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Abstract We consider an extension of the classical bin packing problem, moti­
vated by a frequency allocation problem arising in cellular networks. 
The problem is as follows: Each object has two attributes, weight and 
fragility. The goal is to pack objects into bins such that, for every bin, 
the sum of weights of objects in that bin is no more than the fragility 
of the most fragile object in that bin. 

We look for approximation algorithms for this problem. We provide 
a 2-approximation to the problem of minimizing the number of bins. We 
also show a lower bound of 3/2. Unlike in traditional bin packing, this 
bound holds in the asymptotic case. We then consider the approxima­
tion with respect to fragility and provide a 2-approximation algorithm. 
Our algorithm uses the same number of bins as the optimum but the 
weight of objects in a bin can exceed the fragility by a factor of 2. 

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002
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1. Introduction 
We consider a generalization of the classical bin-packing problem. In the 

traditional bin-packing problem, we are given a collection of n objects, where 
each object has an arbitrary non-negative weight no more than 1. These objects 
are to be placed in bins, such that the total weight of the objects in each bin is 
at most 1, and the total number of bins used is minimized. In our problem the 
objects are fragile, that is, in addition to its weight, each object has a fragility 
associated with it. The more fragile an object, the lower is its fragility value. 
In this model, an object breaks down if the total weight of objects in the bin 
in which it is placed exceeds the fragility of this object. Thus, we seek to place 
the objects in bins such that for every bin, the sum of the weights of objects in 
that bin is no more than the fragility of the most fragile object in that bin. 

Clearly, if we set the fragility of each object to 1, this places an upper bound 
of 1 on the total weight in each bin, and hence our problem reduces to the 
traditional bin-packing problem. As classical bin packing is known to be NP­
hard, we look for efficient approximation algorithms for our fragile bin packing 
problem. There are two natural notions of approximation for the problem. The 
first (as in the classical bin packing problem) is the number of bins used. We 
give a factor 2 approximation with respect to the number of bins. We also show 
that, unlike the traditional bin packing problem which admits an asymptotic 
PTAS [de la Vega and Lueker, 1981, Karmarkar and Karp, 1982], our problem 
cannot be approximated by a polynomial time algorithm to a factor better 
than 3/2, unless P=NP. Second, we can also consider an approximation with 
respect to fragility. Specifically, we can imagine an algorithm which produces an 
assignment of objects to bins that uses the same number of bins as the optimal 
algorithm, however we might violate the fragility upto some factor greater than 
1. That is, the sum of weights of objects in a bin can be upto some factor times 
more than the fragility of the most fragile object in that bin. We will give 
an algorithm which achieves an approximation ratio of 2 with respect to this 
measure. 

The bin-packing problem and its various variants have been extensively 
studied, in the context of approximation algorithms [de la Vega and Lueker, 
1981, Karmarkar and Karp, 1982], online algorithms [Garey et a!., 1972, Yao, 
1980, van Vliet, 1996] and average case analysis [Shor, 1984, Coffman and 
Lueker, 1991]. A survey article by Coffman et. a!. [Coffman et a!., 1997] and 
numerous references therein provide a comprehensive list of the results in this 
area. While our variant of the problem is fairly natural, we do not know of 
any previous work on this problem. Our variant is motivated by the following 
problem arising in frequency allocation in cellular networks. 

Consider a base station in a cellular network which has various users com­
municating with it on various frequency channels. In CDMA (a commonly used 
technology in wireless systems), a wide channel with capacity much larger than 
an individual user's information rate is allocated and multiple users share a 
single channel. To utilize the bandwidth efficiently it is necessary to assign as 
many users as possible to a single channel. However, the tradeoff in assigning 
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many users to a particular channel is that there is loss of quality (given by 
signal to noise ratio (SNR), usually denoted by {3), due to interference among 
users sharing the channel. The goal of the channel assignment scheme is to min­
imize the number of channels used while guaranteeing that each user achieves 
a minimum SNR of {3. 

To be more specific, consider n users communicating with a central base 
station. If user i transmits with power Pi, then the signal received by the base 
station is Si = p;gi, where Yi is the channel gain for user i. Let U(t) be the set 
of users transmitting to the base station at timet, then transmission from user 
i E U(t) is successful if and only if 

Si ?:. {3 
No + E;eu(t),j;l!i 8i 

where {3 is the signal-to-noise ratio (SNR) requirement for successful commu­
nication and N0 is the background noise power. While we consider only single 
cell networks in this paper, No can be used to model the interference due to 
thermal noise and the interference due to the transmission of the neighboring 
channels in a multicellular network. 

