
SUBSTRUCTURAL VERIFICATION AND
COMPUTATIONAL FEASIBILITY*

Daniel Leivant
Indiana University

Abstract We refer to the intrinsic theories of (14, 17], a generic framework for
uncoded reasoning about equational programs. In particular, a natural
notion of provable functions corresponds to the provably recursive func­
tions of Peano Arithmetic and similar systems. A natural-deduction
formulation of these systems map directly, via a Curry-Howard mor­
phism, to terms of the simply typed lambda calculus with recurrence,
with a termination proof for a function f mapping to a representation
of f.

In (16) we showed that natural structural restrictions on derivations
correspond to major complexity classes. When induction is restricted to
positive formulas, a generalization of I:~ formulas, exactly the primitive
recursive functions are provable. When only a "predicative" form of
induction is allowed we obtain the Kalmar elementary functions. The
combination of both restrictions yields the functions computable in poly­
nomial time.

We show here that induction over arbitrary formulas does not add
new provable functions if we disallow in derivations the closing of mul­
tiple data-complex assumptions. This significantly extends the class of
proofs that can be accepted as "feasible mathematics."

We also show that if multiple closing of data-complex assumptions is
only prohibited when above distinct premises of implication elimination,
then the provable functions are precisely the functions computable in
polynomial space.

Keywords: Implicit computational complexity, proof theory, substructural proofs,
intrinsic theories, program verification, ramified induction, equational
programs, program termination, feasibility, polynomial time, polyno­
mial space, elementary functions, typed lambda calculi.

•Research partially supported by NSF grant CCR-0105651.

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002

Substructural Verification and Computational Feasibility 499

1. BACKGROUND
1.1. Intrinsic theories

In [14, 17] we introduced a verification methodology for equational programs,
dubbed intrinsic theories. For each inductively-generated data system C one
uses a skeletal theory IT(C), whose axioms are merely data-introduction ax­
ioms, i.e. the closure of data under the basic constructors, and data-elimination,
i.e. induction schemas for the data types. To keep this condensed presentation
uncluttered, we focus on the term algebra most relevant to computational com­
plexity, namely the algebra W generated from the constant e and the unary
constructors 0 and 1, i.e. essentially the set {0, 1}*. The axioms of IT(W)
are then the data-introduction axioms, which we supplement with a destructor
rule, and write as inference rules:

W(e)
W(t)
W(it)

W(it)
W(t)

and data-elimination, i.e. the induction schema

(i ::::: 0, 1)

W(t) <p[e] <p(z]-+ <p[Oz] <p[z]-+ <p[lz]
<p[t]

with z not free in open assumptions.1 A degenerated form of data-elimination
is

i.e. reasoning by cases.

W(t) <p[e] <p(Ox] <p[lx)
<p[t]

Throughout the paper we refer to provability in intuitionistic logic.2 More­
over, we greatly simplify the discussion by referring to the fragment of logic
without disjunction and 3.

1.2. Provable equational programs
We refer to equational programs over IT(W). Each such program consists

of a finite set P of equations between terms, where the terms are built from
variables, the constructors e, 0 and 1, and program function-identifiers. One
identifier is singled out as the program's principal identifier. Iff is the principal
identifier of P, we say that (P, f) computes a function f over N if f (ii) ::::: m
exactly when the formal equation f(ii) = m is derived from P in equational

1See [17]· for the generic rules. It is also natural to consider separation axioms, which guar­
antee that the denotation of all ground terms are distinct; for 1\1 these are Peano's third and
fourth axioms, 't/x. sx # 0 and 't/x, y. sx = sy--+ x = y. However, these axioms have no effect
on the provability of programs, as defined below; see [16].
2Indeed, the calibration of proofs' computational contents by structural conditions is more
problematic and less rewarding when classical logic is used; compare [16, §3.3].

500

logic. A program P with principal r-ary function identifier f, is provable (over
a given logic L) if

IT(W), VP, W(xl) ... W(xr) 1- W(f(X})

where VP is the universal closure of the conjunction of P, and provability is in
L.

