
ONE-WAY PERMUTATIONS AND SELF­
WITNESSING LANGUAGES

Christopher M. Homan•
Department of Computer Science
University of Rochester, Rochester NY 14627
choman@cs.rochester.edu

Mayur Thakur
Department of Computer Science
University of Rochester, Rochester NY 14627
thakur@cs.rochester.edu

Abstract A desirable property of one-way functions is that they be total,
one-to-one, and onto-in other words, that they be permutations.
We prove that one-way permutations exist exactly if P =f. UP n
coUP. This provides the first characterization of the existence of one­
way permutations based on a complexity-class separation and shows
that their existence is equivalent to a number of previously studied
complexity-theoretic hypotheses.

We also study permutations in the context of witness functions
of nondeterministic Turing machines. A language is in Perm UP
if, relative to some unambiguous, nondeterministic, polynomial-time
Turing machine accepting the language, the function mapping each
string to its unique witness is a permutation of the members of
the language. We show that, under standard complexity-theoretic
assumptions, Perm UP is a nontrivial subset of UP.

We study SelfNP, the set of all languages such that, relative to
some nondeterministic, polynomial-time Turing machine that accepts
the language, the set of all witnesses of strings in the language is
identical to the language itself. We show that SAT E SelfNP, and,
under standard complexity-theoretic assumptions, SelfNP =f. NP.

•supported in part by Dept. of Education (GAANN program) grant EIA-0080124, and by
grant NSF-INT -9815095/DAAD-315-PPP-gii-ab.

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002

244

Keywords: One-way functions, permutations, one-to-one functions, complexity­
theoretic cryptography, self-witnessing languages.

1. Introduction
Until the results in this paper were known the question, "What complexity

class separations, if any, characterize the existence of one-way permutations
(i.e., total, one-to-one, onto, one-way functions)?" has remained open. We
prove that one-way permutations exist exactly if P =F UP n coUP. UP [Val76]
is the class of all languages accepted by a nondeterministic Turing machine
that runs in polynomial time and has on any input at most one accepting path.
Such Turing machines are called "UPTMs," or unambiguous, polynomial-time
Thring machines.

Grollmann and Selman [GS88] and, independently, Ko [Ko85] (see also work
by Berman [Ber77]) show that P =F UP exactly if total, one-to-one, {but not
necessarily onto,) one-way functions exist and that P =F UP n coUP exactly
if partial, one-to-one, onto, one-way functions exist. In this paper, we extend
their results to total, one-to-one, onto, one-way functions. The existence of one­
way permutations is thus equivalent to a number of hypotheses [Ko85,GS88,
HH88,Grii94,FFNR96,HROO,RH02], including the following.

1 The weak definability principle does not hold for some logic that is closed
under first order operations [Grii94].

2 EASY~(UP) '#UP [RH02].

3 There exist UPTMs M and N such that L(M) ~ L(N) and f rf. FP,
where f is any function having the property that, for all x E L(M),
f((x, witM(x)}) = witN(x).

EASY~(UP) [RH02] is the class of all languages in P for which there is an
unambiguous Turing machine U accepting the language such that the mapping
between a member of the language and its unique witness (i.e., the bits guessed
by a nondeterministic accepting path of U) is not polynomial-time computable.
Item 3 above follows by analogy to a result by Fenner et al. [FFNR96], who
show that onto, one-way functions do not exist exactly if all nondeterministic
polynomial-time Turing machines accepting a language have roughly (i.e.,
modulo a polynomial-time transformation) the same witnesses. Theorem 7,
stated in Section 3 of this paper, lists all hypotheses known to be equivalent to
the existence of one-way permutations.

We also study permutations in the context of witness functions of
nondeterministic Turing machines. In this context, a function f is a
permutation of a language L if j is a (partial) one-to-one function defined
over exactly the members of L such that the image of j is exactly L. We say a
function permutes a language if the function is a permutation of the language.
Let Perm UP, or self-permuting UP, be the set of all languages such that there
is a UPTM accepting the language, where the mapping between each string in

One- Way Permutations and Self- Witnessing Languages 245

the language and the unique witness used by the UPTM to accept the string
permutes the language. That is, PermUP = {L I there exists a UPTM U such
that L(U) = L and witu permutes L}, where witu denotes a function that
maps each x E L to its unique witness in U.