Thus, we can model the frequency channels as bins, the users are objects 
with weights equal to the amount of power received at the base station. Since 
the users can tolerate a power of up to 1/ {3 times their power from other users 
on the same frequency channel, we set their fragilities to be 1 + 1/ {3 times their 
weight. Thus the frequency allocation problem is a special case of our general 
bin-packing problem with fragile objects. 

We note that a widely studied solution (assuming certain hardware capa­
bilities) to the frequency allocation problem is power control [Hanly and Tse, 
1999, Yates, 1995, Yates and Huang, 1995, Zander, 1993, Viterbi, 1995]. Here, 
the users control their transmission power levels such that the power received at 
the base station (the weight in our bin packing problem) is almost equal for all 
users. However, power control involves expensive and relatively sophisticated 
hardware. For example, most of the wireless Ethernet cards available presently 
cannot adjust their transmission power (Feeney and Nilsson, 2001]. Thus, our 
work applies to scenarios where power control is not available. 

2. Problem Formulation 
We are given n objects 1, ... , n with weights w1 , •.• , Wn and fragility h, ... , fn 

respectively. We have bins (of potentially infinite capacity), in which we want 
to place the objects. Suppose objects il,}2, ... ,jn; are assigned to bin Bi. 
Then the assignment to bin Bi is feasible for bin Bi if w;1 + · · · + w;,.; ~ 
min{fit, fh, ... , /;,.; }. In words, the total weight of the objects assigned to 
bin Bi does not exceed the fragility of any object in the bin. 

Let A be an assignment of objects to bins. We say that A is feasible if 
each object is assigned to some bin, and each bin is feasible. The cost of the 
assignment A is the number of bins used by the assignment. Let OPT be 
the assignment which uses the minimum number of bins. We also abuse the 
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notation to let 0 PT also denote the number of bins used the the optimum 
solution. 

We consider two measures of approximation. In the first, we measure the 
approximation ratio by the number of bins used by our algorithm against that 
used by the optimum. We will denote this as "approximation with respect to 
the number of bins". 

For the second measure, we define an assignment of objects to bin B; to be c­
feasible if Wj1 + · · · +w;,.; ::; cmin{fh, lh, ... , IJ .. ; }. That is, the bin is allowed 
to deviate from its fragility constraint by a factor of up to c. An assignment 
is c-feasible if each bin is c-feasible. According to this measure, our algorithm 
has an approximation ratio of c if it finds an assignment which uses at most 
OPT bins, but only guarantees that each bin is c-feasible (as opposed to being 
!-feasible as in the optimum solution). We will denote this as "approximation 
with respect to fragility". 

3. Approximation with Respect to the Number 
of Bins 

3.1. Algorithm 
Before we describe the algorithm, we first fix some notation and labeling 

conventions. 
We will label the users according to the non-decreasing order of their fragility 

values, thus In 2::: ln-1 2::: ••• 2::: h 2::: f1. We will say that i is to the left of j 
if h > I;, in the above ordering. Thus 1 is the rightmost object. Consider an 
assignment A of objects into bins. For a bin B, let r(B) denote the index of the 
object with the least fragility assigned to bin B. Suppose A uses m bins, we 
will label the bins B1. ... , Bm such that r(B1) < r(B2) < ... < r(Bm). Thus, 
the bin containing user 1 is bin 1, the bin containing the rightmost object other 
than the ones in bin 1 will be denoted by bin 2 and so on. 

To avoid trivialities, we will assume that w; :5 j; for each object i. Observe 
that if w; > h for some i, then the object cannot be placed in any bin, hence 
there is no feasible solution. 

Consider the following greedy algorithm: 

1 Sort and label all the objects according to non-decreasing /;, i.e. In ;::: 
... ;::: fl. 

2 Initialize i +- 1, j +- 1 and w +- 0, f +- fi. 

3 Whilei::;n 
If B; U {i} is feasible (w + w; :5 min{!, li}) 

B; +- B; U {i}, w +- w +w;, I+- min{l,li} 
Else 

j+-j+l 
B; +- {i}, w +- W;, I +-li 

i+-i+l 
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Observe that the algorithm above fills the bins greedily starting from ob­
ject 1. It adds objects to a bin, until adding the next object makes the bin 
infeasible. At this point, the algorithm creates a new bin and continues to add 
objects into it. 

We will say that a solution is banded if each bin consists only of consecutive 
objects. Formally, if i > j, the for any k,l such that k E B, and l E Bj, we 
have that k > l . It is easy to see that the greedy algorithm above produces 
the optimum banded solution, and requires time O(nlogn). 

We will show that the greedy algorithm above requires at most twice the 
number of bins required by the optimum algorithm. The idea of the proof is 
that, given an optimum solution using OPT bins, we first produce a fractional 
banded solution {defined below) which consists of OPT bins. We then round 
this fractional solution to produce a banded solution with at most 2 ·OPT bins. 