Two examples of provable programs, which will be of use later, are addition
and multiplication over W, defined by +ex = x, +iyx = i(+yx), •xe = e,
and •x(iy) = +x(•xy) (i = 0, 1). Here are derivations for these two func­
tions, where we use double-bars for the contraction of trivial steps, and display
generically the induction cases for the successor functions 0 and 1.

W(y)

W(y)

(1)
VP W(+yz)

Vx. +ex=x i(+yz)= + (iy)z W(i(+yz))
x=+ex W(x) W(+(iy)z)

W(+yz)--.W(+(iy)z) (1) W(+ex)

VP

W(+xy)

VP

(1)
W(x) W(•xz)

'D
+x(•xz)= u(iz) W(+x(•xz))

W(•x(iz)) e:=•xe W(e)
W(•xe:) W(•xz)--.W(•x(iz)) (1)

W(•xy)

where 'D is the derivation above for addition, with •xz substituted for the free
occurrences of y.

1.3. Morphism to A-terms
Let .\1 be the (Church-style) simply-typed lambda calculus defined as fol­

lows. The types are generated from base types t (for elements of W) and 8
(a unit type), using the binary type operations --. and x. We call arrow-free
types positive. For all type r we identify all of 8 x r, T x 8, and 8--.r with r;
also, we identify r --. 8 with 8. In each case we say that the shorter form is a
contraction of the longer one, and we say that r' is the contracted form of r
if r' is obtained from r by successive contractions, and cannot be contracted
further (i.e. is either 8 or free of 8).

We omit parentheses when in no danger of ambiguity, modulo the proviso
that x binds stronger than --., and then that --. and x associate to the right.
For example, t --. t x t --. t abbreviates t--. ((t x t)--. t). We call a type positive
if its contracted form is free of --..

Substructural Verification and Computational Feasibility 501

For each type r we posit an unbounded stock of variables of type r, x[(we
omit the type superscript when convenient). Terms are generated from the vari­
ables using >.-abstraction, type-correct application, pairing (written (Eo, Et)),
and type-correct projection (written 1r;E, i = 0 or 1). The corresponding types
are defined as usual. We write (Eo, ... , Em) for (Eo, (Et, · · · , (Em-t, Em)···)).
The computational rules are J3-reduction and projection-reduction. We write
E => E' (and say that E converts toE') if E' arises by replacing in E a subterm
F by its reductum.

The typed lambda calculus over W, At(W), is the extension of At with con­
stants * of type (}, e of type £, 0, 1 and p of type £ -+ £, B {branching) of type
{t, £-+ £,£-+ £, t)-+ £, and for each type T Rr of type r-+ (r-+ r)-+ £-+ r. The
reduction rules of At are augmented with:

p(it) -+ t (i = 0, 1)

Bt,totte -+ t.
Bt,tott(iw) -+ t;(w) (i=0,1)

Rt,t0tte -+ t.
Rt, to tt (iw) -+ t;(Rt,tottw)

We define a mapping K from IT(W) formulas to types of At(W):3

K(E) = (} if E is an equation
,;,(W(t)) = £

,;,(r.po/\'Pt) = ,;,(r.po) X K(r.pt)
,;,(r.po-+ 'Pt) ,;,(r.po) -+K(r.pl)

,;,(Vxr.p) = ,;,(r.p)

Thus, "' extracts from a formula r.p the type Kr.p of its "computational con­
tents." We extend,;, to a Curry-Howard mapping from derivations V of IT(W)
to to terms ,v of At (W). If V derives a formula r.p from labeled assumptions
(l;)
1/J; then KV will be a term of type Kr.p, with free variables x;;1/J;. The definition
of"' is given in a table at the end of the paper.4 The mapping,;, is a homo­
morphism with respect to reductions:5 if V reduces to V', then ,.v' is either
identical to KV or is obtained from it by a reduction in At (W).

THEOREM 1 [14, 17, 16] (1) If V is a proof ofiT(W) for (P, f) then KV is a
program of At (W) for the function computed by (P, f).

