
A TEMPLATE-BASED APPROACH TOW ARD
ACQUISITION OF LOGICAL SENTENCES

Chih-Sheng Johnson Hou, Natalya F. Noy and Mark A. Musen
Stanford University. Stanford. CA 94305
ljohnsonh. noy. musen} @smi.stanford.edu

Abstract: Ontology-development languages may allow users to supplement frame-based
representations with arbitrary logical sentences. In the case of the Ontolingua
ontology library, only 10% ofthe ontologies have any user-defined axioms. We
believe the phrase "writing axioms is difficult" accounts for this phenomenon;
domain experts often cannot translate their thoughts into symbolic
representation. We attempt to reduce this chasm in communication by
identifying groups ofaxioms that manifest common patterns creating
'templates' that allow users to compose axioms by 'filling-in-the-blanks.' We
studied axioms in two public ontology libraries, and derived 20 templates that
cover 85% of all the user-defined axioms. We describe our methodology for
collecting the templates and present sampie templates. We also define several
properties of templates that will allow users to find an appropriate template
quickly. Thus, our research entails a significant simplification in the process for
acquiring axioms from domain experts. We believe that this simplification will
foster the introduction ofaxioms and constraints that are currently missing in
the ontologies.

Key words: frame-based system, knowledge acquisition, knowledge representation

1. AXIOMS IN FRAME-BASED SYSTEMS

Frame-based representation systems (FRS) are a popular ehoice for
knowledge representation [6]; their taxonomie eategorization of eanonical
eoneepts often bears elose resemblanee to the way humans deseribe
knowledge and is easy to understand. Beeause of this eognitive simplieity,
FRSs serve as effieient tools for knowledge representation and aequisition.

Even though knowledge-representation eonstraints inherent in FRSs
guarantee many advantages, they also foster several limitations aeross

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
M. A. Musen et al. (eds.), Intelligent Information Processing

10.1007/978-0-387-35602-0_35

http://dx.doi.org/10.1007/978-0-387-35602-0_35

78 c.l. Hou. N. F. Noy and M A. Musen

virtually all systems. A frame-based system alone has limited expressivity: it
cannot naturally represent negations, disjunctions, and existential
quantification. One cannot restrict a value of one property based on another
property. To overcome these limitations, some FRSs employ more expressive
compensatory axiom languages, which are based on first-order logic, to
encode these relationships.

With the proliferation of approachable user interfaces such as the Protege-
2000 ontology-editing environment [8] for frarne-based knowledge
acquisition, many domain experts participate in knowledge acquisition, often
without the collaboration of knowledge engineers. Domain experts enter
information about classes and properties of concepts through a convenient
interface. Unfortunately, to specify additional relational information, they
encounter an axiom-editing environment that has remained free-text based.
The act of conceptualizing a thought in a symbolic representation is often
extremely difficult for a domain expert. For example, one may not
understand why representing the simple constraint "every employee has a
unique ID" in an axiom in first-order logic requires the equivalent English
translation of "for every two employees both of whom have IDs, if the two
employees are not the same, their lOs cannot be identical." Figure 1 shows
this axiom in Protege Axiom Language (PAL), which is an axiom language
for the Protege-2000 ontology-editing environment based on Knowledge
Interchange Format (KIF) [5]. Even if a domain expert understood the
formulation of the axiom, he would still have to struggle with the foreign
syntax (Figure 1). These factors can lead to a failure to encode critical
knowledge realizable only through axioms. For exarnple, in Ontolingua [7],
onlyabout 10% ofthe ontologies include manually generated axioms.

To achieve truly meaningfuI transfer of knowledge we must attempt to
reduce the barrier between a user and a knowledge acquisition system
introduced in the axiom-acquisition phase. We identified a limited number of
axiom templates, which would enable domain experts to specify most of the
axioms by simply filling in the blanks in sentences describing the templates.
This user-interface paradigm strongly paralleis the task of acquiring instances
of classes in traditional frame-based systems.

We examined axioms in ontologies in the Ontolingua ontology Iibrary [7]
and several private Protege ontologies [8] and discovered that most axioms
that developers have chosen to encode have repetitive meanings and
structures across different domains. In fact, we discovered that 20 templates
accounted for 85% of the user-defined axioms. We acknowledge that this
approach will not encompass the modeling of every axiom possible, but may
be sufficient for common requirements.

I "

Statemeni

(forall 7pe rson I

Intelligent Information Processing 79

Range

(defran,e 7personl :FI1AME bployee)

(defrance 7person2 :FRAME bployee)

(forall 7person2

(0. (and ID 7personl)

lD 7person2»

(0) (nol (a 7personl 7person2»

(nol (a (lD 7personl) (ID 7person2»»»)

Figure I, A Text-Based Axiom-Editing Environment in Protege-2000. The axiom in the
Protege Axiom Language (PAL) says that every employee must have a unique ID,

2. METHODS FOR COLLECTING TEMPLATES

In order to identify axiom templates that would cover a large fraction of
axioms that users have put in knowledge hases, we selected two ontology
lihraries that contained ontologies contributed by developers in many
domains. We looked at axioms in ontologies from the Ontolingua ontology
library [7] and from several Protege ontologies [8]. These sources contain
knowledge bases from diverse fields and have ample axioms. Ontolingua and
Protege have very similar knowledge models. The two systems introduce
their own axiom languages, which are very similar. The axiom language of
Ontolingua is KIF, a declarative language for expressing logical statements,
and the Protege Axiom Language (P AL) is a subset of KIF.