3.2. Worst-Case Analysis 
Consider an optimum assignment. We will abuse notation and let 

B1 , ..• , BoPT denote the sets of objects assigned to bins Bt, ... , BoPT re­
spectively. Define W, to be the sum of all the weights of objects in B,, thus 
wi = LjEB; Wj· From the optimum solution construct a fractional banded 
solution as follows: 

Greedily assign objects, possibly fractionally, to bins B~ such that sum of 
the weights of objects in bin Bi is exactly Wi. That is, start from the rightmost 
object, put it in bin B~. Let k be such that w1 + ... + Wk ~ W1 and w1 + 
... + Wk+l > W1 . In this case, bin B~ will comprise of objects 1, 2, ... , k and a 
fraction X of the object k + 1 such that Wt + ... + Wk + XWk+l = wl. Continue 
packing the remaining objects in bin B~ and so on. 

Informally, if we think of the objects laid out (in the order of their fragility) 
along the line as segments of length equal to their respective weight, then what 
we are doing is marking intervals of length equal to the weight of each bin 
of the optimal solution. In the fractional banded solution, these intervals are 
interpreted as the bins, and each object is put into the bin corresponding to 
the interval in which it falls, fractionally if it overlaps two of the intervals. 

We now define some notation to make this precise. Let l~ and r~ be the index 
of the leftmost and the rightmost object having a non-zero fraction in B~. Let 
x1~ and Xr~ denote the fraction of l~ and r~ in B~, hence 0 ~ x1~, Xr~ ~ 1. 
Then, 'r/k, r~ < ~~-l and X!' W!' + Li I' <i<r' Wi + Xr• Wr• = wk 

- k 1: '" k k • 

Note that Bk completely contains all objects i such that lk < i < rk. In the 
case when lk = rk, then Bk contains at most one object, moreover, since w, ~ /i 
for all i, we know that Bk contains exactly one object and x1~ = Xr~ = 1. 

We now observe a few properties of this assignment. 

Property 1 The number of bins B' formed thus will be exactly OPT. 

Proof: This follows directly from the procedure to construct the fractional 
bins. • 
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Property 2 Let r~ and r; be the index of the object with the least fragility 
(hence rightmost) in bin Bl and B; respectively. Then r; :::; r:. 
Proof: In OPT, all objects to the right of r; will lie in bins Bi such that j < i. 
Hence the sum of the weights of the objects to the right of r; will be at most 
I:~~i W(j). Since the sum of the objects to the right of ri in the fractional 
solution is exactly I:~~i W(j), if follows that the rightmost object of Bi is to 
the left of the rightmost object of bin B; in OPT. • 

We will now convert this fractional banded solution into a banded solution 
which uses at most 2 ·OPT bins. 

Rounding Procedure: 

1 If an object i has a fraction strictly less than 1 in some bin Bj, then 
remove i from all bins Bj, which contain some fraction of i. Put object 
i into a new bin by itself. Call these bins of type H. 

2 Repeat Step 1 until all the bins Bj. contain a 0 or 1 fraction of every 
object. Now, each Blc consists of objects in the range [lf:, ... , rf:] Denote 
these new bins by Bf:. 

Clearly the number of bins B~ will be at most OPT. Also, each bin of type 
H is feasible since it contains exactly one object. The next lemma shows that 
the number of bins of type H is also bounded, and all the bins B" produced 
are feasible. 

Lemma 3 The above rounding procedure produces a banded assignment of ob­
jects to bins, the number of bins used is at most 2·0PT and each bin is feasible. 

Proof: We first bound the number of bins of type H. For any bin Bj at most 
one object has the property that it lies in both Bj and Bj+1 • Since the number 
of such bins B' is at most OPT, it follows that the number of objects covered 
fractionally is at most OPT. 

We now show that the bins B~ are feasible. The sum of the weights of the 
objects in bin Bf: is clearly no more than that of Blc and hence less than Wk. 
Also, the index of the rightmost object of B~ is at least as large as that of Blc, 
which by Property 2 is at least as large as that of Bk. Thus, as the fragility 
of the least fragile object of B~ is not less than that of Bk and the weight of 
objects in Bf: is not greater than that of Bk, it follows that Bf: is feasible. Thus 
the result follows. • 

Since the greedy algorithm produces the optimum banded solution, Lemma 
3 gives, 

Theorem 1 The number of bins used by the greedy algorithm is at most twice 
the optimum, and it runs in time O(nlogn). 
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3.3. Lower Bound 
In this section we show that no algorithm can achieve an approximation ratio 

of less than £ unless P = N P. This lower bound holds even in the asymptotic 
case, unlike the traditional bin packing which has a PTAS in the asymptotic 
case. 