3The oblivion of this mapping to terms and first order quantifiers was first used in [13]. The
unit type was first used in this context in [17].
4The definition of K; for data rules (i.e. those referring to N) is shorter when the latter are
formulated as axioms, but we prefer to keep them as as inference rules, which offer a more
streamlined proof theoretic treatment of normalization, as well as of structural conditions on
induction.
5See (17] for the definition of reduction for the data-rules.

502

(2) The provable functions ofiT(W) are precisely (modulo canonical codings)
the provably-recursive functions of Peano Arithmetic.

(3) The functions provable in IT(W) with induction for positive formulas are
the primitive recursive functions. -i

Part (1) is a useful tool here and in similar formalism: it enables one to focus
attention on the computationally relevant aspects of proofs, namely those that
are coded in the corresponding ~1 (W)-terms. For example, the fact that every
function provable using positive induction is primitive recursive immediately
follows from (1}, since such proofs map under ~r. to terms of ~1 (W) with first­
order recurrence. Similarly, (2) follows from (1) by [7].

1.4. Predicative induction
Ed Nelson (20] and others have noticed that first order arithmetic has an

impredicative ingredient, responsible for the admission of unfeasible functions
such as exponentiation. This implicit impredicativity is clearly identified in the
induction rule of IT(W): from W(t) one derives cp[t] in which W itself may
occur. Viewing induction as delineating W (or- similarly- N), is therefore
circular.

Intrinsic theories are useful not only for articulating this impredicativity,
but also for addressing it. One such method is ramification [14], which is anal­
ogous to the ramification of second order logic to break its impredicativity
(21]. Combinatorially speaking, ramification of induction blocks an exponen­
tial explosion of proof normalization by preventing that the major premise of
induction depend on an induction hypothesis of another induction. A more
direct blocking was defined in [16]. Call a labeled assumption cp (in a natural
deduction derivation V) a working assumption if it is closed in V. Call a for­
mula cp data significant if the contracted form of ~r.cp is not 9. Call an instance
of induction predicative if its major (i.e. leftmost) premise does not depend on
an open data-siginficant working assumption. A derivation is predicative if all
non-degenerated instances of induction are predicative.

THEOREM 2 [16] A function over W is computable in polynomial time iff it
is computed by an equational program (P, f) which s provable in IT(W} by a
predicative derivation with induction for data-positive formulas.

The proof uses the homomorphism ~r.: if V is a derivation of (P, f) with only
predicative instances of induction, and all induction formulas data-positive,
then ~r.V is a ~1 (W)-term with R,. for positive r only, where all instances of
recurrence are predicative, i.e. with no variable both free in the recurrence
argument and bound in ~r.V.

Substructural Verification and Computational Feasibility

2. SOLITARY INFERENCES AND
POLY-TIME

2.1. Multiple uses of assumptions

503

We illustrate the power of induction for non-positive formulas by proving a
function over N of exponential growth rate, namely the function e(x, y) = 2"' +y
defined by the program consisting of the equations e(O,y) = sy, e(sx,y) =
e(x, e(x, y)). Here is a natural deduction prooffor this program, in IT(N), the
intrinsic theory for N analogous to IT(W).

Vy (N(y)-+ N(e(u, y))
'r/y (N(y)-+ N(e(u, y))

N(y)-+ N(e(u, y))
N(y) N(e(u, y))-+ N(e(u, e(u, y))) N(e(u, y))
N(sy) N(e(u, e(u, y)))

N(e(O, y)) N(e(su, y))

-N~(x~)~'Vy~(~N~(y~)_-+_N~(e~(~O,~y~))~) _____ 'V~y~(N~(~y)~-+_N_(~e~(s~u,~y~))).
md 'r/y (N(y)-+ N(e(x, y))

N(y)

The fact that the induction formula here is not positive is exploited by using
it twice, and applying the outcome of one use to the outcome of the other.
The question arrises then: is the culprit for exponential growth-rate the very
complexity of the induction formula, or merely the duplicate use made of it?
The answer is the latter.

2.2. Solitary assumption-classes
Theorem 2 shows that powerful restrictions on proof methods yield poly-time

complexity. We show that these restrictions can be relaxed without yielding
additional provable functions (though possibly proving additional programs for
such functions). We start by presenting the main idea in its simplest form.