Clearly PermUP ~ UP. Furthermore, it is easy to see that any language
L E Pis in PermUP via the following "simple UPTM" (i.e., a UPTM whose
witness function witu is computable in polynomial-time).

On input x nondeterministically guess a string y of length exactly lxl
and accept if and only if x E L, andy= x.

Based on the the above example, one might be tempted to regard Perm UP as
a characterization of simplicity. We show, however, that the closure of Perm UP
under polynomial-time one-to-one reductions is UP. Thus, PermUP captures
the most complex languages in UP. In other words, assuming P =/; UP some
languages in Perm UP are accepted via "complex UPTMs" (i.e., UPTMs whose
witness functions are not polynomial-time computable).

On the other hand, we show that it is unlikely that all languages in UP
are in PermUP (i.e., that PermUP is closed under polynomial-time, many­
one reductions), for if this is the case then E = UE. Thus, under standard
complexity-theoretic assumptions, PermUP is a nontrivial subset of UP that
captures the hardest languages in UP.

It appears then that Perm UP contains languages that are either simple (i.e.,
accepted by some simple UPTM) or complex (i.e., accepted by some complex
UPTM). But is there a language in PermUP that is accepted by both a simple
and a complex UPTM? The answer to this question is linked to the existence
of one-way permutations. Consider the class HiPermUP = {L I there exists a
UPTM U such that L = L(U), witu permutes L, and witu is not polynomial­
time computable}, which is a (possibly empty) subset of PermUP. Intuitively,
languages in HiPermUP are in PermUP via a complex UPTM. We show that
one-way permutations exist exactly if there is a language L E P n HiPermUP.
Such an Lis thus in PermUP via both a simple and a complex UPTM.

We also study the class SelfNP, or self-witnessing NP, which we regard as
the natural NP analog of PermUP. SelfNP is defined as {L I there exists a
nondeterministic Turing machine N that runs in polynomial time such that
L(N) =Land UxeL witN(x) = L}, where witN is a function that maps each
x E L to its set of witnesses relative to N. We show that the relationship
between SelfNP and NP is basically analogous to the relationship between
PermUP and UP (i.e., the closure of SelfNP under polynomial-time many­
one reductions is NP, and if SelfNP = NP, then E = NE). Furthermore,
SAT E SelfNP.

The remainder of the paper is organized as follows. Section 2 presents
definitions and notations. Section 3 proves results on the existence of one­
way permutations. Section 4 proves results related to Perm UP and SelfNP.
Section 5 is the conclusion. (Note: Due to space limitations, some of the proofs
have been omitted. All omitted proofs can be found in [HTOJJ.)

246

2. Definitions and Notations
All sets, unless otherwise stated, are subsets of I:*, where I: is the standard

alphabet {0, 1}. The length of a string x is denoted by lxl. For any set S,
liS II denotes the cardinality of S. For any string w e I:* and any S s; I:*,
wS = {ws!s e S}. For any two sets S,T s; I:*, ST = {uv I u e S 1\ veT}.

For each Turing machine Nand each x e E*, N(x) means "the computation
of N on input x." NPTM (respectively, NETM) means "nondeterministic
polynomial-time (respectively, exponential-time) Turing machine." NP
(respectively, NE) denotes the class of all languages L such that Lis accepted
by an NPTM (respectively, NETM). UPTM (respectively, UETM [RRW94,
HJ95]) means "unambiguous, polynomial-time (respectively, exponential-time)
Turing machine," that is, N is a UPTM if and only if N is an NPTM and, on
any input x e I:*, N has at most one accepting path. UP [Val76] (respectively,
UE [RRW94,HJ95]) is the class of all languages L such that L is accepted by
some UPTM (respectively, UETM). TALLY is the class of all tally languages,
that is, TALLY= {L IL s; 1*}. The set of total, deterministic, polynomial-time
computable functions is called FP.

For each complexity class C and all a, b such that ::::;: is defined, the reduction
closure ofC relative to :::;g, denoted Rg(C), is the set {L s; I:* I (3L' e C)[L :::;g
L']}.

