
AN IMPROVED SYSTEM OF
INTERSECTION TYPES
FOR EXPLICIT SUBSTITUTIONS

Dan Dougherty
Department of Mathematics and Computer Science, Wesleyan University
Middletown, CT 06459 USA
ddoughertyiDwesleyan.edu

Stephane Lengrand and Pierre Lescanne
Ecole Normale Superieure de Lyon
46, Alle d'ltalie, 69964 Lyon 07, FRANCE
{Stephane.Lengrand,Pierre.Lescanne}IDens-lyon.fr

Abstract We characterize those terms which are strongly normalizing in a
composition-free calculus of explicit substitutions by defining a suitable
type system using intersection types. The key idea is the notion of
available variable in a term, which is a generalization of the classical
notion of free variable.

1. Introduction
An explicit substitutions calculus is a refinement of traditional A-calculus

in which substitution is not treated as a meta-operation on terms but rather
as an operation of the calculus itself. The inspiration for such a study is the
observation that, in the presence of variable-binding, substitution is a complex
operation to define and to implement, so that making substitutions explicit
leads to a more pertinent analysis of the correctness and efficiency of compilers,
theorem provers, and proof-checkers. Abadi, Cardelli, Curien, and Levy defined
the first calculus of explicit substitutions in [Abadi et al., 1991).

A fundamental property of classical typed lambda-calculi is strong normal­
ization: no term admits an infinite reduction sequence. Mellies (Mellies, 1995]
made the somewhat surprising discovery that strong normalization fails even
for simply-typed terms of the calculi of [Abadi et al., 1991] and [Curien et a!.,
1996).

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002

512

Given the central place that strong normalization occupies in the theory and
application of classical lambda calculus it is important to study this property
in systems of explicit substitutions. Mellil!s' result exploits the existence
of a composition operator on substitutions, so there are two obvious and
complementary research directions. The first is to define classes of reduction
strategies in the original calculus which support strong normalization; a notable
example of work in this area is that of Eike Ritter [Ritter, 1999]. The
second direction is to investigate calculi in which substitutions are explicit but
composition is absent; the current paper is part of this effort.

Composition-free calculi of explicit substitutions have been studied in
[Lescanne, 1994, Bloo and Rose, 1995, Kamareddine and Rfos, 1997, Bloo
and Geuvers, 1999, Benaissa et al., 1996] among others. Here we work in
the composition-free calculus ~x [Bloo and Rose, 1995] and the calculus ~Xgc
obtained by adding explicit garbage collection to ~x.

In previous work [Dougherty and Lescanne, 2001, Dougherty and Lescanne,
pear] we explored some reduction properties of this system using intersection
types. Working with the natural generalization of the classical type systems we
were able to characterize the sets of normalizing and head-normalizing terms
in terms of typability. But it was shown in [Dougherty and Lescanne, 2001]
that the naive generalization of the classical system did not characterize the
strongly normalizing terms. Typable terms were strongly normalizing but the
converse fails.

Example 1 Let S be the term .Xu.uu. Consider the terms

M1 = ((.Xy.z)xx)(x = S) -+M2 = z(y = xx)(x = S)

(The syntax and reduction rules of the calculus are given in section 2.) The
term M2 is readily seen to be strongly normalizing. But M2 is not typable in the
system V of [Dougherty and Lescanne, 2001]: it is obtained from the (non-SN,
hence untypable) term M 1 by contracting a ,8-redex, and such a contraction
does not change the typing behavior of terms under V. Finding a type system
characterizing the strongly normalizing terms was left as an open problem in
[Dougherty and Lescanne, 2001].

Main results. In this paper we solve the aforementioned problem: we define
an extension E of system V which types precisely the strongly normalizing
terms. Furthermore when a universal type w is added the resulting system
Ew satisfies the same theorems as those in [Dougherty and Lescanne, 2001]
characterizing the weakly normalizing, head normalizing, and solvable terms.
Our claim, then, is that the system presented here- with or without a universal
type - is a robust type system appropriate for analyzing reduction properties
in explicit substitutions calculi.

The key insight for the solution is a new notion, that of available variable
occurrence in a term (Definition 3). This is a refinement of the notion of free
variable and is the key to extending V. As a corollary of our approach we

An improved system a/intersection types/or explicit substitutions 513

are able to define a somewhat more general notion of garbage collection than
has been studied in the literature of .\x and show that adding a reduction for
garbage-collection does not change the set of strongly normalizing terms.