A labeled-assumption in a derivation V is solitary if it has at most one
formula-occurrence.6 A derivation is strictly-solitary if all its assumption classes
are solitary.

If V is a strictly-solitary derivation, then the ~1 (W)-term KV has the prop­
erty that every >.-abstraction closes at most one variable-occurrence. Let M
be such a term, and suppose that M reduces to M'. The two salient proper­
ties of the reduction are: (1) all >.-abstraction in M' again close at most one
variable-occurrence; and (2) the size of M' is smaller than the size M (though
the height of M' may be roughly double that of M).

PROPOSITION 3 A function over W is computable in polynomial time iff it is
computed by an equational program (P, f) which is provable in IT(W) by a
strictly-solitary derivation V.

6 Recall that an assumption-class is the set of commonly-labeled assumptions in a natural
deduction derivation, closed jointly by some inference.

504

Notice that in the derivation 'D for a program (P, C) the assumptions W(x,)
are not closed, and therefore may have multiple occurrences. Also note that
we make no stipulation about the complexity of induction formulas or their
predicative use.

Proof Outline. The proof of Theorem 2 shows that all poly-time functions
have a program with a strictly-solitary derivation 'D.

To prove the converse, consider a strictly-solitary derivation 'D for a program
(P, C) computing the function f. Then M = tr.'D is a ~1 (W)-term that computes
f, and in which no A-abstraction closes more than one variable occurrence.
Consider a term Mw, where w E W. By induction on M and secondary
induction on lwl it is easy to see, using properties (1) and (2) above, that the
reduction sequence of Mw to its normal form has length polynomial in lwl. -l

2.3. Solitary inferences and poly-time
Proposition 3 shows that restricting induction to positive formulas can be

traded for a prohibition of assumption multiplicity. The class of provable func­
tions is poly-time in either case. While this result is potentially beneficial in
some cases, it seems that multiple invocation of assumptions is, in fact, used and
needed in actual proofs far more frequently than induction over data-complex
formulas. Fortunately, we can combine the advantages of both approaches.
Call a formula data-complex if the contracted form of tr.cp contains ~. Call a
derivation 'D solitary if all data-complex assumption classes are solitary.

THEOREM 4 A function f is poly-time iff it is provable by a solitary and pred­
icative derivation 'D.

Note that induction is permitted here over all formulas. If induction is restricted
to positive formulas, then 'D, which w.l.o.g. can be assumed normal, has no
data-complex assumption classes, so Theorem 2 is a special case of Theorem 4.

Proof Outline. The proof of Proposition 3 shows that every poly-time func­
tion is provable as required.

For the converse, consider a derivation 'D as above. The term tr.'D, which
by Theorem 1(1) defines j, has only predicative instances of recurrence, and
no higher-type variable is multiply-closed by a A-abstraction in tr.'D. In [15,
Lemma 3.12] we showed that such terms define poly-time functions. -l

2.4. Origins of solitary deductions
It has been known for long that allowing resources to be invoked only once

is related to poly-time computation. For ~nstance, linear logic leads to poly­
time [6, 5], second-order existential database queries are poly-time if the matrix
is Horn [12, 8], monotone inductive definitions (where each object is inserted
only once) define exactly the poly-time queries over finite structures, ramified
recurrence with parameters does not lead out of poly-time if only one parameter

Substructuml Verification and Computational Feasibility 505

is used [1], Turing machines operating in poly-space accept exactly the poly­
time languages if non-blank tape-cells cannot be reused, etc.

Continuing in this vein, Martin Hofmann [9, 10, 11] has developed a linear­
type ramified functional calculus that defines exactly the poly-time non-size­
increasing functions, even if recurrence is used at all finite types. This has
been further refined in (3]. Independently we showed that allowing abstracted
higher order functions to be used only once in .\-recurrence terms, yield exactly
poly-time [15].

