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Abstract In a preceding paper, automata and rational expressions have been in­
troduced for words indexed by linear orderings, together with a Kleene­
like theorem. We here pursue this work by proposing a hierarchy among 
the rational sets. Each class of the hierarchy is defined by a subset of 
the rational operations that can be used. We then characterize any class 
by an appropriate class of automata, leading to a Kleene theorem inside 
the class. A characterization by particular classes of orderings is also 
given. 

1. Introduction 
The first result in automata theory and formal languages is the Kleene the­

orem which establishes the equivalence between sets of words accepted by au­
tomata and sets of words described by rational expressions. Since the seminal 
paper of Kleene [8], this equivalence has been extended to many kinds of struc­
tures: infinite words, hi-infinite words, finite and infinite trees, finite and infinite 
traces, pictures, etc. 

In (3], we have considered linear structures in a general framework, i.e., 
words indexed by a linear ordering. This approach allows to treat in the same 
way finite words, left- and right-infinite words, hi-infinite words, ordinal words 
which are studied separately in the literature. We have introduced a new notion 
of automaton accepting words on linear orderings, which is simple, natural and 
includes previously defined automata. We have also defined rational expressions 
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for such words. We have proved the related Kleene-like theorem when the 
orderings are restricted to countable scattered linear orderings. This result 
extends Kleene's theorem for finite words [8], infinite words [4, 10], hi-infinite 
words [7, 11] and ordinal words [5, 6, 16]. 

Another jewel of formal languages is the characterization of star-free lan­
guages by first-order logic [9] or by group-free semigroups [14]. A set of finite 
words is star-free if it can be described by a rational expression using concate­
nation, union and complementation only. The class of star-free sets is thus 
obtained by restricting the rational operations. The star iteration is replaced 
by complementation which is weaker when union and concatenation are already 
allowed. 

In this paper, we propose a hierarchy among rational sets of words on linear 
orderings. As for star-free sets, this hierarchy is obtained by restricting the 
rational operations that can be used. Each class contains the rational sets that 
can be described by a given subset of the rational operations. 

The rational operations introduced in [3] include the usual operations of 
union, concatenation and star iteration. They also include the omega iteration 
usually used to construct infinite words and the ordinal iteration introduced 
by Wojciechowski [16] for ordinal words. Three new operations are added: the 
backwards omega iteration, the backwards ordinal iteration and a last operation 
which is a kind of iteration for all countable scattered linear orderings. The 
lowest class of the hierarchy contains sets that can be described by rational 
expressions using union, concatenation and star iteration. This is of course the 
class of rational sets of finite words. The greatest class contains sets that can 
be described by rational expressions using all rational operations introduced in 
[3]. It contains all rational sets of words on scattered linear orderings. Some 
other classes of words already studied in the literature appear naturally in our 
framework. Sets of words on ordinals introduced by Biichi [5] or sets of words 
on ordinals smaller that ww studied by Choueka [6] form two classes of our 
hierarchy. 

We give a characterization of each class of the hierarchy by a corresponding 
class of automata. A set of words belongs to the given class if and only if 
it is recognized by an automaton of the corresponding class. Each of these 
characterizations is thus a Kleene theorem which holds for that class. For well­
known classes, these Kleene theorems were already proved by Wojciechowski 
[16] for words on ordinals or by Choueka [6] for words on ordinals smaller than 
ww. In each case, the corresponding class of automata is obtained naturally by 
restricting the kind of transitions that can be used. For instance, the automata 
for words on ordinals do have left limit transitions but no right limit transitions 
as there were defined by Biichi [5]. 

The last rational operation defined in [3] works like an iteration for all count­
able scattered linear orderings. It is binary. In this paper, we consider a simpler 
definition of this iteration as a unary operation. This simplified definition seems 
to be more natural but it turns out to be weaker. The results of this paper 
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show that the binary operation is really needed to obtain the Kleene theorem 
of (3]. This question was actually the original motivation of our work. 

We also give a characterization of each class of the hierarchy by a correspond­
ing class of orderings. A set of words belongs to the given class if and only if 
the length of each of its words belongs to the corresponding class of orderings. 
For some classes as the class of sets of words on ordinals, this characterization 
is straightforward. However for some other classes, suitable classes of orderings 
have to be defined. These definitions are inspired by the characterization of 
countable scattered orderings due to Hausdorff. 

To summarize, the results of the paper establish a hierarchy among rational 
sets of words on linear orderings, with connections between natural classes of 
orderings, rational operations and the types of transitions in automata. 

