pair of symmetric edges in G s. Hence, G s is connected 
and RA' is a weakly symmetric range assignment. Considering that during the 
construction of RA' each edge ofT can be chosen as the "longest" edge, i.e., as 
transmitting range, by at most two nodes, we have cws ~ c(RA') ~ 2CMST· 
2) CMsT < CR. See proof of Theorem 3.2 in (18]. 

Theorem 1 proves that the solutions of RA and WSRA have the same as­
ymptotic cost. Hence, the requirement for weak symmetry has only a marginal 
effect on the energy cost, while it eases significantly the integration of topology 
control mechanisms with existing higher and lower-level protocols. 

Observe that Theorem 1 states that CMST, cR and cws have the same magni­
tude, but gives no clue on how large this magnitude actually is. In the following 
sub-sections we evaluate the magnitude of cws (hence, of CR) for two typical 
instances of the range assignment problem. 

4.1. The cost of the random instance 
In the random instance, the network nodes are distributed uniformly at 

random in (0, 1]d. In this case, the magnitude of the cost of the Euclidean MST 
has been evaluated. The following theorem summarizes some results presented 
in [2, 28, 29]. 

Theorem 2 Let Xi, i ~ 1, be i.i.d. random variables with values in (0, 1]d, 
d ~ 2, and let M"'(X1, ... , Xn) be the cost of the MST of the Euclidean graph 
whose vertices are identified with X1, ... ,Xn, and such that for each 1 ~ i "# 
j ~ n the weight of the edge e;i is d(Xi, Xi)"'. Then for all d ~ 2 and a~ 1, 

lim M"'{Xl, ... ,Xn) = C(a,d) 
n--too nl-afd 

and 

IM"'(Xl, ... ,Xn) -C( d)l < _!!_ 
nl-a/d a, - nl/d ' 

where C(a, d) denotes a positive constant depending only on a and d and C is 
a constant. 

Combining theorems 1 and 2 we obtain the following tight bound for cws 
(and, consequently, for cR) when nodes are distributed uniformly at random in 
(0, 1]d. 
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Theorem 3 Let V = {v1, ... , vn} be a set of points chosen uniformly and inde­
pendently at random in [0, Ijd, ford= 2,3, and assume n is sufficiently large. 
Then, for every a~ 1 we have cws = E>(n1-'J). 

The bound stated in Theorem 3 can be used to compare the magnitude of 
cw s with the optimal cost of different versions of the range assignment problem 
in case of random instance. In the following discussion we assume a= d = 2, 
since most of existing bounds are for this case. In [20] it is shown that for 
homogeneous range assignments, the communication graph is connected with 

high probability if and only if r = n(~). Hence, CHR = E>(logn). When 
the diameter of the communication graph must be at most h, for some positive 
constant h, the cost of the optimal (asymmetric) range assignment is E>(n1fh) 
[8]. Thus, while imposing weak symmetry on the range assignment increases its 
cost of at most a constant factor, the stronger constrains of either homogeneity 
or small diameter increases the cost significantly, namely of a factor at most 
logn in the first case and at most n1fh in the second. On one hand, these results 
encourage the utilization of a topology control mechanism to reduce power 
consumption. On the other hand, they discourage the stronger requirement of 
small diameter of the communication graph, which causes an increased energy 
cost and reduces (as discussed in the introduction) the network capacity. 

4.2. The cost of the (.6., a)-instance 
In this sub-section we consider the (~,a)-instance of WSRA, in which the 

maximum and minimum mutual distances between nodes in V are~ and 8, 
respectively. Since no results on the cost of the Euclidean MST are known in 
this case, we recur to a simple recursive construction technique that allows to 
obtain upper bounds to cws for d = 2, 3 and a ~ 1. These bounds are shown 
to be tight in some cases. 

For the sake of simplicity, we describe the construction for d = 2. The 
construction ford= 3 is an easy modification. Observe that, without loss of 
generality, we can assume that all the nodes are placed in a square region S 
whose diagonal is~. 