Proof theoretic characterizations of poly-time that build on linearity have
also appeared recently, among others in [2, 22]. The main advantage of our
present result is that it does not require an overlay of syntactic machinery on
the formulas; the proofs we consider are all proofs in intrinsic theories (whose
syntax is very simple), and the structural properties that they satisfy can be
automatically checked. This yields a transparent machinery for certifying pro­
gram feasibility.

Since poly-time has rather simple proof-theoretic characterizations (e.g. (16]
above), the main motivation ofrestricted-multiplicity conditions is the attempt
to permit induction for all formulas, thereby providing the user of the formalism
(human or automated) with a larger arsenal. Consequently, it is self-defeating
to abandon in the process other methods, in particular when these are im­
portant and natural. For instance, taken in isolation, restricted multiplicity
disallows a direct and simple proof of the squaring function! Indeed, one would
wish to combine the advantages of various approaches, rather than piling up
the hurdles to using them.

There is a trade-off, of course, in our avoiding the explicit use of linear and
other resource-control operators. Our combinatorial conditions may be viewed
as corresponding to the use of such operators at the outer level of reasoning,
whereas more explicit resource-control operators, as in [10], might be used to
convey more subtle interactions between parts of proofs. Examples illustrating
such gains are yet to be developed, however.

3. POLY-SPACE
3.1. Weakly-solitary derivations

Returning to our example above of a derivation for the functions 2"' +y, we
can further ask: is the culprit for exponential growth-rate the very duplicate
use of the assumption, or only the particular setting where one use is applied
to another, across an instance of implication elimination? In other words, what
would happen if we allow duplicate uses of data-complex working assumptions,
as long as they are not ancestors of distinct premises of implication elimination?
Interestingly, the provable functions are then precisely the functions computable
in polynomial space.

Call an assumption-class in a natural deduction V weakly-solitary if no two of
its members are ancestors of distinct premises of an instance of implication elim-

506

ination. A derivation V is weakly-solitary if every data-complex assumption­
class in V is weakly-solitary.

We show below that a function j : W* ~ {0, 1} is provable by predicative
and weakly solitary derivations iff it is computable in polynomial space. Recall
that a function g : w· ~ w is computable by a Turing machine in polynomial
space iff the associated bit-function

g'(x,y) =dr the bit of g(X) at address y

is computable in PSpace. 7 However, our proof does not apply directly to func­
tions g as above, since it relies on the characterization of PSpace as alternating
PTime [4). With this in mind, we will prove the following.

THEOREM 5 A function f : w· ~ {0, 1} is provable in IT(W) by a predicative
and weakly-solitary derivation iff it is in PSpace.

3.2. From PSpace to provability

PROPOSITION 6 Every function f : W* ~ {0, 1} computable in polynomial
space is provable in IT(W) by a predicative and weakly-solitary derivation.

Proof Outline. The proof uses a proof-theoretic analog of the technique
of [18, 19). By [4) a boolean-valued function computable in PSpace is com­
putable in polynomial time by an alternating Turing machine, which w .l.o.g.
has branching degree 2. The latter is computable by composing a polynomial
function (generating the computation clock) with a function defined by param­
eterized recurrence of the form:

f(e,X) = g.(X)

f(ct, X) = g.(x, f(t, ho(X)), f(t, h1 (X)))

The intent is that f(t, X) is the acceptance status returned by the given alter­
nating machine, when in configuration :i!, and provided with ltl computation
steps along each branch. The functions hi return the two subsequent configura­
tion, and are defined explicitly without use of recurrence (other than definition
by cases). The function g. returns the conjunction or disjunction of its last two
arguments, depending on the state whose code is part of :i!.

It is easy to see that the equational program described above is provable,
using induction for the formula

cp(t) ::dr V:i!.W(X)~W(f(t,X))

The formula is used twice in the induction step, with x instantiated once to
h0 (X) and once to h1 (X). The two instances are combined using only basic
operations, without use of implication elimination or induction. -1

7More precisely, g' has co-domain {0, 1, 0}, and returns 0 if the address y exceeds the length
of f'(i).

