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Abstract We refer to the intrinsic theories of (14, 17], a generic framework for 
uncoded reasoning about equational programs. In particular, a natural 
notion of provable functions corresponds to the provably recursive func­
tions of Peano Arithmetic and similar systems. A natural-deduction 
formulation of these systems map directly, via a Curry-Howard mor­
phism, to terms of the simply typed lambda calculus with recurrence, 
with a termination proof for a function f mapping to a representation 
of f. 

In (16) we showed that natural structural restrictions on derivations 
correspond to major complexity classes. When induction is restricted to 
positive formulas, a generalization of I:~ formulas, exactly the primitive 
recursive functions are provable. When only a "predicative" form of 
induction is allowed we obtain the Kalmar elementary functions. The 
combination of both restrictions yields the functions computable in poly­
nomial time. 

We show here that induction over arbitrary formulas does not add 
new provable functions if we disallow in derivations the closing of mul­
tiple data-complex assumptions. This significantly extends the class of 
proofs that can be accepted as "feasible mathematics." 

We also show that if multiple closing of data-complex assumptions is 
only prohibited when above distinct premises of implication elimination, 
then the provable functions are precisely the functions computable in 
polynomial space. 
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1. BACKGROUND 
1.1. Intrinsic theories 

In [14, 17] we introduced a verification methodology for equational programs, 
dubbed intrinsic theories. For each inductively-generated data system C one 
uses a skeletal theory IT(C), whose axioms are merely data-introduction ax­
ioms, i.e. the closure of data under the basic constructors, and data-elimination, 
i.e. induction schemas for the data types. To keep this condensed presentation 
uncluttered, we focus on the term algebra most relevant to computational com­
plexity, namely the algebra W generated from the constant e and the unary 
constructors 0 and 1, i.e. essentially the set {0, 1}*. The axioms of IT(W) 
are then the data-introduction axioms, which we supplement with a destructor 
rule, and write as inference rules: 

W(e) 
W(t) 
W(it) 

W(it) 
W(t) 

and data-elimination, i.e. the induction schema 

(i ::::: 0, 1) 

W(t) <p[e] <p(z]-+ <p[Oz] <p[z]-+ <p[lz] 
<p[t] 

with z not free in open assumptions.1 A degenerated form of data-elimination 
is 

i.e. reasoning by cases. 

W(t) <p[e] <p(Ox] <p[lx) 
<p[t] 

Throughout the paper we refer to provability in intuitionistic logic.2 More­
over, we greatly simplify the discussion by referring to the fragment of logic 
without disjunction and 3. 

1.2. Provable equational programs 
We refer to equational programs over IT(W). Each such program consists 

of a finite set P of equations between terms, where the terms are built from 
variables, the constructors e, 0 and 1, and program function-identifiers. One 
identifier is singled out as the program's principal identifier. Iff is the principal 
identifier of P, we say that ( P, f) computes a function f over N if f ( ii) ::::: m 
exactly when the formal equation f( ii) = m is derived from P in equational 

1See [17]· for the generic rules. It is also natural to consider separation axioms, which guar­
antee that the denotation of all ground terms are distinct; for 1\1 these are Peano's third and 
fourth axioms, 't/x. sx # 0 and 't/x, y. sx = sy--+ x = y. However, these axioms have no effect 
on the provability of programs, as defined below; see [16]. 
2Indeed, the calibration of proofs' computational contents by structural conditions is more 
problematic and less rewarding when classical logic is used; compare [16, §3.3]. 
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logic. A program P with principal r-ary function identifier f, is provable (over 
a given logic L) if 

IT(W), VP, W(xl) ... W(xr) 1- W(f(X}) 

where VP is the universal closure of the conjunction of P, and provability is in 
L. 

Two examples of provable programs, which will be of use later, are addition 
and multiplication over W, defined by +ex = x, +iyx = i(+yx), •xe = e, 
and •x(iy) = +x(•xy) (i = 0, 1). Here are derivations for these two func­
tions, where we use double-bars for the contraction of trivial steps, and display 
generically the induction cases for the successor functions 0 and 1. 