For each NPTM Nand each x e L(N), a stringy is said to be a witness for
x relative toN if there is an accepting path of N(x) on which the sequence of
nondeterministic guess bits is exactly y. Note that y (unless by coincidence)
does not necessarily encode x, i.e., it is naked. Denote the mapping from
x e L(N) to the set of witnesses for x relative to N as witN : I:* -+ 21:• (where
21:• is the set of all subsets of E*). When N is a UPTM, since each x E E* has
at most one witness relative to such an N, for convenience we regard witN as
a mapping from L(N) to I:*.

For each function f let im{f) denote the image of f. For each function
f : D -+ R and each S s; D such that f is defined on each element in S let
f(S) denote the set {r e R I (3s e S)[/(s) is defined, and r = f(s)]}.

For any set S s; E* a function f : E* -+ E* is a permutation of S if the
set of all strings in I:* on which f is defined is exactly S, im{f) = S, and f is
one-to-one. We say f permutes S if f is a permutation of S.

A function f : E* -+ E* is polynomial-time-invertible (alternatively, FP­
time invertible) if there is a function g E FP such that for every y E im(f),
f(g(y)) = y. Let (-, ·) denote a standard, fixed, polynomial-time computable,
polynomial-time invertible, total, one-to-one, onto function from E* x I:* to E*
such that the output of the function is strictly length increasing in the lengths
of either of its arguments when the other argument is fixed. Such a function is
called a pairing function.

Definition 1 [Ber77,Ko85,GS88,Sel92] A function f : E* -+ E* is honest if
there exists a polynomial p (called the honesty polynomial) such that for all
y e im(f) there exists an x E E* such that f(x) is defined, y == f(x), and

One- Way Permutations and Self- Witnessing Languages 247

lxl ~ P(lyl).

Intuitively, if an honest function is hard to invert, then it is so "honestly", i.e.,
not merely because the function shrinks the input too much. Grollmann and
Selman [GS88] provided the first independent study of complexity-theoretic,
(one-to-one,) one-way functions (see also [Ber77,Ko85]). The definition below
is for complexity-theoretic one-way functions of arbitrary ambiguity [Wat88].

Definition 2 [Wat88] (see [Ber77,Ko85]) A function f : ~· -+ ~· is one-way
iff is honest, polynomial-time computable, and not polynomial-time invertible.

Definition 3 (see [Wat88,Hom00]) For g : N -+ N, we say a function u : ~· -+
~· is g-to-1 if

(Vy E im(u))[II {x E ~· I u(x) = y} II~ g(lyl)].

3. One-Way Permutations

In this section we prove the main result of this paper.

Theorem 4 P f:. UP n coUP if and only if one-way permutations exist.

As noted in the introduction, it is known (see [Ko85,GS88,Ber77]) that P f:.
UP n coUP exactly if partial, one-to-one, onto, one-way functions exist. The
independent existence of both partial, one-to-one, onto, one-way functions and
one-way permutations has been studied in a variety of settings (see [Ko85,
GS88,HH88,Gra94,FFNR96,HROO,RH02]). Theorem 5 below collects results
either previously known to be equivalent to the existence of partial, one-to-one,
onto, one-way functions or that can be obtained by arguments analogous to
previously known proofs. In particular, the equivalence of items 1 and 2 is due
to Ko [Ko85], of items 1-4 to Grollmann and Selman [GS88], of items 2 and
5 to Hartmanis and Hemachandra [HH88], of items 3 and 5-8 to Rothe and
Hemaspaandra [RH02], and of 3 and 9 to Gradel [Gra94]. The equivalence of
1, 2, 5, 10, and 11 is analogous to results for the existence of onto, one-way
functions by Fenner et al. [FFNR96].

Theorem 5 The following are equivalent.

1 There exists a partial, one-to-one, onto, one-way function.

2 P f:. UP ncoUP.

3 There exists a partial, one-to-one, one-way function f such that im(/) E
P.

4 There exists a total, one-to-one, one-way function f such that im(/) E P.

5 EASY~(VP) f:. P.

6 1-EASY~(UP) f:. P.

248

7 E* ¢ EASY~(UP).

8 EASY~(UP) is not closed under complementation.

9 The weak definability principle does not hold for some logic that is closed
under first order operations.

10 UPSVt ~ FP.

11 There exist UPTMs M and N such that L(M) ~ L(N) and f ¢ FP,
where f is any function having the property that for all x E L(M),
f((x, witM(x))) = witN(x).