We reduce the partition problem to our packing problem. Given a set A 
with each object having a size s(a) E z+, the partition problem is to decide if 
3A' C A, such that EGEA' s(a) = EaeA-A' s(a} [Garey and Johnson, 1979]. 
We can easily transform this into our problem. Let s be the sum of objects in 
A. We form an instance of our problem, where we have n objects with weights 
s(a) and all fragilities set to s/2. 

Clearly, there exists a solution to the partition problem iff the objects can be 
packed in 2 bins. To show a lower bound for the asymptotic case, we construct 
m copies, A1, ... , Am of the set A. The set Ai is obtained from A by scaling 
both the weight and the fragility of the objects by si-l (i.e. in Ai the weight 
of object a is si-1 s(a) and the fragility is s/2. si-l ). 

We solve the bin packing problem on the instance A1 U ... U Am. Observe 
that, if i =j:. j no two objects from Ai and Ai can lie in the same bin, because 
one of the objects will always have more weight than the fragility of the other 
object. Thus, if we obtain a solution which uses less than 3m bins we know 
that the partition problem has a solution. Hence the bin packing problem has 
an optimum solution which either uses only 2m bins or at least 3m depending 
on whether the partition problem has a solution. Thus we have shown that 

Theorem 2 The number of bins used the bin packing problem cannot be ap­
proximated to within a factor of £ by a polynomial time algorithm, unless 
P=NP. 

4. Approximation with Respect to Fragility 
In this section we will construct a solution where the number of bins used 

is OPT, but each of the bins is only guaranteed to be 2-feasible rather than 
!-feasible as in the optimum solution. 

Given some optimum solution OPT, we consider the fractional solution using 
0 PT bins as in Section 3. However we modify our rounding procedure. 

Rounding Procedure: 

1 Given a bin B~ in the fractional solution, form a new bin Bi' by including 
the rightmost object of Bi completely in Bi'· 

2 If x1• < 1, (that is if the leftmost object of Bi occurs fractionally in BD 
then' remove it from Bi'. 

Lemma 4 The rounding procedure gives an assignment of objects to bins which 
is banded, has number of bins at most OPT, and each bin is 2-feasible. 

Proof: In the rounding procedure, observe that the rightmost object of the bin 
Bi' remains the same as the rightmost object of Bi. Moreover, if B~ contains an 
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object which is not contained by Bi', we know that the object is li and x1: < 1. 
Hence xr:+, < 1 and li will be included in Bi~ 1 • Thus every object (except 
possibly n) lies in some Bf' for some i. To see that n also lies in B:Jpr, observe 
that l~ = 1, since Wn ~ fn· Hence the number of bins Bi' is exactly OPT, and 
they contain all the objects. 

We now show that each bin Bi' is 2-feasible. Consider the bin BY, we know 
that its rightmost object is r;, and by Property (2), ri ~ r;. Moreover we know 
that the sum of weights of objects in Bi' is at most W; + Wr;. 

Now since bin B; was feasible, W; ~ /r;. As Wr; ~ /r; it follows that 
Wr; + Wr; ~ 2/r; ~ 2/r; · • 

Thus there exists a banded solution where the bins are 2-feasible and the 
number of bins used is at most OPT. So our algorithm will be as follows. 

1 Sort and label all the objects according to non-decreasing fi, i.e. fn ~ 
... ~ /!. 

2 Initialize if- 1, j f- 1 and w f- 0, f f- k 

3 While i ~ n 
If Bj U { i} is 2-feasible (i.e. w + w; ~ 2 min{!,/;}) 

Bj f- Bj U {i}, w f- w + wi, f f- min{!,/;} 
Else 

j+-j+1 
Bj f- {i}, w f- W;, f f- /; 

i+-i+1 

The above algorithm produces an optimal banded solution which is 2-feasible. 
It follows from Lemma 4 that 

Theorem 3 The algorithm produces a solution where each bin is 2-feasible and 
the number of bins used is at most that used by the optimum 1-feasible solution. 
Moreover the algorithm runs in time O(nlogn). 

5. Conclusion 
In this paper we considered a variant of the bin packing problem arising in 

frequency allocation of cellular networks. We showed that two simple heuristics 
for assigning objects to bins based on their fragility are provably good. We 
believe that the results can be extended in various directions along the lines of 
other results for the traditional bin-packing problem. For example, an average 
case analysis for the case when the weights and fragilities come from some 
distribution would be interesting. It would also be interesting to study the 
online case, and the case when the objects are present for a temporary duration 
(this would correspond to users entering and leaving the cellular network). 
Also the problem of d-dimensional bin packing with fragile objects would be 
interesting. 
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