W(y) 

W(y) 

(1) 
VP W(+yz) 

Vx. +ex=x i(+yz)= + (iy)z W(i(+yz)) 
x=+ex W(x) W(+(iy)z) 

W(+yz)--.W(+(iy)z) (1) W(+ex) 

VP 

W(+xy) 

VP 

(1) 
W(x) W(•xz) 

'D 
+x(•xz)= u(iz) W(+x(•xz)) 

W(•x(iz)) e:=•xe W(e) 
W(•xe:) W(•xz)--.W(•x(iz)) (1) 

W(•xy) 

where 'D is the derivation above for addition, with •xz substituted for the free 
occurrences of y. 

1.3. Morphism to A-terms 
Let .\1 be the (Church-style) simply-typed lambda calculus defined as fol­

lows. The types are generated from base types t (for elements of W) and 8 
(a unit type), using the binary type operations --. and x. We call arrow-free 
types positive. For all type r we identify all of 8 x r, T x 8, and 8--.r with r; 
also, we identify r --. 8 with 8. In each case we say that the shorter form is a 
contraction of the longer one, and we say that r' is the contracted form of r 
if r' is obtained from r by successive contractions, and cannot be contracted 
further (i.e. is either 8 or free of 8). 

We omit parentheses when in no danger of ambiguity, modulo the proviso 
that x binds stronger than --., and then that --. and x associate to the right. 
For example, t --. t x t --. t abbreviates t--. ( ( t x t)--. t). We call a type positive 
if its contracted form is free of --.. 
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For each type r we posit an unbounded stock of variables of type r, x[ (we 
omit the type superscript when convenient). Terms are generated from the vari­
ables using >.-abstraction, type-correct application, pairing (written (Eo, Et)), 
and type-correct projection (written 1r;E, i = 0 or 1). The corresponding types 
are defined as usual. We write (Eo, ... , Em) for (Eo, (Et, · · · , (Em-t, Em)···)). 
The computational rules are J3-reduction and projection-reduction. We write 
E => E' (and say that E converts toE') if E' arises by replacing in E a subterm 
F by its reductum. 

The typed lambda calculus over W, At(W), is the extension of At with con­
stants * of type (}, e of type £, 0, 1 and p of type £ -+ £, B {branching) of type 
{t, £-+ £,£-+ £, t)-+ £, and for each type T Rr of type r-+ (r-+ r)-+ £-+ r. The 
reduction rules of At are augmented with: 

p(it) -+ t (i = 0, 1) 

Bt,totte -+ t. 
Bt,tott(iw) -+ t;(w) (i=0,1) 

Rt,t0tte -+ t. 
Rt, to tt (iw) -+ t;(Rt,tottw) 

We define a mapping K from IT(W) formulas to types of At(W):3 

K(E) = (} if E is an equation 
,;,(W(t)) = £ 

,;,(r.po/\'Pt) = ,;,(r.po) X K(r.pt) 
,;,(r.po-+ 'Pt) ,;,(r.po) -+K(r.pl) 

,;,(Vxr.p) = ,;,(r.p) 

Thus, "' extracts from a formula r.p the type Kr.p of its "computational con­
tents." We extend,;, to a Curry-Howard mapping from derivations V of IT(W) 
to to terms ,v of At (W). If V derives a formula r.p from labeled assumptions 
(l;) 
1/J; then KV will be a term of type Kr.p, with free variables x;;1/J;. The definition 
of"' is given in a table at the end of the paper.4 The mapping,;, is a homo­
morphism with respect to reductions:5 if V reduces to V', then ,.v' is either 
identical to KV or is obtained from it by a reduction in At (W). 

THEOREM 1 [14, 17, 16] (1) If V is a proof ofiT(W) for (P, f) then KV is a 
program of At (W) for the function computed by (P, f). 