The paper is organized as follows. In Sections 2, 3 and 4, we briefly recall the 
new notions introduced in (3]: words on linear orderings, automata and rational 
expressions. We refer the reader to (13] for a complete introduction to linear 
orderings. The different classes of the hierarchy are described in Section 5. 
This hierarchy is summarized on Figure 6 and illustrated by some examples. 
The proofs are given in the Appendix. 

2. Orderings and Words 
A linear ordering J is an ordering < which is total, that is, for any j =f:. k 

in J, either j < k or k < j holds. Given a finite alphabet A, a word (aj )jeJ is 
a function from J to A which maps any element j of J to a letter ai of A. We 
say that J is the length lxl of the word x. For instance, the empty word e is 
indexed by the empty linear ordering J = 0. Usual finite words are the words 
indexed by finite orderings J = {1, 2, ... , n }, n 2: 0. A word of length J = w is 
a word usually called an w-word or an infinite word. A word of length J = ( is 
a sequence .. . a_2a_1a0a1a2 •.• of letters which is usually called a hi-infinite 
word. 

Given a linear ordering J, we denote by -J the backwards linear ordering 
obtained by reversing the ordering relation. For instance, -w is the backwards 
linear ordering of w which is used to indexed the so-called left-infinite words. 
For a class V of linear orderings, we denote by-V the class { -J I J E V}. 

Given two linear orderings J and K, the linear ordering J + K is obtained 
by juxtaposition of J and K, i.e., it is the linear ordering on the disjoint union 
J U K extended with j < k for any j E J and any k E K. For instance, 
the linear ordering ( can be obtained as the sum -w + w. More generally, 
let J and Ki for j E J, be linear orderings. The linear ordering EieJ Ki is 
obtained by juxtaposition of the orderings Kj in respect of J. More formally, 
the sum EteJ Kj is the set L of all pairs (k,j) such that k E Ki. The relation 
(k1,i1) < (k2,h) holds iff j1 < h or it =hand k1 < k2 in Kil. 

The sum operation on linear orderings leads to a notion of product of words 
as follows. Let J and Ki for j E J, be linear orderings. Let x; = (ak,;heK; be 
a word of length K;, for any j E J. The product f1ieJ Xj is the word z oflength 
L = L;eJ Kj equal to (ak,j)(k,j)eL· For instance, the word a( = a-w · aw of 



110 

length ( = -w + w is the product of the two words a-w and aw of length -w 
and w respectively. 

In this paper as in (3], we only consider linear orderings which are countable 
and scattered, i.e., without any dense subordering. This class is denoted by 
S and its elements are shortly called orderings. We use notation N for the 
subclass of S of finite linear orderings and 0 for the subclass of countable 
ordinals. Recall that an ordinal is a linear ordering which is well-ordered, that 
is, without the subordering -w. 

The following characterization of the class S is due to Hausdorff (13]. No­
tation 1 is used for the finite ordering with one element and notation fJ < a 
means the usual ordering on ordinals. 

Theorem 1 (Hausdorff) S = Uaeo Ua where the classes Ua are inductively 
defined by 

1 Uo={0,1}; 

2 Ua = {l:jeJ Kj I J EN u {w, -w, (} and Kj E u/3<a Up}. 

For instance, the ordinal w belongs to U1 because w = l:iew Kj with Ki = 1 E 
U0 • More generally one can check that the ordinal wn belongs to Un \ Un-1, for 
all n ~ 1. Finally, ww belongs to Uw since it equals l:iew Ki with Ki = wi E 
Uj, but it belongs to noUn (see Chapter 5 of (13]). 

We propose two new families of classes to characterizeS. The class S is 
equal to Uaeo Va where the classes Va are inductively defined by 

1 Vo={0,1}; 

2 Va = n:::jEJ Kj I J E 0 u { -w,(} and Kj E u/3<a Vp}. 

It is also equal to Uaeo Wa where the classes Wa are inductively defined by 

1 Wo = {0,1}; 

2 Wa = {l:jEJ Kj I J E 0 u -0 and Kj E u/3<a Wp}. 

The ordinal wW belongs to vl and wl. The backwards ordinal -ww belongs to 
Vw and to W1. More generally, 0 ~ V1 and 0 U -0 ~ W1. It can be proved 
that the ordering (w (see (13] for a precise definition) belongs to Ww but not 
to Un<w Wn. 