2. The calculus ~x
Definition 2 The set Ax of terms with explicit substitutions is defined as:

M,N := xl.\x.MIMNIM(x=N}

One defines the notions of free and bound variable occurrences in a term as
usual. But it turns out that in the presence of explicit substitutions a refinement
of the notion of free variable, called available variable occurrence, is key.

Definition 3 The set of free variables FV(M) is the same as in [Dougherty
and Lescanne, 2001] and the set of available variables AV(M) in a term M is

AV(x)
AV(.\x.M)
AV(M N)
AV(M(x = N))
AV(M(x = N})

.- {x}

.- AV(M)\{x}

.- AV(M) U AV(N)

.- (AV(M)\{x})UAV(N)

.- AV(M)
if x E AV(M)
if X'/. AV(M)

For pure terms the notions of freeness and availability coincide. But
availability differs from freeness in that the available variables of M(x = N),
where x is not available in M, are exactly those of M, whereas the free variables
in any case are those of M and of N. The intuition is that x is not available just
when the term N disappears in the course of fully applying the substitutions
in M(x = N).

Further discussion of the motivation for defining available variable occur­
rences will be given after we present our type system. For now we can observe,
referring to Example 1, that in the term z(y = xx) the variable xis free, but
is not available.

>From the definitions of AV(M) and FV(M), an easy induction over the
structure of M shows that the available variable occurrences in a term are a
subset of the free variable occurrences.

In what follows we consider terms up to a a-conversion. Moreover, when
one chooses a representative in a term, one does that in such a way that the
Barendregt convention [Barendregt, 1984] is fulfilled: no variable occurs both
free and bound. Since available variables are free it follows that we may assume
that no variable occurs both available and bound.

As usual we often treat contexts, terms C(J with a designated variable
[] called a hole; terms can be "grafted" into the hole with variable-capture
permitted (see [Barendregt, 1984]).

514

Definition 4 (.h and AXgc) We identify the following reduction rules on ,\x
terms.

(.\x.M) A -+ M(x =A) B
(M N)(x =A) -+ M (x = A) N (x = A) App
(.\y.M)(x = A) -+ .\y.(M(x =A)) Abs
x(x =A) -+ A Varl
y(x =A) -+ y VarK
M(x =A) -+ M ifx ¢ AV(M) gc

The notion of reduction ,\x is obtained by deleting the rule gc, and the notion
of reduction AXgc is obtained by deleting the rule VarK. The rule gc is called
"garbage collection", as it removes useless substitutions.

In contrast with the classical .\-calculus we are considering a rewrite system
with several rules, which in fact interact with each other in interesting ways.
For example there is a critical pair formed by the rules B and App, which is
responsible for much of the complexity in analyzing the theory.

Definition 5 (Reduction) Let l --t r be a reduction rule; we refer to an
instantiation s(l) of l as a redex. A (unconstrained) reduction is determined
by a redex occurrence in a term C[s(l)] and gives rise to the ordered pair
C[s(l)] --t C[s(r)].

We write SN for the set of strongly normalizing terms under Ax, and SN',c
for the corresponding set under AXgc.

The notion of garbage collection in this paper is more liberal than that
originally defined by Bloo and Rose (Bloo and Rose, 1995) and treated in
[Dougherty and Lescanne, 2001]: here we define "garbage" in terms of available
occurrences rather than free occurrences. Our results will imply that a term is
strongly normalizing under AXgc if and only if it is strongly normalizing under
Ax (a result shown directly in [Bloo and Rose, 1995] for their notion of garbage­
collection). The following easy observations will be useful later. They apply to
each of ,\x and AXgc.

Lemma 6 If M (x = N) is not a redex then M = M' (y = N'). In particular
M (x = N) is never a normal form.