3The oblivion of this mapping to terms and first order quantifiers was first used in [13]. The 
unit type was first used in this context in [17]. 
4The definition of K; for data rules (i.e. those referring to N) is shorter when the latter are 
formulated as axioms, but we prefer to keep them as as inference rules, which offer a more 
streamlined proof theoretic treatment of normalization, as well as of structural conditions on 
induction. 
5See (17] for the definition of reduction for the data-rules. 
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(2) The provable functions ofiT(W) are precisely (modulo canonical codings) 
the provably-recursive functions of Peano Arithmetic. 

(3) The functions provable in IT(W) with induction for positive formulas are 
the primitive recursive functions. -i 

Part (1) is a useful tool here and in similar formalism: it enables one to focus 
attention on the computationally relevant aspects of proofs, namely those that 
are coded in the corresponding ~1 (W)-terms. For example, the fact that every 
function provable using positive induction is primitive recursive immediately 
follows from (1}, since such proofs map under ~r. to terms of ~1 (W) with first­
order recurrence. Similarly, (2) follows from (1) by [7]. 

1.4. Predicative induction 
Ed Nelson (20] and others have noticed that first order arithmetic has an 

impredicative ingredient, responsible for the admission of unfeasible functions 
such as exponentiation. This implicit impredicativity is clearly identified in the 
induction rule of IT(W): from W(t) one derives cp[t] in which W itself may 
occur. Viewing induction as delineating W (or- similarly- N), is therefore 
circular. 

Intrinsic theories are useful not only for articulating this impredicativity, 
but also for addressing it. One such method is ramification [14], which is anal­
ogous to the ramification of second order logic to break its impredicativity 
(21]. Combinatorially speaking, ramification of induction blocks an exponen­
tial explosion of proof normalization by preventing that the major premise of 
induction depend on an induction hypothesis of another induction. A more 
direct blocking was defined in [16]. Call a labeled assumption cp (in a natural 
deduction derivation V) a working assumption if it is closed in V. Call a for­
mula cp data significant if the contracted form of ~r.cp is not 9. Call an instance 
of induction predicative if its major (i.e. leftmost) premise does not depend on 
an open data-siginficant working assumption. A derivation is predicative if all 
non-degenerated instances of induction are predicative. 

THEOREM 2 [16] A function over W is computable in polynomial time iff it 
is computed by an equational program (P, f) which s provable in IT(W} by a 
predicative derivation with induction for data-positive formulas. 

The proof uses the homomorphism ~r.: if V is a derivation of (P, f) with only 
predicative instances of induction, and all induction formulas data-positive, 
then ~r.V is a ~1 (W)-term with R,. for positive r only, where all instances of 
recurrence are predicative, i.e. with no variable both free in the recurrence 
argument and bound in ~r.V. 
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2. SOLITARY INFERENCES AND 
POLY-TIME 

2.1. Multiple uses of assumptions 
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We illustrate the power of induction for non-positive formulas by proving a 
function over N of exponential growth rate, namely the function e(x, y) = 2"' +y 
defined by the program consisting of the equations e(O,y) = sy, e(sx,y) = 
e(x, e(x, y)). Here is a natural deduction prooffor this program, in IT(N), the 
intrinsic theory for N analogous to IT(W). 

Vy (N(y)-+ N(e(u, y)) 
'r/y (N(y)-+ N(e(u, y)) 

N(y)-+ N(e(u, y)) 
N(y) N(e(u, y))-+ N(e(u, e(u, y))) N(e(u, y)) 
N(sy) N(e(u, e(u, y))) 

N(e(O, y)) N(e(su, y)) 

-N~(x~)~'Vy~(~N~(y~)_-+_N~(e~(~O,~y~))~) _____ 'V~y~(N~(~y)~-+_N_(~e~(s~u,~y~))). 
md 'r/y (N(y)-+ N(e(x, y)) 

N(y) 

The fact that the induction formula here is not positive is exploited by using 
it twice, and applying the outcome of one use to the outcome of the other. 
The question arrises then: is the culprit for exponential growth-rate the very 
complexity of the induction formula, or merely the duplicate use made of it? 
The answer is the latter. 