3. J\utoDnata 

Automata accepting words on linear orderings are a natural extension of 
finite automata. As above they are defined as A= (Q,A,E,I,F). The set E 
is composed with three types of transitions: the usual successor transitions in 
Q x AxE, the left limit transitions which belong to P(Q) x Q and the right 
limit transitions which belong to Q x P(Q). 
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b b w 0 -t {1} 

{2} -t 0 

Figure 1. An automaton on linear orderings 
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Example 1 The automaton depicted in Figure 1 has one left limit transition 
{2} -t 0 and one right limit transition 0 -t {1}. 

The notion of cut is needed to define a path in such an automaton. A cut 
of an ordering J is a pair ( K, L) of intervals such that J = K U L and for any 
k E K and l E L, k < l. The two subsets must be disjoint and they form a 
partition of the set J. The set of all cuts of the ordering J is denoted by J. 
The set J can be linearly ordered as follows. For any cuts c1 = (K1, £1) and 
c2 = (K2,L2}, define the relation c1 < c2 iff K1 <;; K2. Note that J has always 
a least cut (0, J) denoted Cmin and a greatest cut (J, 0) denoted Cmax· 

See Figure 2 where each element of J is represented by a bullet, and each 
cut by a vertical bar. 

1 .. ·1•1•1•1 ... 1 .. ·1•1•1•1 .. ·1 

Figure 2. Ordering J U j for J = ( + (. 

A word x = (aj)jeJ of length J is accepted by A if it is the label of a 
successful path. A path 'Y is a sequence of states 'Y = (qe)eej of length J 
verifying the following conditions. For two consecutive states in '' there must 
be a successor transition labeled by the letter in between. For a state q E 'Y 
which has no predecessor on /, there must be a left limit transition P -t q 
where P is the limit set of 'Y on the left of q. Right limit transitions are used 
similarly when q has no successor on 'Y· A path is successful if its first state 
qemln iS initial and itS last State qemax iS final. 

More precisely, for any cut c E J, define the sets lime- 'Y and lime+ 'Y as 
follows: 

lim'Y = {q E Q I Vc' < c 3k c' < k < c and q = qk}, 
e-

lim'Y = {q E Q I Vc < c' 3k c < k < c' and q = qk}· 
e+ 

For any consecutive cuts cj and cj of J, qc-: ..!!.it qct must be a successor 
' ' transition. For any cut c =j:. Cmin in J which has no predecessor, lime- 'Y -t qe 



112 

must be a left limit transition. For any cut c '# Cmin in J which has no successor, 
qc ~ lime+ 'Y must be a right limit transition. 

1 ... blblalblb ... 1 ... blblalblb ... 1 
0 {1} 1 1 2 2 {2} 0 {1} 1 1 2 2 {2} 0 

Figure 9. The word (b-"'ab"')2 is accepted 

The notion of path 'Y we have introduced for words on orderings coincide 
with the usual notion of paths considered in the literature for finite words [12], 
w-words [15] and ordinal words [2]. For a Muller automaton accepting w-words, 
a left limit set P is computed at the end of the path. It is nothing else than 
the states appearing infinitely often along the path. In our context, the path 
then ends with an additional left limit transition to a state q which is final. 

4. Rational Expressions 
We now introduce the notion of rational sets of words on linear orderings. 

The rational operations of course include the usual Kleene operations for finite 
words which are the union +, the concatenation · and the star operation *· 
They also include the omega iteration w usually used to construct w-words 
and the ordinal iteration U introduced by Wojciechowski (16] for ordinal words. 
Three new operations are also needed: the backwards omega iteration -w, the 
backwards ordinal iteration -U and a last binary operation denoted <> which is 
a kind of iteration for all orderings. 

Given two sets X and Y of words, we define 

X+Y = {z I z E XUY}, 
X·Y = {x · y I x E X,y E Y}, 

X* = {ll;e{1, ... ,n} Xj In E .N, Xj E X}, xw = {ll;ew Xj I Xj E X}, 
x-w = {ll;e-w x; I XJ EX}, xu = {ll;e00 Xj I a E O,xi EX}, 
x-u = {ll;e-a Xj I a E 0, Xj E X}, 

X<>Y = {ll;eJuJ• ZJ I J E S, ZJ EX if j E J and z; E Y if j E)*}. 

The last operation needs some explanation. Notation J• is used for the set 
J \ {(0, J), (J, 0)}. A word x belongs to X<> Y iff there is an ordering J such 
that x is the product indexed by the ordering J U J• of words where each word 
indexed by an element of J belongs to X and each word indexed by a cut in J• 
belongs to Y (see Figure 4). We use notation X 0 for the set X<> e. When 
operation <> is used as a unary operation, we also use notation <>1. When it is 
used as a binary operation, we use notation <>2. 
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. . . . 
X 

I.{!~. I 
\I 
y 

•... 