We will also need the fact that if we omit rule B then the resulting reduction
is strongly normalizing, so that an infinite derivation contains infinitely many
applications of rule B. To prove that strongly normalizing terms are typable,
we will induct over the reduction relation, and so we will want to show that
the converse of the reduction relation preserves typability. Of course this is
not true in full generality, and we restrict attention to reductions following
a certain strategy, a leftmost-outermost strategy. As discussed in [Dougherty
and Lescanne, 2001] the notion of leftmost reduction is not as straightforward
as in classical ,\-calculus, in particular the notion there is a non-deterministic
strategy. The strategy defined below is a deterministic restriction. It makes

An improved system a/intersection typesfor explicit substitutions 515

sense for each of ..\x and ..\x90 , although we make use of it only in Section 4,
where we consider only ..\x.

Definition 7 For any term not in normal form, the leftmost-outermost
strategy reduces the leftmost-outermost redex, where the leftmost-outermost
redex of M, written lo(M) is

M if M is a redex
lo(N1) if M = N1 N2 where N1 is not a normal form
lo(N2) if M = N1 N2 where N1 is a normal form
lo(N) if M:: N(x =A}
lo(N) if M:: ..\x.N

3. The system e of intersection types
Definition 8 The set of types is inductively defined as

71' 72 := u I 71 n 72 I 71 -+ 72

The standard ordering :::; on types is the smallest transitive and reflexive
relation such that

Definition 9 An environment is an assignment from variables to types, where
each individual assignment is written (x : 7). Environments are partially
ordered as follows.

f $ f' iff (x : 7 1) E f' => (37) (x : 7) E f and 7 $ 7 1

Definition 10 A judgment is a triple consisting of an environment r, a term
M, and a type 7. A judgment is derivable in system£, denoted r f- M: 7, if
this form can be derived by the rules of inference given in Table 1. A term M
is typable if for some r and 7, r f- M: 7 is derivable.

The innovation in the type system here is the presence of the rule drop. The
type system of [Dougherty and Lescanne, 2001] had no such rule: the point of
view taken there was that a closure M (x = N) should always have the same
typing behavior as the B-redex (..\x.M)N which yields it. This is a plausible
strategy since B-reduction involves no (immediate) erasing of subterms, even
when x is not free in M; and indeed the resulting system - in the presence of a
universal type - yields the expected characterizations of head-normalizing and
leftmost-normalizing terms. But as we have seen in Example 1 this system failed
to provide a characterization of the strongly normalizing terms. This example
makes clear that we must allow the type system to distinguish between certain
B-redexes and their contractions.

Perhaps one's first instinct is to note that in Example 1 the input variable of
the B-redex in M1 does not occur free in the function body (i.e., we have a "K­
redex" in classical ..\-calculus). This suggests modifying the cut-rule to obtain

516

-+I

n-1

start r 1- X: u (x : u) E r

r,x:ui-M:r
r 1- >.x.M : u --+ r

ri-M:u-+r ri-N:u
ri-MN:r

cut
r,x:ui-M:r ri-A:u

r 1- M (x = A) : T

drop r 1- M: T A typable X fl. AV(M)
r 1- M(x =A): T

n-E r 1-M: r1 n r2 . {1 2}
ri-M:ri aE '

Table 1. Typing rules for e.

one which, when typing M (x = N) with x not free in M, relaxes the typing
hypothesis for N to merely ask that it be typable under some environment. This
seems particularly appropriate since it echoes the hypotheses of the Subject
Expansion Theorem in treatments of intersection types for classical ,\-calculus.
But such a rule doesn't work: it is still too restrictive. For example, the reader
can easily check that the term M~ = x(y = xx)(x = S) cannot be typed in such
a system, but is clearly strongly normalizing. This last example should motivate
our notion of available variable occurrence and the corresponding typing rule
drop.

A good exercise at this point is to check that the terms M2 and M~ can be
typed in system£. On another hand, notice that rule cut has no side condition,
therefore when x ¢ AV(M) and r 1- A: u, one can freely use cut or drop.

The following are some elementary properties of the type system.

Lemma 11

1 If X fl. AV(M), then for all types u, r 1-M: T if and only if r, (x: u) 1-
M:r.

2 If r $ r' then (x : r) 1- x : r'

9 If r $ r' and r' 1- M : T then r 1- M : T

Adding a universal type to £

The system £ is obtained from the system V of (Dougherty and Lescanne,
2001 J by adding the rule drop. The system 'Dw is the extension of V obtained by

An improved system ofintersection typesfor explicit substitutions 517

adding a universal type w; in [Dougherty and Lescanne, 2001] characterizations
of the head-normalizing and leftmost-normalizing terms of ..\x were obtained in
terms of typability in Dw.