2.2. Solitary assumption-classes 
Theorem 2 shows that powerful restrictions on proof methods yield poly-time 

complexity. We show that these restrictions can be relaxed without yielding 
additional provable functions (though possibly proving additional programs for 
such functions). We start by presenting the main idea in its simplest form. 

A labeled-assumption in a derivation V is solitary if it has at most one 
formula-occurrence.6 A derivation is strictly-solitary if all its assumption classes 
are solitary. 

If V is a strictly-solitary derivation, then the ~1 (W)-term KV has the prop­
erty that every >.-abstraction closes at most one variable-occurrence. Let M 
be such a term, and suppose that M reduces to M'. The two salient proper­
ties of the reduction are: (1) all >.-abstraction in M' again close at most one 
variable-occurrence; and (2) the size of M' is smaller than the size M (though 
the height of M' may be roughly double that of M). 

PROPOSITION 3 A function over W is computable in polynomial time iff it is 
computed by an equational program (P, f) which is provable in IT(W) by a 
strictly-solitary derivation V. 

6 Recall that an assumption-class is the set of commonly-labeled assumptions in a natural 
deduction derivation, closed jointly by some inference. 
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Notice that in the derivation 'D for a program (P, C) the assumptions W(x,) 
are not closed, and therefore may have multiple occurrences. Also note that 
we make no stipulation about the complexity of induction formulas or their 
predicative use. 

Proof Outline. The proof of Theorem 2 shows that all poly-time functions 
have a program with a strictly-solitary derivation 'D. 

To prove the converse, consider a strictly-solitary derivation 'D for a program 
(P, C) computing the function f. Then M = tr.'D is a ~1 (W)-term that computes 
f, and in which no A-abstraction closes more than one variable occurrence. 
Consider a term Mw, where w E W. By induction on M and secondary 
induction on lwl it is easy to see, using properties (1) and (2) above, that the 
reduction sequence of Mw to its normal form has length polynomial in lwl. -l 

2.3. Solitary inferences and poly-time 
Proposition 3 shows that restricting induction to positive formulas can be 

traded for a prohibition of assumption multiplicity. The class of provable func­
tions is poly-time in either case. While this result is potentially beneficial in 
some cases, it seems that multiple invocation of assumptions is, in fact, used and 
needed in actual proofs far more frequently than induction over data-complex 
formulas. Fortunately, we can combine the advantages of both approaches. 
Call a formula data-complex if the contracted form of tr.cp contains ~. Call a 
derivation 'D solitary if all data-complex assumption classes are solitary. 

THEOREM 4 A function f is poly-time iff it is provable by a solitary and pred­
icative derivation 'D. 

Note that induction is permitted here over all formulas. If induction is restricted 
to positive formulas, then 'D, which w.l.o.g. can be assumed normal, has no 
data-complex assumption classes, so Theorem 2 is a special case of Theorem 4. 

Proof Outline. The proof of Proposition 3 shows that every poly-time func­
tion is provable as required. 

For the converse, consider a derivation 'D as above. The term tr.'D, which 
by Theorem 1(1) defines j, has only predicative instances of recurrence, and 
no higher-type variable is multiply-closed by a A-abstraction in tr.'D. In [15, 
Lemma 3.12] we showed that such terms define poly-time functions. -l 

2.4. Origins of solitary deductions 
It has been known for long that allowing resources to be invoked only once 

is related to poly-time computation. For ~nstance, linear logic leads to poly­
time [6, 5], second-order existential database queries are poly-time if the matrix 
is Horn [12, 8], monotone inductive definitions (where each object is inserted 
only once) define exactly the poly-time queries over finite structures, ramified 
recurrence with parameters does not lead out of poly-time if only one parameter 
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is used [1], Turing machines operating in poly-space accept exactly the poly­
time languages if non-blank tape-cells cannot be reused, etc. 