Rothe and Hemaspaandra [RH02) define 1-EASY~(UP) as the set of all
languages L in UP for which there exists a UPTM U that accepts L and
a polynomial-time computable function fu such that, for all x E L, fu(x)
outputs the first bit of the accepting path of U(x). Fenner et al. [FFNR96)
consider the "NP version" of 1-EASY~(UP), however their results regarding
this "NP version" [FFNR96) are not known to be analogous to the above result
for 1-EASY~(UP).

Regarding the existence of one-way permutations, the following equivalence,
due to Hemaspaandra and Rothe, is known.

Theorem 6 [HROO) The following are equivalent.

1 There exists a one-way permutation.

2 There exists a total, one-to-one, one-way function whose range is P­
rankable.

As a result of Theorem 4, we have the following.

Theorem 7 The following are equivalent.

1 Any item from Theorem 5.

2 Any item from Theorem 6.

3 E* E HiPermUP.

4 There exists L E P such that L E HiPerm UP.

We now prove Theorem 4.
Proof of Theorem 4 The proof follows immediately from the equivalence
of items 1 and 2 of Theorem 5 and the application of Lemma 8 for g(n) = 1.

Lemma 8 Let g be a nondecreasing function from N to N+ . There exists a
partial, g-to-1, onto, one-way function if and only if there exists a total, g-to-1,
onto, one-way function.

Proof The ({=) direction is easy, since all total functions are partial functions.
For the (=>) direction, let h be a partial, g-to-1, onto, one-way function for some

One- Way Permutations and Self- Witnessing Languages 249

nondecreasing g : N -+ N+. We claim that f, defined on input x as

{
1n0y if (x = 1n+10y) 1\ (h(y) is defined) 1\ (n > 0),

/() _ Olh(y) if (x = lOy) 1\ (h(y) is defined),
X - Qn+l}y if (x =Only) 1\ (n > 0),

x otherwise,

is total, g-to-1, onto, and one-way.
The intuition behind the proof is captured by Figures 1 and 2. Figure 1 is

0 00 01 10

Figure 1. A graph where the vertices are the elements of .E*, and the edges are the
mapping defined by h.

a graphical representation of an example of h, where the vertices of the graph
are the strings in E* and the edges are the relations defined by h, i.e., there is
an edge from x toy if and only if f(x) = y. It is easy to see that a function
is total precisely when the outdegree of every vertex in the graph representing
the function is exactly one and is onto whenever the indegree of every vertex is
at least one. Since h is not necessarily total, each vertex of the graph in Figure
1 has an outdegree of either zero or one, however since h is onto, every vertex
has an indegree of at least one.

The construction of f essentially imposes a two-dimensional structure on
E*, as shown in Figure 2, and embeds h into this structure by identifying the
domain of h with the elements in row lOE* and the image of h with the elements
in row OlE*. The construction then fills the graph in with additional edges in
a way that guarantees that "one-way" -ness is preserved and that every vertex
x has an outdegree of exactly one and an indegree of at least one and at most
g(lx/) (since the indegree represents the "many-to-one"-ness of the function).
By checking that the graph in Figure 2 has these properties, it is easy to see
that f is a total, g-to-one, onto, one-way function.

Continuing with the formal proof, it is easy to see that f is total and
polynomial-time computable. To see that f is onto, note that

f(ll*O{y I h(y) is defined}) = ll*O{y I h(y) is defined} UOlE*,

by the first two conditions in the definition of j, and because h is onto.
Furthermore,

f(OO*lE*) = OOO*lE*,

by the third condition in the definition of j, and

f(E* -ll*O{y I h(y) is defined} -OO*lE*)
= E* - 11 *O{y I h(y) is defined} - OO*lE*,

250

lllOE• 00
UoE• 00
10E0 00
OlE 0

I 001E0

DOOlE•

000
00 000 00

000
11 111

Figure 2. A graph where the vertices are the elements of 'E•, and the edges are the
mapping defined by f.

by the last condition in the definition of f, so clearly im(J) = I:*.
To see that f(x) is g-to-1, choose an arbitrary z E I:*. If for some z' E I:*,

z = Olz', then llf-1 (z)ll = llh-1 (z')ll. Since g is nondecreasing, llh-1(z')ll :5
g(lz'l) ~ g(lzl). If z fl. Oli:* then by the definition of j, llf-1 (z)ll = 1, thus J
is g-to-1.