We examined 18 ontologies and 592 axioms. This set included ontologies
for chemieal elements, enterprise, bibliographie data, and malaria. Most have
10 to 30 axioms. We did not examine those axioms associated with upper
level ontologies. These axioms seldom produce context-independent reusahle
patterns due to their complexity and specificity. We also did not examine
computer-generated axioms, which contain information encodable in the
native frame-based representation.

80 c.J Hou, N. F Noy and M A. Musen

2.1 Knowledge Model

We chose the general frame-based knowledge model of Protege[8]. A frame
is a data structure that represents objects, abstract categorizations of objects,
or concepts. Each frame has slots that contain values that describe the frame.
A frame that refers to a general concept is a class, and a particular object of
that class is an instance created by the process of instantiation. Most FRSs
organize classes in a taxonomie hierarchy. A superclass is a superset of
instances in its subclasses. Subclasses inherit slots from superclasses. We can
specify attributes of slots such as the value type, cardinality, default values,
and a data range. However, as we previously mentioned, we cannot usually
specify relations between different slots of the same or different instances.
These assumptions are consistent with the general knowledge model
underlying the Open Knowledge-Base Connectivity (OKBC) protocol [3],
which was designed as a means of communication among different frame­
based knowledge bases.

2.2 From patterns to templates

Our process for generating generic axiom templates from the actual axioms
in the ontologies consisted ofthe following steps:

1. We identified axioms that followed exactly the same pattern. They
were identical except for the names of specific variables and frames.

2. We generalized similar patterns into templates. A template accounted
for minor variations among patterns. For example, two patterns "A
contains B" and "A does not contain B" give rise to one template "A
contains/does not contain B."

3. We derived generie properties for categorizing the templates.

Consider the following two axioms in Athena_Client, a private Protege
ontology by Samson Tu:

(forall ?process

(=> (slot-not-null inhibited_by_object ?process)

(/= "cytochalazin" (name (inhibited_by_object ?process)))))

(forall ?process

(=> (slot-not-null inhibited_by_object ?process)

(/= "neuraminadase" (name (inhibited_by_object ?process)))))

These axioms vary only in referred slot value "cytochalazin" and
"neuraminadase." Thus, these two axioms give rise to the following pattern:

All instances of c1ass _ do not contain the value _ in slot _.

Intelligent Information Processing 81

We then generalize these patterns further, trying to satisfy two constraints:
(1) have a small number of templates in the final collection, simplifying the
search for the appropriate template for the domain expert; (2) ensure that the
templates do not become too general as to be incomprehensible because of
the many variations that they have. Section 3 will explore the methodologies
for deriving templates from similar patterns and generic properties from the
templates.

Every instance of c1ass _ whose (slot _ has value ->(*N) must have (slot _ has value
->(*M).

Example: A student who has fewer than 180 units or who has not completed the distribution
requirement cannot graduate.<=>Every instance of Class Student whose Siot units-completed : Cla55
Student has value < 180 OR Siot distribution-completed : Class Student has value false must have
Siot is-graduating : Class Student has value false.

Every instance of c1ass _ appears at least once in slot _ of any instance of class _.

Example: Every student has at least one advisor. <=>Every instance of CI ass Student appears at least
once as a value ofSlot advisee : Class Professor ofany instance ofClass Professor.

Every instance (A) of c1ass _ that is a value of slot _ of instance (B) of c1ass _ must
have the same value in its slot as in slot ofB.

Example: Every student project that is a continuation of a previous project has the same starting data
available as the final data available of the previous project. <=> Every instance (A) of Class Project that is
a value of Siot continuation-of : Class Project of instance (B) of Class Project must have the same
value in its Slot starting-data : Class Project as in Siot final-data : Class Project of B.

For every instance ofclass _. slots _ and _ cannot have the same value.

Example: A student does not have an activity he both likes an dislikes. <=> For every instance of Class
Student, Slot favorite-activities : Class Student and Slot disliked-activities : Class Student cannot
have the same value.

Table 1. A partial list showing templates as "fill-in-the-blanks" sentences and sampie usages.

3. AXIOM TEMPLATES AND THEIR PROPERTIES

The most simplistic form of a template consists of a fill-in-the-blanks
sentence and an example of usage. By coupling these features, we ensure that
a specific example will clarify its generalized template when the user does
not immediately understand the latter. Table 1 represents a partial list of the
20 templates we identified in this reduced form.