The main result of this paper is that typability in system e serves to
characterize the strongly-normalizing terms of ..\x, and therefore that the rule
drop captures an important aspect of reduction in explicit substitutions calculi.
But an important question to raise at this point is whether the addition of rule
drop behaves well in the presence of a universal type. In particular we may ask
whether the normalization theorems of [Dougherty and Lescanne, 2001] still
hold in the presence of drop.

Definition 12 The type system &w is obtained from system e by adding the
type constant w and the judgement r f- M: w as an axiom.

Since system Dw is a subsystem of &w it is clear that the following results
follow from the corresponding results for Dw. 1. If M is head normalizing then
M is typable in system &w with a non-trivial type. 2. If M is normalizing then
M is typable in system &w with a type not involving w. The following theorem
is sufficient to establish the converses of these results.

Theorem 13 Suppose r f- M: T in system &w. Then r f- M: T in system
Dw as well.

For completeness we state here the results relating reduction properties of
terms with their typing properties in system &w. The results follow from those
in [Dougherty and Lescanne, 2001] together with Theorem 13.

The following definitions are due to Cardone and Coppo (Cardone and
Coppa, 1990]: A type is proper if it has no positive occurrence of w. A type is
trivial if it can be generated by the following rules: (i) w is trivial, (ii) If a is
trivial and 8 is any type, then 8 -+ a is trivial, (iii) If a and r are trivial, then
a n T is trivial.

Theorem 14 Let M be a closed term. The following are equivalent.

1 M is typable with a non-trivial type in system Cw.

2 M is head-normalizing in the calculus >.xgc·

Theorem 15 Let M be a closed term. The following are equivalent.

1 M is typable in system Cw with a type not involving w.

2 M is leftmost-normalizing in the calculus ..\x9c.

4. Typing strongly normalizing terms
In this section "reduction" will always mean ">.x reduction," that is, we do

not consider garbage collection. Our goal is to prove, by induction over the
leftmost-outermost strategy, that strongly normalizing terms are typable.

518

Definition 16 When M is not strongly normalizing we set h(M) .- oo.
Otherwise we define h(M) := max{h(N) +11M --+ N}.

This definition makes sense since the reduction --+ is finitely-branching,
so that a term M which is strongly normalizing under --+ will have only
finitely many N such that M ---* N, and the definition of h(M) involves
taking the maximum of a finite set. The height h(M) of a term M is
the length of the longest derivation to normal form, and in particular the
height of a normal form is 0. Note that M ---+ N => h(M) > h(N) and
M = C[N] => h(M) ~ h(N).

Normal forms in Ax are the same as in classical .A-calculus, and the type
system E is an extension of the standard system of intersection types for classical
.A-calculus. The following proposition is thus an immediate consequence of the
classical result.

Proposition 17 If M is a normal form then M is typable in system & •

4.1. From restricted judgments to general
judgments

In Section 4.2 we show that if M --+ N by a leftmost-outermost reduction,
we assign a type to M built from the type assigned to N. If the last rule of
the typing tree is not an intersection rule, then it is directly determined by the
structure of N. If in every of those cases we can assign the same type to M,
then we can do it for every type, whether or not the last rule is n-1 or n-E. This
will allow us, as we treat the various cases for N, to avoid explicitly considering
the situation when the last typing rule is an intersection rule.

4.2. Subject expansion
It is convenient to identify a general property we will refer to throughout

this section as we induct over the hei ht of terms:
ME SN and (VP E Ax) h(P) < h(M) ==}Pis typable IP'(M)

We wish to prove that for any term whose leftmost-outermost redex is s(l),
if it reduces to a typable term, then the term itself is typable. For such a term,
we consider the context C(] such that the term is C[s(l)]. The proof lies on a
structural induction on contexts C[].

For this induction to work, we need a somewhat stronger statement.

• A term is assigned the same type as this of the term obtained by
contracting its leftmost-outermost redex, except when the rule is B and
the term is an abstraction.

• This assignment is made in the same environment, except when the rule
is B, in which case the environment is more constrained.

