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Abstract A desirable property of one-way functions is that they be total, 
one-to-one, and onto-in other words, that they be permutations. 
We prove that one-way permutations exist exactly if P =f. UP n 
coUP. This provides the first characterization of the existence of one­
way permutations based on a complexity-class separation and shows 
that their existence is equivalent to a number of previously studied 
complexity-theoretic hypotheses. 

We also study permutations in the context of witness functions 
of nondeterministic Turing machines. A language is in Perm UP 
if, relative to some unambiguous, nondeterministic, polynomial-time 
Turing machine accepting the language, the function mapping each 
string to its unique witness is a permutation of the members of 
the language. We show that, under standard complexity-theoretic 
assumptions, Perm UP is a nontrivial subset of UP. 

We study SelfNP, the set of all languages such that, relative to 
some nondeterministic, polynomial-time Turing machine that accepts 
the language, the set of all witnesses of strings in the language is 
identical to the language itself. We show that SAT E SelfNP, and, 
under standard complexity-theoretic assumptions, SelfNP =f. NP. 
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1. Introduction 
Until the results in this paper were known the question, "What complexity 

class separations, if any, characterize the existence of one-way permutations 
(i.e., total, one-to-one, onto, one-way functions)?" has remained open. We 
prove that one-way permutations exist exactly if P =F UP n coUP. UP [Val76] 
is the class of all languages accepted by a nondeterministic Turing machine 
that runs in polynomial time and has on any input at most one accepting path. 
Such Turing machines are called "UPTMs," or unambiguous, polynomial-time 
Thring machines. 

Grollmann and Selman [GS88] and, independently, Ko [Ko85] (see also work 
by Berman [Ber77]) show that P =F UP exactly if total, one-to-one, {but not 
necessarily onto,) one-way functions exist and that P =F UP n coUP exactly 
if partial, one-to-one, onto, one-way functions exist. In this paper, we extend 
their results to total, one-to-one, onto, one-way functions. The existence of one­
way permutations is thus equivalent to a number of hypotheses [Ko85,GS88, 
HH88,Grii94,FFNR96,HROO,RH02], including the following. 

1 The weak definability principle does not hold for some logic that is closed 
under first order operations [Grii94]. 

2 EASY~(UP) '#UP [RH02]. 

3 There exist UPTMs M and N such that L(M) ~ L(N) and f rf. FP, 
where f is any function having the property that, for all x E L(M), 
f((x, witM(x)}) = witN(x). 

EASY~(UP) [RH02] is the class of all languages in P for which there is an 
unambiguous Turing machine U accepting the language such that the mapping 
between a member of the language and its unique witness (i.e., the bits guessed 
by a nondeterministic accepting path of U) is not polynomial-time computable. 
Item 3 above follows by analogy to a result by Fenner et al. [FFNR96], who 
show that onto, one-way functions do not exist exactly if all nondeterministic 
polynomial-time Turing machines accepting a language have roughly (i.e., 
modulo a polynomial-time transformation) the same witnesses. Theorem 7, 
stated in Section 3 of this paper, lists all hypotheses known to be equivalent to 
the existence of one-way permutations. 

We also study permutations in the context of witness functions of 
nondeterministic Turing machines. In this context, a function f is a 
permutation of a language L if j is a (partial) one-to-one function defined 
over exactly the members of L such that the image of j is exactly L. We say a 
function permutes a language if the function is a permutation of the language. 
Let Perm UP, or self-permuting UP, be the set of all languages such that there 
is a UPTM accepting the language, where the mapping between each string in 
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the language and the unique witness used by the UPTM to accept the string 
permutes the language. That is, PermUP = {L I there exists a UPTM U such 
that L(U) = L and witu permutes L}, where witu denotes a function that 
maps each x E L to its unique witness in U. 

Clearly PermUP ~ UP. Furthermore, it is easy to see that any language 
L E Pis in PermUP via the following "simple UPTM" (i.e., a UPTM whose 
witness function witu is computable in polynomial-time). 

On input x nondeterministically guess a string y of length exactly lxl 
and accept if and only if x E L, andy= x. 

Based on the the above example, one might be tempted to regard Perm UP as 
a characterization of simplicity. We show, however, that the closure of Perm UP 
under polynomial-time one-to-one reductions is UP. Thus, PermUP captures 
the most complex languages in UP. In other words, assuming P =/; UP some 
languages in Perm UP are accepted via "complex UPTMs" (i.e., UPTMs whose 
witness functions are not polynomial-time computable). 