Continuing in this vein, Martin Hofmann [9, 10, 11] has developed a linear­
type ramified functional calculus that defines exactly the poly-time non-size­
increasing functions, even if recurrence is used at all finite types. This has 
been further refined in (3]. Independently we showed that allowing abstracted 
higher order functions to be used only once in .\-recurrence terms, yield exactly 
poly-time [15]. 

Proof theoretic characterizations of poly-time that build on linearity have 
also appeared recently, among others in [2, 22]. The main advantage of our 
present result is that it does not require an overlay of syntactic machinery on 
the formulas; the proofs we consider are all proofs in intrinsic theories (whose 
syntax is very simple), and the structural properties that they satisfy can be 
automatically checked. This yields a transparent machinery for certifying pro­
gram feasibility. 

Since poly-time has rather simple proof-theoretic characterizations (e.g. (16] 
above), the main motivation ofrestricted-multiplicity conditions is the attempt 
to permit induction for all formulas, thereby providing the user of the formalism 
(human or automated) with a larger arsenal. Consequently, it is self-defeating 
to abandon in the process other methods, in particular when these are im­
portant and natural. For instance, taken in isolation, restricted multiplicity 
disallows a direct and simple proof of the squaring function! Indeed, one would 
wish to combine the advantages of various approaches, rather than piling up 
the hurdles to using them. 

There is a trade-off, of course, in our avoiding the explicit use of linear and 
other resource-control operators. Our combinatorial conditions may be viewed 
as corresponding to the use of such operators at the outer level of reasoning, 
whereas more explicit resource-control operators, as in [10], might be used to 
convey more subtle interactions between parts of proofs. Examples illustrating 
such gains are yet to be developed, however. 

3. POLY-SPACE 
3.1. Weakly-solitary derivations 

Returning to our example above of a derivation for the functions 2"' +y, we 
can further ask: is the culprit for exponential growth-rate the very duplicate 
use of the assumption, or only the particular setting where one use is applied 
to another, across an instance of implication elimination? In other words, what 
would happen if we allow duplicate uses of data-complex working assumptions, 
as long as they are not ancestors of distinct premises of implication elimination? 
Interestingly, the provable functions are then precisely the functions computable 
in polynomial space. 

Call an assumption-class in a natural deduction V weakly-solitary if no two of 
its members are ancestors of distinct premises of an instance of implication elim-
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ination. A derivation V is weakly-solitary if every data-complex assumption­
class in V is weakly-solitary. 

We show below that a function j : W* ~ {0, 1} is provable by predicative 
and weakly solitary derivations iff it is computable in polynomial space. Recall 
that a function g : w· ~ w is computable by a Turing machine in polynomial 
space iff the associated bit-function 

g'(x,y) =dr the bit of g(X) at address y 

is computable in PSpace. 7 However, our proof does not apply directly to func­
tions g as above, since it relies on the characterization of PSpace as alternating 
PTime [4). With this in mind, we will prove the following. 

THEOREM 5 A function f : w· ~ {0, 1} is provable in IT(W) by a predicative 
and weakly-solitary derivation iff it is in PSpace. 

3.2. From PSpace to provability 

PROPOSITION 6 Every function f : W* ~ {0, 1} computable in polynomial 
space is provable in IT(W) by a predicative and weakly-solitary derivation. 

Proof Outline. The proof uses a proof-theoretic analog of the technique 
of [18, 19). By [4) a boolean-valued function computable in PSpace is com­
putable in polynomial time by an alternating Turing machine, which w .l.o.g. 
has branching degree 2. The latter is computable by composing a polynomial 
function (generating the computation clock) with a function defined by param­
eterized recurrence of the form: 

f(e,X) = g.(X) 

f(ct, X) = g.(x, f(t, ho(X)), f(t, h1 (X))) 

The intent is that f(t, X) is the acceptance status returned by the given alter­
nating machine, when in configuration :i!, and provided with ltl computation 
steps along each branch. The functions hi return the two subsequent configura­
tion, and are defined explicitly without use of recurrence (other than definition 
by cases). The function g. returns the conjunction or disjunction of its last two 
arguments, depending on the state whose code is part of :i!. 