An improved system a/intersection typesfor explicit substitutions 519

Notice that the initial case of the induction concerns terms whose root can
be reduced (so the type is preserved, since such terms are not abstractions) and
is treated in the following Lemma. The proof is omitted for lack of space.

Lemma 18 (Root reduction) Given a rule l --+ r and an instance s(l)
of l, assume JP'(s(l)).

f 1- s(r) : T => f 1- s(l) : T if the rule is not (B)

r 1- s(r) : T => 3 r'::::; r I r' 1- s(l) : T if the rule is (B)

Lemma 19 (Leftmost-outermost reduction) Let l --+ r be a rule and
let s(l) be an instance of l. Let C[1 be a context such that s(l) is the leftmost­
outermost redex of C[s(l)]. Assume JP'(s(l)) and r 1- C(s(r)1 : r.

If the rule is not (B) : r 1- C[s(l)1 : r.
. I { 3r' I r' 1- C[s(l)1 : T 1 if C[1 = ,\x.C'[l

If the rule zs (B) : 3 r ::::; r I f' 1- C[s(l)1 : T if C[1 f: ..\x.C'[l

In the above proof it is important to notice that the reduction is the leftmost­
outermost one. Indeed this way we escape difficult cases, namely when the term
to reduce is a closure or when C[1 = C'[1 Nand we have a B-redex.

Theorem 20 If M E SN then M is typable.

Proof. By induction on the height of terms: if M is a normal form, we are done.
If not, then it can be reduced to a term N by a leftmost-outermost reduction.
By induction every P such h(P) < h(M) is typable, thus IP'(M) is fulfilled.
Especially h(N) < h(M), hence N is typable. Then, using Lemma 19, we get
M is typable. I I I

5. Characterization of strongly normalizing
terms

In this section "reduction" will always mean "..\x9c reduction," that is, we
allow garbage collection. Our goal is to prove that typable terms are strongly
normalizing (we use SN;,c to refer to the set of such terms). As described in
the introduction, a consequence of this result and the result of the previous
section is the fact that garbage collection does not change the set of strongly
normalizing terms. See Theorem 26.

We only slightly modify the proof made in [Dougherty and Lescanne, 2001],
in changing FV to A V when required namely in definition sat-gc.

Definition 21 A set Sis X-saturated (or saturated if there is no ambiguity
about the set X), if it is closed under the rules of inference in Table 2.

Lemma 22 SN"gc is SN"gc-saturated.

520

sat-B
B(x =A) T

sat-1
A(z= S)T

(.\x.B)A T x(x = A){z = S) T

sat-Abs
(.\y.B(x =A)) (z = S) T

sat-App

(.\y.B)(x = A)(z = S) T

(U(x = A))(V(x =A)) (z= S)T

(UV)(x = A) (z = S) T

sat-comp

sat-gc

M(y = Q)(x = P(y = Q)){z = S) T

M{x = P)(y = Q)(z = S) T

N(z= S)T A EX, x (/. AV(N)

N{x = A)(z= S)T

Table 2. X -saturated sets

Proof. The proof relies of Corollary 3.6 of (Dougherty and Lescanne, 2001),
which itself relies on Lemma 3.5 there. But in this lemma, FV can be changed
safely into AV, since the statement x; ¢ FV(M;) is used for insuring that rule
gc can be applied, but in our formulation of gc, FV has been precisely changed
into AV. Ill

Definition 23 We define STfor each type r as

• St := SN,c for each type variable t.

• Su-+T :={FE Ax I ('v'A E Su) (FA) EST}·

Lemma 24 Then for any type r, ST C SN,c, and ST is SN,c-saturated.

Proof. The proof is entirely done in (Dougherty and Lescanne, 2001) by
structural induction on types. Although the first statement is completely
independent, the initial case of the second one relies on the former lemma.

Ill

Theorem 25 (Soundness theorem for SN,c) For any terms M, A1, ... , An,
suppose

• (x1 : al), ... , (xn : <Tn) f- M : T

• 'v'i E (l,n),A; E Su,

An improved system ofintersection types/or explicit substitutions 521

• ViE (1,n], Vj ~ O,xi+i tf_ AV(A;)

Then M(xl = A1} ... (xn =An} E Sr.

Proof. The proof in [Dougherty and Lescanne, 2001] consists in a structural
induction on the typing tree of M. Most of it need not to be modified (the
weakening of the hypothesis -AV instead of FV- is balanced by the change in
the definition of saturated sets), we only have to proceed with a new case due
to the addition of the drop rule.