On the other hand, we show that it is unlikely that all languages in UP 
are in PermUP (i.e., that PermUP is closed under polynomial-time, many­
one reductions), for if this is the case then E = UE. Thus, under standard 
complexity-theoretic assumptions, PermUP is a nontrivial subset of UP that 
captures the hardest languages in UP. 

It appears then that Perm UP contains languages that are either simple (i.e., 
accepted by some simple UPTM) or complex (i.e., accepted by some complex 
UPTM). But is there a language in PermUP that is accepted by both a simple 
and a complex UPTM? The answer to this question is linked to the existence 
of one-way permutations. Consider the class HiPermUP = {L I there exists a 
UPTM U such that L = L(U), witu permutes L, and witu is not polynomial­
time computable}, which is a (possibly empty) subset of PermUP. Intuitively, 
languages in HiPermUP are in PermUP via a complex UPTM. We show that 
one-way permutations exist exactly if there is a language L E P n HiPermUP. 
Such an Lis thus in PermUP via both a simple and a complex UPTM. 

We also study the class SelfNP, or self-witnessing NP, which we regard as 
the natural NP analog of PermUP. SelfNP is defined as {L I there exists a 
nondeterministic Turing machine N that runs in polynomial time such that 
L(N) =Land UxeL witN(x) = L}, where witN is a function that maps each 
x E L to its set of witnesses relative to N. We show that the relationship 
between SelfNP and NP is basically analogous to the relationship between 
PermUP and UP (i.e., the closure of SelfNP under polynomial-time many­
one reductions is NP, and if SelfNP = NP, then E = NE). Furthermore, 
SAT E SelfNP. 

The remainder of the paper is organized as follows. Section 2 presents 
definitions and notations. Section 3 proves results on the existence of one­
way permutations. Section 4 proves results related to Perm UP and SelfNP. 
Section 5 is the conclusion. (Note: Due to space limitations, some of the proofs 
have been omitted. All omitted proofs can be found in [HTOJJ.) 
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2. Definitions and Notations 
All sets, unless otherwise stated, are subsets of I:*, where I: is the standard 

alphabet {0, 1}. The length of a string x is denoted by lxl. For any set S, 
liS II denotes the cardinality of S. For any string w e I:* and any S s; I:*, 
wS = {ws!s e S}. For any two sets S,T s; I:*, ST = {uv I u e S 1\ veT}. 

For each Turing machine Nand each x e E*, N(x) means "the computation 
of N on input x." NPTM (respectively, NETM) means "nondeterministic 
polynomial-time (respectively, exponential-time) Turing machine." NP 
(respectively, NE) denotes the class of all languages L such that Lis accepted 
by an NPTM (respectively, NETM). UPTM (respectively, UETM [RRW94, 
HJ95]) means "unambiguous, polynomial-time (respectively, exponential-time) 
Turing machine," that is, N is a UPTM if and only if N is an NPTM and, on 
any input x e I:*, N has at most one accepting path. UP [Val76] (respectively, 
UE [RRW94,HJ95]) is the class of all languages L such that L is accepted by 
some UPTM (respectively, UETM). TALLY is the class of all tally languages, 
that is, TALLY= {L IL s; 1*}. The set of total, deterministic, polynomial-time 
computable functions is called FP. 

For each complexity class C and all a, b such that ::::;: is defined, the reduction 
closure ofC relative to :::;g, denoted Rg(C), is the set {L s; I:* I (3L' e C)[L :::;g 
L']}. 

For each NPTM Nand each x e L(N), a stringy is said to be a witness for 
x relative toN if there is an accepting path of N(x) on which the sequence of 
nondeterministic guess bits is exactly y. Note that y (unless by coincidence) 
does not necessarily encode x, i.e., it is naked. Denote the mapping from 
x e L(N) to the set of witnesses for x relative to N as witN : I:* -+ 21:• (where 
21:• is the set of all subsets of E*). When N is a UPTM, since each x E E* has 
at most one witness relative to such an N, for convenience we regard witN as 
a mapping from L(N) to I:*. 

For each function f let im{f) denote the image of f. For each function 
f : D -+ R and each S s; D such that f is defined on each element in S let 
f(S) denote the set {r e R I (3s e S)[/(s) is defined, and r = f(s)]}. 

For any set S s; E* a function f : E* -+ E* is a permutation of S if the 
set of all strings in I:* on which f is defined is exactly S, im{f) = S, and f is 
one-to-one. We say f permutes S if f is a permutation of S. 