Substructural Verification and Computational Feasibility 507

3.3. From Provability to PSpace
We complete the proof of Theorem 5 by showing that every function J

provable by a predicative and weakly-solitary derivation is in PSpace.
Suppose D is a predicative and weakly-solitary derivation. The term M =

KD has the following properties: (1) No recurrence argument has a free variable
bound in M; and (2) M is weakly-solitary in the following sense: If EF is a
subterm of M, then no variable of higher type occurs free in both E and F.
Call a ~1 (W)-term Ax.M[X] input-driven if the recurrence arguments in M are
all variables out of the list x. Note that this is a stronger condition than (1)
above.

LEMMA 7 Every function represented in ~1 (W) by a predicative and weakly­
solitary term is the composition of Functions represented in ~1 (W) by input­
driven and weakly-solitary terms.

See [15, Lemma 2.2] for a proof. The proof of Theorem 5 is now concluded by
the following.

LEMMA 8 If a function f is representable in ~1 (W) by a weakly-solitary and
predicative term, then it is computable in polynomial space.

Proof Outline. By Lemma 7 it suffices to consider the case where f is repre­
sentable by a weakly-solitary and input-driven term Ax.F. We may further as­
sume w .l.o.g. that the recurrence arguments in F are distinct variables out of the
list x. Let y1 , ..• , Yq be the x; 's used for higher order recurrence, and Z1, .•• , Zk

the x; 's used for recurrence in -+free types. Given y 1 , ..• , Yq, z1 , ... , Zk E W,
consider the term F* = {y, z!fj, Z}F. By the condition above we can indepen­
dently unfold each higher-type recurrence in F*, finally yielding some term M.
Clearly, M is of polynomial height (and exponential size).

Let m the maximal number of occurrences of higher-type variables that are
bound by a A-abstraction in F. Consider the symbolic parse-tree TM of M,
with the root at the bottom. Each node in T(M) has below it the junctures of
recurrence-unfolding on F*. Each such juncture corresponds to one choice out
of (at most) m positions, for a A-abstracted variable. Thus, to each node there
corresponds a "reduction address" in {0, ... , m -1 }h, where h :5 the height
of M. Call a node N in TM relevant to node N' if the reduction address of
N is a subsequence (not necessarily strict) of the reduction address of N'. It
can then be seen that: (a) Each node has only polynomially many relevant
nodes relevant to it; and (b) The behavior of each node under reductions can
be affected only by nodes relevant to it (here the definition of weakly-solitary
terms is crucial). Consider now a reduction sequence on M that eliminates
higher-type redexes. Since M is itself weakly-solitary, no node of TM can be
duplicated on the same branch of any redex term. It follows that for each
term M' along the reduction sequence, the parse-tree T(M') is the "horizontal
union" of (perhaps exponentially many) subtrees of polynomial size and height:
each such subtree corresponds to a reduction address in M.

508

Consequently, the entire reduction sequence of M can be computed in
polynomial-space, leading to an input-driven and predicative term whose only
redexes are for positive-type reductions. This can now be normalized in space
polynomial in the height of the term, which is itself polynomial in the size of the
input. The final normal form is the value of F*, i.e. the value of the function
jforinputyt, ... ,yq,Zl,···•z/cEW. -1

References
[1] A. Beckmann and A. Weiermann. A term rewriting characterization of the

polytime functions and related complexity classes. Archive for Mathematical
Logic, 36:11-30, 1996.

[2] Stephen Bellantoni and Martin Hofmann. A new feasible arithmetic. Journal
for Symbolic Logic, 2001.

[3] Stephen J. Bellantoni, Karl-Heinz Niggl, and Helmut Schwichtenberg. Higher
type recursion, ramification and polynomial time. Annals of Pure and Applied
Logic, 104 (1-3):17-30, 2000.

(4) A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the ACM,
28:114-133, 1981.

[5] Jean-Yves Girard. Light linear logic. Information and Computation, 143, 1998.

[6] Jean-Yves Girard, Andre Scedrov, and Philip Scott. Bounded linear logic: A
modular approach to polynomial time computability. Theoretical Computer Sci­
ence, 97:1-66, 1992.