Let us begin our construction by dividing S into 4 quadrants. For each 
quadrant that contains at least one node, we choose one of them as represen­
tative. We set the transmitting ranges of these p1 :::; 4 representatives in such 
a way that each of them can communicate directly with all the others. For 
the remaining n - Pl nodes, we set the transmitting range to a value sufficient 
to communicate with the representative in their quadrant. Observe that this 
construction is weakly symmetric, its cost is at most p1 ~"' + (n- p1 )(~/2)"', 
and each node is at most 3 hops away from every other. 

Let us proceed a step further, subdividing each non-empty quadrant in 4 
subquadrants (see Figure 2). Again, in each of the non-empty subquadrants 
(excluding those containing the p1 nodes chosen as representatives in the previ­
ous step) we select a node as representative. These p2 :::; 3 · 4 nodes will have a 
transmitting range large enough to communicate with their representative, i.e., 
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I I 

n5 

Figure 1. Node placement with con­
sistent cost reduction from the sym­
metric to the weakly symmetric range 
assignment. The figure refers to the 
case of n = 4. 

Figure 2. The second step of the 
construction. For simplicity, we omit­
ted the connections between the first 4 
representatives {the black full dots). 

at most 11/2, while the remaining (n- p1 - P2) nodes can communicate with 
the representative in their subquadrant with a transmitting range not exceeding 
11/4. Again, the construction is weakly symmetric, its cost is at most 

Ptl1a + P2 (% r + (n- Pt- P2) ( ~ r • 
and each station is at most 5 hops away from every other. 

Repeating this construction for k steps, we obtain a weakly symmetric range 
assignment RAk with cost 

and each station is at most 1 + 2k hops away from every other. This construction 
can be easily applied to the cased= 3, by means of recursive subdivisions in 
23 = 8 subcubes instead of 22 = 4 subquadrants. 

In general we have p1 ~ 2d, and Pi~ (2d -1) · (2d)i-l for every i > 1, hence, 
by simple manipulation we obtain 

(1} 

Lett be an integer such that 2t > 11/8. At step teach subquadrant has thus 
a diagonal smaller than 8 and contains at most one node. Hence, at step t + 1 
all the nodes will be chosen as representative, i.e., n = I:~!~ p;, and the last 
term of (1) will vanish. So, letting k' = flog2 (11/8)l + 1 we have 

k' -l 2di 
c(RAk') ~ 11a + {2d -1)11a L 2ai. 

i=O 

In general the ratio 11/8, and thus the number of recursive steps, can be 
arbitrarily large. However, it is easily seen that if 11/8 > nlfd, then a weakly 
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symmetric range assignment with a smaller cost can be obtained by stopping 
the construction at step k11 = (log2 n)/d. In fact, by (n- ~;Pi):=::; n, we obtain: 

k" -1 2di ( A ) "' 
c(RA~):::; A"'+ (2d- 1)A"' ~ 2"'; + n 2k" 

Considering the asymptotic values of c(RAk) and C(RA~) in the three cases 
a < d, a = d and a > d we obtain: 

{ 
O(A"') 

cws = O(A"' min{log(A/8),logn}) 
O(A"' min{(A/8)d-<>, n1-'5}) 

if d <a 
if d =a 
if d >a 

Observing that in general A/8 = O(n11d) holds, the bounds on cws can be 
rewritten as 

{ 
O(A"') if d <a 

cws = O(A"' logn) if d =a 
O(A"'n1-'5) if d >a 

{2) 

The upper bounds established in equation (2) can be compared with the 
trivial lower bound of O(n8"') on the cost of any connecting range assignment 
for the (A, 8)-instance of the problem. Observe that this trivial lower bound 
cannot be improved, since it can actually be achieved when points are located 
in a lattice of step n 11d. Hence, the construction presented above in general is 
not optimal. However, in the case of well spread instances, i.e. when A/8 = 
8(n11d), our construction is optimal when d > a (for example, when d = 3 
and 1 :=::; a < 3). In fact, in this case the lower bound can be rewritten 
as 0(A"'n1-'5), which matches the cost of our construction when d >a. It 
should also be observed that when the instance is well spread and a= d = 2, 
an optimal asymptotic cost can be achieved using the construction based on the 
MST described in the proof of Theorem 1. This follows by results presented in 
[12, 28], where it is proved that given n points in [0, 1]2 , there exists a spanning 
tree T such that ~(v;,v;)er(d(v;,vj))2 :=::; 2v12. Scaling by a factor A, we have 
that the weakly symmetric range assignment obtained as described in the proof 
of Theorem 1 has cost O(A2), which matches the lower bound. Unfortunately, 
the methods used in [12, 28] to derive these results depend heavily on geometric 
properties on the plane, hence they do not extend immediately to the case 
a = d = 3. Our discussion can be summarized in the following theorem. 