A function f : E* -+ E* is polynomial-time-invertible (alternatively, FP­
time invertible) if there is a function g E FP such that for every y E im(f), 
f(g(y)) = y. Let (-, ·) denote a standard, fixed, polynomial-time computable, 
polynomial-time invertible, total, one-to-one, onto function from E* x I:* to E* 
such that the output of the function is strictly length increasing in the lengths 
of either of its arguments when the other argument is fixed. Such a function is 
called a pairing function. 

Definition 1 [Ber77,Ko85,GS88,Sel92] A function f : E* -+ E* is honest if 
there exists a polynomial p (called the honesty polynomial) such that for all 
y e im(f) there exists an x E E* such that f(x) is defined, y == f(x), and 
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lxl ~ P(lyl). 

Intuitively, if an honest function is hard to invert, then it is so "honestly", i.e., 
not merely because the function shrinks the input too much. Grollmann and 
Selman [GS88] provided the first independent study of complexity-theoretic, 
(one-to-one,) one-way functions (see also [Ber77,Ko85]). The definition below 
is for complexity-theoretic one-way functions of arbitrary ambiguity [Wat88]. 

Definition 2 [Wat88] (see [Ber77,Ko85]) A function f : ~· -+ ~· is one-way 
iff is honest, polynomial-time computable, and not polynomial-time invertible. 

Definition 3 (see [Wat88,Hom00]) For g : N -+ N, we say a function u : ~· -+ 
~· is g-to-1 if 

(Vy E im(u))[ II {x E ~· I u(x) = y} II~ g(lyl)]. 

3. One-Way Permutations 

In this section we prove the main result of this paper. 

Theorem 4 P f:. UP n coUP if and only if one-way permutations exist. 

As noted in the introduction, it is known (see [Ko85,GS88,Ber77]) that P f:. 
UP n coUP exactly if partial, one-to-one, onto, one-way functions exist. The 
independent existence of both partial, one-to-one, onto, one-way functions and 
one-way permutations has been studied in a variety of settings (see [Ko85, 
GS88,HH88,Gra94,FFNR96,HROO,RH02]). Theorem 5 below collects results 
either previously known to be equivalent to the existence of partial, one-to-one, 
onto, one-way functions or that can be obtained by arguments analogous to 
previously known proofs. In particular, the equivalence of items 1 and 2 is due 
to Ko [Ko85], of items 1-4 to Grollmann and Selman [GS88], of items 2 and 
5 to Hartmanis and Hemachandra [HH88], of items 3 and 5-8 to Rothe and 
Hemaspaandra [RH02], and of 3 and 9 to Gradel [Gra94]. The equivalence of 
1, 2, 5, 10, and 11 is analogous to results for the existence of onto, one-way 
functions by Fenner et al. [FFNR96]. 

Theorem 5 The following are equivalent. 

1 There exists a partial, one-to-one, onto, one-way function. 

2 P f:. UP ncoUP. 

3 There exists a partial, one-to-one, one-way function f such that im(/) E 
P. 

4 There exists a total, one-to-one, one-way function f such that im(/) E P. 

5 EASY~(VP) f:. P. 

6 1-EASY~(UP) f:. P. 
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7 E* ¢ EASY~(UP). 

8 EASY~(UP) is not closed under complementation. 

9 The weak definability principle does not hold for some logic that is closed 
under first order operations. 

10 UPSVt ~ FP. 

11 There exist UPTMs M and N such that L(M) ~ L(N) and f ¢ FP, 
where f is any function having the property that for all x E L(M), 
f((x, witM(x))) = witN(x). 

Rothe and Hemaspaandra [RH02) define 1-EASY~(UP) as the set of all 
languages L in UP for which there exists a UPTM U that accepts L and 
a polynomial-time computable function fu such that, for all x E L, fu(x) 
outputs the first bit of the accepting path of U(x). Fenner et al. [FFNR96) 
consider the "NP version" of 1-EASY~(UP), however their results regarding 
this "NP version" [FFNR96) are not known to be analogous to the above result 
for 1-EASY~(UP). 

Regarding the existence of one-way permutations, the following equivalence, 
due to Hemaspaandra and Rothe, is known. 

Theorem 6 [HROO) The following are equivalent. 

1 There exists a one-way permutation. 

2 There exists a total, one-to-one, one-way function whose range is P­
rankable. 

As a result of Theorem 4, we have the following. 