Figure 4. The operation X <> Y 
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JuJ• 

Note that the definitions for the operation * and ~ are closed to each other. 
The only difference is that the products are over any J E .N for operation * 
whereas they are over any J E 0 for operation ~· 

Example 2 The set of all words over the alphabet A is the rational set A0 = 
A<> e. The set of words accepted by the automaton of Figure 1 is the rational 
set (b-wabw)•. 

In [3], we show that a set of words on countable scattered linear orderings is 
accepted by an automaton iff it can be described by a rational expression. This 
result extends the well-known Kleene theorem on finite words, its extension to 
w-words [4] and to ordinal words [16]. 

Theorem 2 ((3]) Over countable scattered linear orderings, X s;:;; A0 is recog­
nizable iff it is rational. 

The proof that any rational set of words is recognizable is by induction on the 
rational expression denoting the set by giving the corresponding construction 
for the automaton. The constructions for the union, the concatenation and 
the star iteration are very similar to the classical ones for automata on finite 
words [12]. The proof that any set of words accepted by an automaton is 
rational is a generalization of McNaughton and Yamada algorithm. It is based 
on a induction on the number of states of the automaton and the type of 
transition that is used. The base of the induction is Kleene's theorem on finite 
and w-words. This part of the proof is the most difficult. 

Example 3 The automaton pictured in Figure 5 accepts the set denoted by the 
rational expression a< <>b. The part of the automaton given by state 2 and the 
two limit transitions 0 --t {2} and {2} --t 1 accepts the word a< whereas the 
part given by the successor transition from state 1 to state 0 accepts the word 
b. Any occurrence of a< is preceded and followed by an occurrence of b in the 
automaton. Thanks to the limit transitions 0 --t {0, 1, 2} and {0, 1, 2} --t 1, the 
occurrences of a< are indexed by an ordering J, the occurrences of b are indexed 
by the ordering J• and they are interleaved according to the ordering J U J• . 
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a g 0-+ {2} 

0-+ {0, 1,2} 

{2}-+ 1 

{0, 1,2}-+ 1 

Figure 5. Automaton accepting the set a' o b 

5. Hierarchy 
We now come to the main result of this paper. We introduce a hierarchy 

among rational sets of words on countable scattered linear orderings. Each class 
of this hierarchy is obtained by restricting the rational operations that can be 
used. It turns out that each of these classes can be characterized by automata 
with a particular form. These classes of automata are defined by restricting 
the limit transitions of the automata. In other words, a Kleene-like theorem 
holds for each class of the hierarchy. Finally, each class of rational sets of our 
hierarchy can be characterized by a class of orderings. For any rational set of 
a given class, the lengths of all its words belong to the corresponding class of 
orderings. 

For instance, rational sets with operations restricted to+, ·and* correspond 
to automata without any limit transitions. The corresponding orderings are the 
finite ones. 

The different classes of the hierarchy are summarized on Figure 6. Let us 
give a precise description of each class. 

0 This class corresponds to Kleene theorem [8] on rational sets of finite 
words. The rational operations are the usual Kleene operations: union, 
concatenation and star iteration. The automata are the usual automata 
on finite words with no limit transitions. The orderings are the finite 
ones. 

1 This class corresponds to Choueka theorem [6] on rational sets of words 
of length an ordinal smaller than ww. The rational operations are the 
Kleene ones and the omega iteration. Automata considered by Choueka 
are a special kind of automata on ordinals introduced by Biichi. It can 
be shown [1] that these automata are equivalent to automata with no 
right limit transitions and such that the left limit transitions are of the 
form P -+ q with q ~ P. The corresponding orderings are the ordinals 
smaller than ww. 

2 The rational operations of Class 2 are the Kleene ones, the omega it­
eration and the backwards omega iteration. The automata have left 
limit transitions P -+ q with q ~ P and right limit transitions q' -+ P' 
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+, ., *• w, -w, u, -u, ¢2 

p --+ q, q --+ p 
s 

+, ., *• w, -w, u, -u, ¢1 

Condition (t) 

6 

+, ., *• w, -w, u, -U 
P--+ q, qi--+ pi with q E P and qi E pi=> P of. pi 

+, ·, *• w, -w, U 
P --+ q, qi --+ pi with l ¢ pi 

Un<w Vn 

Un<w Wn 

+, ·, *• w, -w 

+, ., *• w, -w, -U 
P--+ q with q ¢ P, l--+ pi 

-Un<w Vn 

P --+ q, qi --+ pi with q ¢ P, qi ¢ pi 

Un<w Un 

+, ·, *• w 
P --+ q with q ¢ P 
{a E 0 I a< w"'} 

1 

Figure 6. Classes of the hierarchy 
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with q' ~ P'. The associated orderings are the orderings belonging to 
Un<w Un where the classes Un have been defined in Theorem 1. 