To see that f is one-way, first note that j is honest. Next, suppose that there
exists a function 'Y E FP that inverts J. We could then invert h in polynomial
time as follows.

On input y, compute -y(Oly) =lOw and output w.

We thus conclude that f is total, g-to-1, onto, and one-way. I

4. Self-Witnessing Languages

In this section, we study properties of PermUP and SelfNP. First, we show
that the closure of PermUP under polynomial-time one-to-one reductions is
UP.

Theorem 9 UP= Ri_1 (PermUP).

One- Way Permutations and Self- Witnessing Languages

As an immediate corollary to Theorem 9, we get the following.

Corollary 10 P =f. UP -¢==:} P =f. PermUP.

251

The following theorem shows that P =f. UP nco UP if and only if P =f. Perm UP n
coPermUP.

Theorem 11 P f. UP n coUP -¢==:} P f. PermUP n coPermUP.

We wish to define a natural relaxation of PermUP that would include
languages in NP- UP (if indeed UP f. NP). One important distinction between
UPTMs and NPTMs is that the witness functions of UPTMs are single-valued
(because there is at most one accepting path), but those of NPTMs may be
multivalued (since there can be more than one accepting path). SelfNP, as
defined in the introduction, is a natural NP analog of Perm UP, where instead
of requiring the witness function to be a permutation, we only require that the
set of witnesses is the same as the language. Note that the "self-witnessing
property," i.e., the property that witnesses themselves be part of the language,
also holds for languages in Perm UP, since for these languages the witness
function is a permutation of the language.

Theorem 12 shows that SAT is a member of SelfNP.

Theorem 12 SATE SelfNP.

From this result, the corollary below easily follows.

Corollary 13 1 P =f. NP -¢==:} P =f. SelfNP.

2 NP = R~(SelfNP).

9 P f. NP n coNP -¢==:} P =f. SelfNP n coSelfNP.

4 For all L ~ E*, if there is a polynomial-time computable, honest, onto
reduction from L to SAT then L E SelfNP.

Corollaries 10 and 13, part 2 show that PermUP and SelfNP capture the
hardest problems in UP and NP, respectively. Theorem 14, which follows from
Lemma 15 below (both are due to Hemaspaandra [HemOO]), show that it is
unlikely that either SelfNP = NP or PermUP =UP.

Theorem 14 1 PermUP =UP=> E = UE.

2 SelfNP = NP => E = NE.

Lemma 15 TALLY n SelfNP ~ P.

We conclude with a relevant oracle result.

Theorem 16 There exists an oracle B such that

1 SelfNPB i- upB'

2 PermUPB =f. UPB,

3 SelfNPB =f. NPB, and

4 pB f. PermUPB.

252

5. Conclusions and Open Questions
We showed that one-way permutations exist if and only if P '::fi UP n coUP.

Thus, the existence of one-way permutations is equivalent to a number of
previously studied hypotheses [Ko85,GS88,HH88,FFNR96,RH02,HROO].

We studied the self-witnessing language classes PermUP and SelfNP.
We showed that the closure of PermUP under polynomial-time one-to-one
reductions is UP and that if PermUP = UP, then E = UE. We showed
that SAT E SelfNP {thus NP is the closure of SelfNP under polynomial-time
many-one reductions) and that ifSelfNP = NP, then E = NE. SelfNP can thus
be viewed as a natural NP analog of PermUP.

Figure 3 shows the known containment relations between the main classes
studied in this paper.

Figure 3. The known containment relationships between the classes studied in this
paper.

Having developed a theory of self-witnessing languages, we hope it will be
useful in studying additional open problems in complexity theory. For instance,
Corollary 13, part 4 shows that all languages reducible to SAT via a polynomial­
time computable, honest, onto reduction are in SelfNP. Berman and Hartmanis
famously conjectured [BH77] that all NP-complete languages are pairwise
reducible to each other via a polynomial-time computable, polynomial-time
invertible, onto, one-to-one reduction. This is known as the Isomorphism
Conjecture. It could be the case that all NP-complete languages are self­
witnessing, even if the Isomorphism Conjecture fails. This leads to the following
conjecture.

Conjecture 17 All NP-complete languages are in SelfNP.