Theorem 7 The following are equivalent. 

1 Any item from Theorem 5. 

2 Any item from Theorem 6. 

3 E* E HiPermUP. 

4 There exists L E P such that L E HiPerm UP. 

We now prove Theorem 4. 
Proof of Theorem 4 The proof follows immediately from the equivalence 
of items 1 and 2 of Theorem 5 and the application of Lemma 8 for g(n) = 1. 

Lemma 8 Let g be a nondecreasing function from N to N+ . There exists a 
partial, g-to-1, onto, one-way function if and only if there exists a total, g-to-1, 
onto, one-way function. 

Proof The ( {=) direction is easy, since all total functions are partial functions. 
For the ( =>) direction, let h be a partial, g-to-1, onto, one-way function for some 
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nondecreasing g : N -+ N+. We claim that f, defined on input x as 

{ 
1n0y if (x = 1n+10y) 1\ (h(y) is defined) 1\ (n > 0), 

/( ) _ Olh(y) if (x = lOy) 1\ (h(y) is defined), 
X - Qn+l}y if (x =Only) 1\ (n > 0), 

x otherwise, 

is total, g-to-1, onto, and one-way. 
The intuition behind the proof is captured by Figures 1 and 2. Figure 1 is 

0 00 01 10 

Figure 1. A graph where the vertices are the elements of .E*, and the edges are the 
mapping defined by h. 

a graphical representation of an example of h, where the vertices of the graph 
are the strings in E* and the edges are the relations defined by h, i.e., there is 
an edge from x toy if and only if f(x) = y. It is easy to see that a function 
is total precisely when the outdegree of every vertex in the graph representing 
the function is exactly one and is onto whenever the indegree of every vertex is 
at least one. Since h is not necessarily total, each vertex of the graph in Figure 
1 has an outdegree of either zero or one, however since h is onto, every vertex 
has an indegree of at least one. 

The construction of f essentially imposes a two-dimensional structure on 
E*, as shown in Figure 2, and embeds h into this structure by identifying the 
domain of h with the elements in row lOE* and the image of h with the elements 
in row OlE*. The construction then fills the graph in with additional edges in 
a way that guarantees that "one-way" -ness is preserved and that every vertex 
x has an outdegree of exactly one and an indegree of at least one and at most 
g(lx/) (since the indegree represents the "many-to-one"-ness of the function). 
By checking that the graph in Figure 2 has these properties, it is easy to see 
that f is a total, g-to-one, onto, one-way function. 

Continuing with the formal proof, it is easy to see that f is total and 
polynomial-time computable. To see that f is onto, note that 

f(ll*O{y I h(y) is defined}) = ll*O{y I h(y) is defined} UOlE*, 

by the first two conditions in the definition of j, and because h is onto. 
Furthermore, 

f(OO*lE*) = OOO*lE*, 

by the third condition in the definition of j, and 

f(E* -ll*O{y I h(y) is defined} -OO*lE*) 
= E* - 11 *O{y I h(y) is defined} - OO*lE*, 
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lllOE• 00 
UoE• 00 
10E0 00 
OlE 0 

I 001E0 

DOOlE• 

000 
00 000 00 

000 
11 111 

Figure 2. A graph where the vertices are the elements of 'E•, and the edges are the 
mapping defined by f. 

by the last condition in the definition of f, so clearly im(J) = I:*. 
To see that f(x) is g-to-1, choose an arbitrary z E I:*. If for some z' E I:*, 

z = Olz', then llf-1 (z)ll = llh-1 (z')ll. Since g is nondecreasing, llh-1(z')ll :5 
g(lz'l) ~ g(lzl). If z fl. Oli:* then by the definition of j, llf-1 (z)ll = 1, thus J 
is g-to-1. 

To see that f is one-way, first note that j is honest. Next, suppose that there 
exists a function 'Y E FP that inverts J. We could then invert h in polynomial 
time as follows. 

On input y, compute -y(Oly) =lOw and output w. 

We thus conclude that f is total, g-to-1, onto, and one-way. I 

4. Self-Witnessing Languages 

In this section, we study properties of PermUP and SelfNP. First, we show 
that the closure of PermUP under polynomial-time one-to-one reductions is 
UP. 

Theorem 9 UP= Ri_1 (PermUP). 
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Corollary 10 P =f. UP -¢==:} P =f. PermUP. 
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The following theorem shows that P =f. UP nco UP if and only if P =f. Perm UP n 
coPermUP. 