3 This class corresponds to Wojciechowski theorem [16] on rational sets 
of words on ordinals. The rational operations are the Kleene ones, the 
omega iteration and the ordinal iteration introduced by Wojciechowski. 
The automata are those on ordinals introduced by Biichi [5]. They have 
any left limit transitions of the form P -+ q but they have no right limit 
transitions. The related orderings are exactly those of the class 0 of all 
countable ordinals. 

4 The rational operations of Class 4 are the Kleene one, the omega it­
eration, the backwards omega iteration and the ordinal iteration. The 
automata have any left limit transitions P -+ q but right limit transi­
tions q' -+ P' limited by the condition q' ¢ P'. The associated orderings 
are the orderings belonging to Un<w Vn where the classes Vn have been 
defined just after Theorem 1. 

5 In this class, all rational operations are allowed except the operation <>. 
The automata have left and right limit transitions P -+ q and P' -+ q' 
restricted by the following condition: if q E P and q' E P', then one has 
P =f. P'. The related class of orderings is equal to Un<w Wn (see the 
definition of Wn just after Theorem 1). 

6 In this class, all rational operations are allowed but the operation <> can 
only be used as a unary operation, that is the operation X <> Y must be 
restricted to the caseY= {e}. The automata have left and right limit 
transitions P -+ q and q' -+ P' of a particular form. 

Condition (t). Let P -+ q be a left limit transition and q' -+ P' be a 
right limit transition. If q e P, q' E P' and P = P', then q = q' and for 
any R ~ P with q E R, the left and right transitions R -+ q and q -+ R 
must appear among the transitions of the automaton. 

We do not know a characterization by a particular class of orderings. 

7 This class corresponds to the Kleene theorem of [3] for all countable 
scattered orderings. The operation <> is here used as a binary operation. 

Let us illustrate by examples some classes of the hierarchy. 

Example 4 The set (b-walJW)* of Examples 1 and 2 belong to the Class 2. The 
related orderings are Kn = E;e{l, ... ,n} ( which belong to u2. Since the linear 
ordering ( is neither an' ordinal nor a backwards ordinal, the set (b-walJW)* 
cannot belong to a lower class. 

Example 5 The automaton of Figure 7 accepts the rotional set (a+bb) 0 • The 
operotion <> is unary and the automaton satisfies Condition (t). Hence it is 
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a 0-+ {0} 

0-t{O,l} 

{0}-+ 0 

{0,1} -t 0 

Figure 7. Automaton accepting the set (a+ bb)" 
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an example of Class 6. Note that it does not belong to Class 5. Indeed, the 
condition on the limit tmnsitions of the automaton is not respected. Moreover, 
the set (a+ bb)" contains the word il;eJ a of length J = (w and we have seen 
in Section 2 that J belongs to Ww but not to Un<w Wn. 

{1} -t 0 

{0, 1}-+ 0 a,b 

a,b 

2 -t {1} 

a,b 2 -t {0, 1} 

{1, 2} -+ 0 2 -t {1, 2} 

{0, 1, 2} -+ 0 2 -t {0, 1, 2} 

Figure 8. Automaton accepting the set e <> A 

Example 6 The automaton pictured in Figure 8 accepts the set denoted by 
the mtional expression e <> A where A = {a, b}. Recall that a linear ordering 
is complete if any subset which is upper bounded has a least upper bound (or 
equivalently if any subset which is lower bounded has a greatest lower bound}. 
It can be shown that a scattered linear ordering J is complete iff there is a 
scattered linear ordering K such that J = k. Therefore, the automaton of 
Figure 8 accepts words the length of which is a complete ordering. 

This automaton does not satisfy Condition (t). Indeed there exist left and 
right limit tmnsitions P -+ q and P' -+ q' such that q E P, q' E P' and P = P' 
but q '# q1 • Take P = P' = {0, 1, 2}, q = 2 and q' = 0. It can be shown that 
any rational expression with a unary <> denotes a set which contains words with 
a non complete length. Therefore the set e <> A does not belong to Class 6. 
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