Theorem 4 Let V = { v1, ... , Vn} be a set of points in the d-dimensional space, 
ford= 2,3, corresponding to a well spread (A,8)-instance of WSRA. Then 

{ 8(A"') if d =a= 2 
cws = 8(A"'n1-'5) if d >a 

Consider now the (A, 8)-instance of WSRA in which the nodes are con­
centrated at opposite corners of a cube of diagonal A. It is immediate that 
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connectivity is achieved if and only if at least two nodes have a 0(.6.) trans­
mitting range. Hence, we have cws = !1(.6."), and the bound (2) is optimal in 
the worst-case when d < a. 

In a certain sense, the bounds for cw s presented here extends those presented 
in [8] for the version of RA in which the diameter of the communication graph 
must be at most h, denoted RAh in the following. The authors only considered 
the case a = d = 2, and they show that the cost CRh of the solution of RAh 
for a (A, d)-instance is !1(d2nl+l/h), for any positive constant h. They also 
present a construction which yields a solution of cost O(A2n1fh), which is 
optimal in the case of well-spread instances. Observe that our construction 
indeed yields a communication graph of diameter O(logn), hence it can be 
seen as a generalization of the construction of [8] to the case of h = O(log n). 
Furthermore, we cover also the case d = 3 and different combinations of the 
values a and d. When a = d = 2, our construction yields a solution of cost 
O(A2 logn), which is smaller (as expected) than the cost O(A2n1fh) needed 
when the diameter must be constant. This indicates that also in the case of 
the (.6., d)-instance the diameter of the communication graph can be traded off 
with the energy cost. 

Finally, we observe that when d > a (as it is likely to be for three-dimensional 
networks) and the instance is well spread, cws and CRh have the same mag­
nitude for h = O(logn). This follows easily by the fact that our construction, 
which is optimal for well spread instances of WSRA when d > a, produces a 
range assignment of diameter O(logn). Hence, for well spread instances (and 
when d >a), a O(logn) diameter (instead of O(n)) comes with no additional 
(asymptotic) cost. 

5. Conclusions 
In this paper we have studied the impact of imposing the (weak) symmetry 

constraint to the range assignment problem for wireless ad hoc networks. We 
have shown that the requirement for symmetry (hence, for weak symmetry) 
does not change the complexity of the problem, which remains NP-hard for two 
and three-dimensional networks. We have also shown that the solutions of RA 
and WSRA have the same asymptotic cost. This means that the requirement 
for weak symmetry have small impact on the energy cost of the optimal solution. 
We have also determined bounds on the magnitude of the solution of WSRA for 
two typical instances of the problem, i.e. the random instance, that accounts 
for those situations in which node positions are not known in advance or may 
change with time, and the (A, d)-instance, that accounts for the case in which 
at least partial information on node positions are available. 

In summary, the results presented in this paper have shown that a weakly 
symmetric range assignment can reduce the energy cost considerably with re­
spect to the homogeneous case, and that no further (asymptotic) benefit is 
expected from the asymmetric range assignment. Thus, the goal of a "good" 
topology control mechanism should be to provide a weakly symmetric range 
assignment, rather than an asymmetric range assignment as in the case of ex-
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isting protocols. On the other hand, a stronger requirement on the diameter 
(constant or logarithmic in n) of the communication graph would increase the 
energy cost significantly while reducing the network capacity. However, when 
d > a a communication graph with diameter O(logn) is achievable with no 
additional (asymptotic) cost if the instance is well spread. 

Observe that, due to the complexity of the problem, only heuristic ap­
proaches can be considered. In this perspective, the relation between WSRA 
and MST can be very useful in driving the design of a topology control proto­
col that returns a good approximation of the optimal solution. The design of 
a distributed weakly symmetric topology control mechanism is one of the most 
important problems left open. 

Finally, establishing the relation between the cost of the solution to WSRA 
and SRA remains open. 
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