[7] Kurt Godel. Uber eine bisher noch nicht benutzte erweiterung des finiten stand­
punktes. Dialectica, 12:28Q-287, 1958.

[8] E. Gradel. Capturing Complexity Classes by Fragments of Second Order Logic.
Theoretical Computer Science, 101:35-57, 1992.

[9] Martin Hofmann. A mixed modal/linear lambda calculus with applications
to bellantoni-cook safe recursion. In Proceedings of CSL •g7, pages 275-294.
Springer-Verlag LNCS 1414, 1998.

[10] Martin Hofmann. Linear types and non-size-increasing polynomial time com­
putation. In Proceedings of LICS'99, pages 464-473. IEEE Computer Society,
1999.

[11) Martin Hofmann. Safe recursion with higher types and bck-algebra. Annals of
Pure and Applied Logic, 104 (1-3):113-166, 2000.

[12) Daniel Leivant. Descriptive characterizations of computational complexity. In
Second Annual Conference on Structure in Complexity Theory, pages 203-217,
Washington, 1987. IEEE Computer Society Press. Revised in Journal of Com­
puter and System Sciences, 39:51-83, 1989.

[13] Daniel Leivant. Contracting proofs to programs. In P. Odifreddi, editor, Logic
and Computer Science, pages 279-327. Academic Press, London, 1990.

[14) Daniel Leivant. Intrinsic theories and computational complexity. In D. Leivant,
editor, Logic and Computational Complexity, LNCS, pages 177-194, Berlin, 1995.
Springer-Verlag.

[15] Daniel Leivant. Applicative control and computational complexity. In J. Flum
and M. Rodriguez-Artalejo, editors, Computer Science Logic (Proceedings of the

Substructural Verification and Computational Feasibility 509

Thirteenth CSL Conference, pages 82-95, Berlin, 1999. Springer Verlag (LNCS
1683).

[16) Daniel Leivant. Termination proofs and complexity certification. In Naoki
Kobayashi and Benjamin C. Pierce, editors, Theoretical Aspects of Computer
Software (TAGS 8001}, Springer LNCS 2215, pages 183-200, 2001.

(17) Daniel Leivant. Intrinsic reasoning about functional programs I: first order the­
ories. Annals of Pure and Applied Logic, 114:117-153, 2002.

(18) Daniel Leivant and Jean-Yves Marion. Ramified recurrence and computational
complexity IV: Predicative functionals and poly-space. Information and Com­
putation. To appear.

[19] Daniel Leivant and Jean-Yves Marion. Predicative functional recurrence and
poly-space. In M.Bidoit and M. Dauchet, editors, Theory and Practice of Soft­
ware Development, LNCS 1214, pages 369-380, Berlin, 1997. Springer-Verlag.

[20) Edward Nelson. Predicative Arithmetic. Princeton University Press, Princeton,
1986.

(21) Kurt Schiitte. Proof Theory. Springer-Verlag, Berlin, 1977.

(22) Helmut Schwichtenberg. An arithmetic for polynomial-time computation. Sub­
mitted for publication, 2002.

510

'D

(l) x'"" t/J t

(labeled assumption) (l-th variable of type Kt/J)

'Do 'Di
'Po 'P1 (K'Do, K'Di}
'Po 1\ 'Pi

'Do
'Po 1\ 'Pi 'lr;K'Do
---;;;--
(l)
t/J

>.x;"'. K'Do 'Do
cp (l)
cp-+t/J

'Do 'Do
cp-+t/J cp (K'Do}(K'Di)

t/J

'Do
cp(z] K'Do

Vxcp(x]

'Do
Vxcp(x]

~
K'Do

t=t *
'Do 'Dl

t=t' cp(t] K'D1
cp(t']

W(e) 0

'Do
W(t) (i = 0, 1) iK'Do
W(it)

'Do
W(it) (i = o, 1) pK'Do
W(t)

'P 'D. 'Do 'Dt
W(t) cp(e] cp(z]-+cp(Oz] cp(z]-+ cp(lz] R,.op (K'D •)(K'Do) (K'Dt)(K'P)

cp(t]