Let r := (xl : ul), ... ' (xn : Un) and assume r 1- M(x =A) : T comes by the
drop rule from r 1-M: T and r' 1- A: 0" for some r' and 0".

Applying the induction hypothesis to r 1- M : T we get M (xl = Al} ... (xn =
An) E ST. Applying the induction hypothesis tor' 1- A : 0" and using Lemma 24,
we get A E SN',c· Since Sr is SN,c-saturated, we can apply rule sat-gc which
yields M(x = A)(x1 = A1) ... (xn =An) E Sr. Ill

Theorem 26 The following are equivalent.

1 M is typable in system £.

2M E SJ/gc.

3 MESN.

Proof Part 1 implies part 2 by Theorem 25 together with Lemma 24. Clearly
2 implies 3. Theorem 20 yields 3 implies 1. 11 I

The fact that garbage-collection does not change the set of strongly
normalizing terms was originally established by Rose [Rose, 1996] for the
slightly more restricted original notion of garbage-collection.

6. The type system of Dezani and van Bakel
As mentioned in the introduction, Dezani and van Bakel [van Bakel and

Dezani-Ciancaglini, 2002] have independently found a typing characterization
of the strongly normalizing terms. The innovation in their typing system also
involves a new rule for typing closures M(x = N), but rather than attending
directly to the way x occurs in M, as we do, they focus on whether M can be
typed in an environment not binding x. Specifically, they use the following rule
in place of our drop (let us write 1-DvB for typability in the system of Dezani
and van Bakel}.

K-cut
r 1-ovB M: 7 Lll-nvB N: a

r 1-DvB M (x = N) : T
x not in dom(r)

They prove that typability in their system characterizes the strongly
normalizing terms, so clearly their system types the same terms as ours. In
fact the system of Dezani and van Bakel is equivalent to ours in the strong
sense that it types the same terms as ours with the same types.

Theorem 27 r 1- M: T if and only if r 1-DvB M: r.

522

7. Conclusions and future work
We have defined a new intersection-types system e for terms of the explicit

substitutions calculus AX and shown that typability in e characterizes strong
normalization. We defined a new notion of garbage-collection and proved
that a term is strongly normalizing in the core calculus if and only if it is
strongly normalizing in the presence of garbage collection. Using results from
(Dougherty and Lescanne, 2001) we can show that the system e., obtained by
adding a universal type smoothly characterizes the weakly normalizing terms
and the head-normalizing, or solvable terms. We can also give a direct proof
of equivalence with a different system, found independently by Dezani and van
Bakel, which also characterizes strong normalization in AX.
Future work. Intersection types have long been known to be a robust
tool for exploring properties of classical A-terms: Krivine's book [Krivine,
1993) has many examples of this; recent work includes (Bucciarelli et al.,
1999, Kfoury and Wells, 1999, Dezani-Ciancaglini et al., 2000, Davies and
Pfenning, 2000, Ghilezan, 2001]. There is much more work to be done
in applying intersection types to calculi of explicit substitutions. One
intriguing idea is to attempt to better understand the reduction properties
of calculi with substitution-composition with the help of these type systems.
Another, largely unexplored, area of investigation is semantics for explicit
substitutions calculi: of course intersection types have proven to be a very
fruitful tool for studying semantics of the classical A-calculus. For lack of
space we removed the bibliography which can found in the full version at
http://www.ens-lyon.fr/-plescann/PUBLICATIONS/avail.ps.

References
Abadi, M., Cardelli, L., Curien, P.-L., and Lllvy, J.-J. (1991). Explicit substitutions.

Journal of Functional Programming, 1(4):375-416.
Barendregt, H. P. (1984). The Lambda-Calculus, its syntax and semantics. Studies

in Logic and the Foundation of Mathematics. Elsevier Science Publishers B. V.
(North-Holland), Amsterdam. Second edition.

Benaissa, Z., Briaud, D., Lescanne, P., and Rouyer-Degli, J. (1996). Av, a calculus of
explicit substitutions which preserves strong normalisation. Journal of FUnctional
Programming, 6(5):699-722.