Theorem 11 P f. UP n coUP -¢==:} P f. PermUP n coPermUP. 

We wish to define a natural relaxation of PermUP that would include 
languages in NP- UP (if indeed UP f. NP). One important distinction between 
UPTMs and NPTMs is that the witness functions of UPTMs are single-valued 
(because there is at most one accepting path), but those of NPTMs may be 
multivalued (since there can be more than one accepting path). SelfNP, as 
defined in the introduction, is a natural NP analog of Perm UP, where instead 
of requiring the witness function to be a permutation, we only require that the 
set of witnesses is the same as the language. Note that the "self-witnessing 
property," i.e., the property that witnesses themselves be part of the language, 
also holds for languages in Perm UP, since for these languages the witness 
function is a permutation of the language. 

Theorem 12 shows that SAT is a member of SelfNP. 

Theorem 12 SATE SelfNP. 

From this result, the corollary below easily follows. 

Corollary 13 1 P =f. NP -¢==:} P =f. SelfNP. 

2 NP = R~(SelfNP). 

9 P f. NP n coNP -¢==:} P =f. SelfNP n coSelfNP. 

4 For all L ~ E*, if there is a polynomial-time computable, honest, onto 
reduction from L to SAT then L E SelfNP. 

Corollaries 10 and 13, part 2 show that PermUP and SelfNP capture the 
hardest problems in UP and NP, respectively. Theorem 14, which follows from 
Lemma 15 below (both are due to Hemaspaandra [HemOO]), show that it is 
unlikely that either SelfNP = NP or PermUP =UP. 

Theorem 14 1 PermUP =UP=> E = UE. 

2 SelfNP = NP => E = NE. 

Lemma 15 TALLY n SelfNP ~ P. 

We conclude with a relevant oracle result. 

Theorem 16 There exists an oracle B such that 

1 SelfNPB i- upB' 

2 PermUPB =f. UPB, 

3 SelfNPB =f. NPB, and 

4 pB f. PermUPB. 
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5. Conclusions and Open Questions 
We showed that one-way permutations exist if and only if P '::fi UP n coUP. 

Thus, the existence of one-way permutations is equivalent to a number of 
previously studied hypotheses [Ko85,GS88,HH88,FFNR96,RH02,HROO]. 

We studied the self-witnessing language classes PermUP and SelfNP. 
We showed that the closure of PermUP under polynomial-time one-to-one 
reductions is UP and that if PermUP = UP, then E = UE. We showed 
that SAT E SelfNP {thus NP is the closure of SelfNP under polynomial-time 
many-one reductions) and that ifSelfNP = NP, then E = NE. SelfNP can thus 
be viewed as a natural NP analog of PermUP. 

Figure 3 shows the known containment relations between the main classes 
studied in this paper. 

Figure 3. The known containment relationships between the classes studied in this 
paper. 

Having developed a theory of self-witnessing languages, we hope it will be 
useful in studying additional open problems in complexity theory. For instance, 
Corollary 13, part 4 shows that all languages reducible to SAT via a polynomial­
time computable, honest, onto reduction are in SelfNP. Berman and Hartmanis 
famously conjectured [BH77] that all NP-complete languages are pairwise 
reducible to each other via a polynomial-time computable, polynomial-time 
invertible, onto, one-to-one reduction. This is known as the Isomorphism 
Conjecture. It could be the case that all NP-complete languages are self­
witnessing, even if the Isomorphism Conjecture fails. This leads to the following 
conjecture. 

Conjecture 17 All NP-complete languages are in SelfNP. 

Note that if Conjecture 17 does not hold then, by Corollary 13, part 4, the 
Isomorphism Conjecture does not hold. Conversely, we ask, "If Conjecture 
17 holds, does the Isomorphism Conjecture necessarily hold?" As noted by 
Berman and Hartmanis [BH77], if the Isomorphism Conjecture holds, then 
P '::fi NP. It follows that if the answer to our question is "yes" and Conjecture 
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17 holds, then P =/: NP. 
Another idea is to explore generalizations of SelfNP and Perm UP. For 

instance, let SelfUP = { L I there exists a UPTM U such that L(U) = L 
and witu(L) = L} and SelfcNP = {L I there exists an NPTM N such 
that L(N) = L and U.,e£ wltN(x) ~ L}. Does PermUP = SelfUP? Does 
SelfNP = SelfcNP? What are the complexity-theoretic consequences of either 
equality holdii;:g? 
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