It is easy to see that the equational program described above is provable, 
using induction for the formula 

cp(t) ::dr V:i!.W(X)~W(f(t,X)) 

The formula is used twice in the induction step, with x instantiated once to 
h0 (X) and once to h1 (X). The two instances are combined using only basic 
operations, without use of implication elimination or induction. -1 

7More precisely, g' has co-domain {0, 1, 0}, and returns 0 if the address y exceeds the length 
of f'(i). 
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3.3. From Provability to PSpace 
We complete the proof of Theorem 5 by showing that every function J 

provable by a predicative and weakly-solitary derivation is in PSpace. 
Suppose D is a predicative and weakly-solitary derivation. The term M = 

KD has the following properties: (1) No recurrence argument has a free variable 
bound in M; and (2) M is weakly-solitary in the following sense: If EF is a 
subterm of M, then no variable of higher type occurs free in both E and F. 
Call a ~1 (W)-term Ax.M[X] input-driven if the recurrence arguments in M are 
all variables out of the list x. Note that this is a stronger condition than (1) 
above. 

LEMMA 7 Every function represented in ~1 (W) by a predicative and weakly­
solitary term is the composition of Functions represented in ~1 (W) by input­
driven and weakly-solitary terms. 

See [15, Lemma 2.2] for a proof. The proof of Theorem 5 is now concluded by 
the following. 

LEMMA 8 If a function f is representable in ~1 (W) by a weakly-solitary and 
predicative term, then it is computable in polynomial space. 

Proof Outline. By Lemma 7 it suffices to consider the case where f is repre­
sentable by a weakly-solitary and input-driven term Ax.F. We may further as­
sume w .l.o.g. that the recurrence arguments in F are distinct variables out of the 
list x. Let y1 , ..• , Yq be the x; 's used for higher order recurrence, and Z1, .•• , Zk 

the x; 's used for recurrence in -+free types. Given y 1 , ..• , Yq, z1 , ... , Zk E W, 
consider the term F* = {y, z!fj, Z}F. By the condition above we can indepen­
dently unfold each higher-type recurrence in F*, finally yielding some term M. 
Clearly, M is of polynomial height (and exponential size). 

Let m the maximal number of occurrences of higher-type variables that are 
bound by a A-abstraction in F. Consider the symbolic parse-tree TM of M, 
with the root at the bottom. Each node in T(M) has below it the junctures of 
recurrence-unfolding on F*. Each such juncture corresponds to one choice out 
of (at most) m positions, for a A-abstracted variable. Thus, to each node there 
corresponds a "reduction address" in {0, ... , m -1 }h, where h :5 the height 
of M. Call a node N in TM relevant to node N' if the reduction address of 
N is a subsequence (not necessarily strict) of the reduction address of N'. It 
can then be seen that: (a) Each node has only polynomially many relevant 
nodes relevant to it; and (b) The behavior of each node under reductions can 
be affected only by nodes relevant to it (here the definition of weakly-solitary 
terms is crucial). Consider now a reduction sequence on M that eliminates 
higher-type redexes. Since M is itself weakly-solitary, no node of TM can be 
duplicated on the same branch of any redex term. It follows that for each 
term M' along the reduction sequence, the parse-tree T(M') is the "horizontal 
union" of (perhaps exponentially many) subtrees of polynomial size and height: 
each such subtree corresponds to a reduction address in M. 
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Consequently, the entire reduction sequence of M can be computed in 
polynomial-space, leading to an input-driven and predicative term whose only 
redexes are for positive-type reductions. This can now be normalized in space 
polynomial in the height of the term, which is itself polynomial in the size of the 
input. The final normal form is the value of F*, i.e. the value of the function 
jforinputyt, ... ,yq,Zl,···•z/cEW. -1 
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'Do 
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