Bloo, R. and Geuvers, J. H. (1999). Explicit substitution: on the edge of strong
normalization. Theoretical Computer Science, 211:375 - 395.

Bloo, R. and Rose, K. H. (1995). Preservation of strong normalisation in named
lambda calculi with explicit substitution and garbage collection. In CSN '95-
Computing Science in the Netherlands, pages 62-72, Koninklijke Jaarbeurs,
Utrecht.

Bucciarelli, A., Lorenzis, S.D., Piperno, A., and Salvo, I. (1999). Some computational
properties of intersection types. In 14th Symposium on Logic in Computer Science
(LICS'99}, pages 109-118, Washington- Brussels- Tokyo. IEEE.

An improved system a/intersection types/or explicit substitutions 523

Cardone, F. and Coppo, M. (1990). Two extension of Curry's type inference system.
In Odifreddi, P., editor, Logic and Computer Science, volume 31 of APIC Series,
pages 19-75. Academic Press, New York, NY.

Curien, P.-1., Hardin, T., and Levy, J.-J. (1996). Confluence properties of weak and
strong calculi of explicit substitutions. Journal of the ACM, 43(2):362-397.

Davies, R. and Pfenning, F. (2000). Intersection types and computational effects.
In Proceedings of the ACM Sigplan International Conference on Functional
Programming (ICFP-00}, volume 35.9 of ACM Sigplan Notices, pages 198-208,
N.Y. ACM Press.

Dezani-Ciancaglini, M., Honsell, F., and Motohama, Y. (2000). Compositional
characterization of lambda -terms using intersection types. In Mathematical
Foundation of Computer Science, volume 1893 of Lecture Notes in Computer
Science, pages 304-314. Springer-Verlag. extended abstract.

Dougherty, D. and Lescanne, P. (2001). Reductions, intersection types, and explicit
substitutions (extended abstract). In Abramsky, S., editor, TLCA 2001-5th Int.
Conf. on Typed Lambda Calculus and Applications, volume 2044 of Lecture Notes
in Computer Science, pages 121-135, Krakow, Poland. Springer-Verlag.

Dougherty, D. and Lescanne, P. (to appear). Reductions, intersection types, and
explicit substitutions. Mathematical Structures in Computer Science.

Ghilezan, S. (2001). Full intersection types and topologies in lambda calculus. JOSS:
Journal of Computer and System Sciences, 62(1):1-14.

Kamareddine, F. and Rios, A. (1997). Extending a lambda-calculus with explicit
substitution which preserves strong normalisation into a confluent calculus on open
terms. Journal of Functional Programming, 7(4):395-420.

Kfoury, A. J. and Wells, J. B. {1999). Principality and decidable type inference for
finite-rank intersection types. In ACM, editor, POPL '99. Proceedings of the 26th
ACM SIGPLAN-SIGACT on Principles of programming languages, January 20-
22, 1999, San Antonio, TX, ACM SIGPLAN Notices, pages 161-174, New York,
NY, USA. ACM Press.

Krivine, J.-1. (1993). Lambda calculus, types and models. Ellis Horwood.
Lescanne, P. {1994). From >.u to >.v: a journey through calculi of explicit substitutions.

In Boehm, H.-J., editor, POPL '94-21st Annual ACM Symposium on Principles
of Programming Languages, pages 60-69, Portland, Oregon. ACM.

Melli~s, P.-A. (1995). Typed >.-calculi with explicit substitution may not terminate.
In Dezani, M., editor, TLCA '95-Int. Conf. on Typed Lambda Calculus and
Applications, volume 902 of Lecture Notes in Computer Science, pages 328-334,
Edinburgh, Scotland. Springer-Verlag.

Ritter, E. {1999). Characterising explicit substitutions which preserve termination. In
TLCA '99, Int. Conf. on Typed Lambda Calculus and Applications, volume 1581 of
Lecture Notes in Computer Science, pages 325-339. Springer-Verlag.

Rose, K. (1996). Operational Reduction Models for Functional Programming Lan­
guages. PhD thesis, DIKU, Universitetsparken 1, DK-2100 K0benhavn 0. DIKU
report 96/1.

van Bakel, S. and Dezani-Ciancaglini, M. (2002). Characterizing strong normalization
for explicit substitutions. In Latin American Theoretical INformatics - LATIN. to
appear.