Note that if Conjecture 17 does not hold then, by Corollary 13, part 4, the
Isomorphism Conjecture does not hold. Conversely, we ask, "If Conjecture
17 holds, does the Isomorphism Conjecture necessarily hold?" As noted by
Berman and Hartmanis [BH77], if the Isomorphism Conjecture holds, then
P '::fi NP. It follows that if the answer to our question is "yes" and Conjecture

One- Way Permutations and Self- Witnessing Languages 253

17 holds, then P =/: NP.
Another idea is to explore generalizations of SelfNP and Perm UP. For

instance, let SelfUP = { L I there exists a UPTM U such that L(U) = L
and witu(L) = L} and SelfcNP = {L I there exists an NPTM N such
that L(N) = L and U.,e£ wltN(x) ~ L}. Does PermUP = SelfUP? Does
SelfNP = SelfcNP? What are the complexity-theoretic consequences of either
equality holdii;:g?

Acknowledgments
We thank Lane Hemaspaandra for helpful comments and for allowing us

to include here Theorem 14 and Lemma 15. We also thank Jorg Rothe for key
insights, Alina Beygelzimer and William Scherer for helpful discussions, and
an anonymous referee for helpful suggestions and for pointing that in Corollary
13, number 4 we could change "polynomial-time invertible" to "honest" and
still have a valid claim.

References

(Ber77]

[BGS75]

[BH77]

[Boo74]

[FFNR96]

(Grii94]

[GS88]

[HemOOJ

[HH88]

[HJ95J

[HomOOJ

L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis,
Cornell University, Ithaca, NY, 1977.

T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question.
SIAM Journal on Computing, 4(4):431-442, 1975.

L. Berman and J. Hartmanis. On isomorphisms and density of NP and
other complete sets. SIAM Journal on Computing, 6(2):305-322, 1977.
R. Book. Tally languages and complexity classes. Information and
Control, 26(2):186-193, 1974.

S. Fenner, L. Fortnow, A. Naik, and J. Rogers. On inverting onto
functions. In Proceedings of the 11th Annual IEEE Conference on
Computational Complexity, pages 213-222. IEEE Computer Society
Press, May 1996.

E. Gradel. Definability on finite structures and the existence of one-way
functions. Methods of Logic in Computer Science, 1(3):299-314, 1994.

J. Grollmann and A. Selman. Complexity measures for public-key
cryptosystems. SIAM Journal on Computing, 17(2):309-335, 1988.

L. Hemaspaandra. Personal Communication, October 2000.

J. Hartmanis and L. Hemachandra. Complexity classes without machines:
On complete languages for UP. Theoretical Computer Science, 58(1-
3):129-142, 1988.

L. Hemaspaandra and S. Jha. Defying upward and downward separation.
Information and Computation, 121(1):1-13, 1995.

C Homan. Low ambiguity in strong, total, associative, one-way functions.
Technical Report TR734, University of Rochester, Computer Science
Department, August 2000. Thu, 10 Aug 00 13:36:44 GMT.

254

[HROO) L. Hemaspaandra and J. Rothe. Characterizing the existence of one-way
permutations. Theoretical Computer Science, 244(1-2):257-261, 2000.

[HT01) C. Homan and M. Thakur. One-way permutations and self-witnessing
languages. Technical Report 760, University of Rochester, 2001.

[Ko85] K. Ko. On some natural complete operators. Theoretical Computer
Science, 37(1):1-30, 1985.

(RH02) J. Rothe and L. Hemaspaandra. On characterizing the existence of partial
one-way permutations. Information Processing Letters, 82(3):165-171,
2002.

(RRW94] R. Rao, J. Rothe, and 0. Watanabe. Upward separation for FewP
and related classes. Information Processing Letters, 52(4):175-180, 1994.
Corrigendum appears in same journal, Volume 74, number 1-2, page 89,
2000.

[Sel92] A. Selman. A survey of one-way functions in complexity theory.
Mathematical Systems Theory, 25(3):203-221, 1992.

[Val76] L. Valiant. The relative complexity of checking and evaluating.
Information Processing Letters, 5(1):2Q-23, 1976.

[Wat88] 0. Watanabe. On hardness of one-way functions. Information Processing
Letters, 27(3):151-157, 1988.