The expanded form of a template incorporates additional details about its
usage. For example, many templates allow for variations: different number of
conditions or resulting statements of the same type, different modifiers, and
so on (Section 3.1). Thus, as mentioned before, a template gives rise to
several patterns (Section 3.2) where all the possible alternatives have been

82 c.J Hou. N. F Noy and M. A. Musen

specified. Therefore, in addition to its English-Ianguage representation, each
template requires the relevant information from wh ich one can extract a
single pattern and instantiate an axiom. The complete definition of a
template consists of the following elements, as shown in Figure 2 (the
numbers in the list correspond to the numbers in the figure):
I . The English-Ianguage representation or the "name" of the template as a

"fill-in-the-blanks" sentence. For the template in Figure 2, this
representation is:

Every instanee of c1ass _ appears at least onee in slot _ of any instanee of

c1ass_
rc , lei x

'[gx

"
, .. I feIY Inslanes 01 eil" _ .ppears a1le.sl onceln 5101_ 01 any InSlance of cI.ss _ . 1. I

PrO! "jas (vTCT+i -'
I Conslr.lnle"""" .. a condltion Ihallslrue .. Iong ,. one Plrtlculilinslance ollhe relerenced gloup sau.nu Ihe cona,Uon I

- - 4.
Ooeurn IlI<1llOn S<lmplo Uugo

Warylng opeleUon: none J " ... " .. "'"".,,. 3 ... EvaIY Inslante olCI,so 8tlJdeni appeals olle361 once1n 8101 .l!vIsee Clan
2. • Proressor Of 8ny InSlante of Clan Prolessor.

j\)(1I)I111ranslll'lnn . .e Machlno.ReotdlllllO fcmpllilO Codo

defr,ngs 1(CI'55 AI FRAME (Clns AI) ... vary lnstante oIICI.&s AI appeals alleul once In 1810
defrangs 1(CI05. 81 FRAME (Class 8» Olol.nylnslance ol(Clan 8)

!'<T0i"" 1(CI.SI AI 5. (eXlsI. 1(CI ••• 8) 6.
aSI018 0) 1(Closs 8/ 1(CI'ss A»» .

Figure 2. Elements of a complete template definition. Numbers on the figure correspond to
elements in the list in Section 3. Each template definition includes a sentence with blanks to
fill in, a sampIe usage, documentation, a list of properties, a prototypical axiom translation and
a machine-interpretable expression of the template.

2. A sampie usage senten ce that includes a possible interpretation of the
template with the blanks already filled in:

Every student has at least one advisor Every instanee ofClass Student appears

at least onee in Slot advisee : Clus Professor of any instanee of Clus Professor.

3. Documentation: A short description of the varying operations one may
perform on the templates. This field for the sampie template is left blank
because the template represents a single pattern rather than a group of
patterns. We consider this issue in Seetion 3.1 .

4. A set of properties describing the template. We discuss properties in
Seetion 3.2.

5. A 'generalized' pattern that derives from the source axioms of a template.
We replace specific frame and/or value references by variables and

Intelligent Information Processing 83

indicate where variations (Section 3.2) are possible. Below is a
translation ofthe example template into Protege Axiom Language (PAL):

(defrange ?IClass AI :FRAME IClass AI)

(defrange ?IClass BI :FRAME IClass BI)

"(forall ?IClass AI (exists ?IClass BI (ISlot BOI ?IClass BI ?IClass Am)

6. Machine-interpretable expression of the template: The expression
contains information that enables the automatie generation of a template
as an English sentence in the user interface. It also dictates what type of
frame can fill in the blank or specifies additional modifiers (see section
3.1). This feature allows us to set additional user-interface controls on the
types of the allowed frames that users can fill in a particular blank.
Furthermore, we can use this structured internal representation to
generate axioms by substituting specific values to the 'generalized'
pattern.

Every instance of {Class AI appear at least once in ISlot B 01 of any instance of

class IClass BI

The above example limits user's choice of a slot to those slots of the
second class B, thus effectively preventing users from composing
potentially inappropriate axioms.

3.1 Variations in Templates

Each template can have several variations. Variations can result from using
multiple conditions or resulting statements, or from applying different
operations to slot values.

3.1.1 Generating multiple conditions

A template can be a generalization of many patterns or a single pattern.
Consider this template:

Slot _ of instances of class _ must contain elements that are instances of the

class specified by slot _

The sampie usage ofthis template is:
A student (Instance of Cl ass Students) can only enroll in the courses offered by

the Business School (slotAllowed-Course-Group)

A user may only fill in the values to generate axioms but may not alter the
template in any way to produce an axiom with a slightly different pattern.
However, among the axioms that we examined, we found patterns with
multiple conditions or multiple resulting statements. For example, consider
the following axiom:

84 c.J. Hou, N. F. Noy and M. A. Musen

(exists ?current_med

(and(dru\L-name ?current_med "hydrochlorothiazide")

(> (daily_dose ?current_med) 25»

It states, "Ihere exists a medication named "hydrocholorothiazide" with a
daily dose greater than 25mI." Notice that there are two statements in this
axiom: "medication is named "hydrocholorothiazide" and "dose is greater
than 25mI." Consider another example:

(exists ?dru\L-usage

(Dru\L-Class_N ame ?dru\L-usage Beta-Blockers-Cardioselective»

It states "There exists a drug of the type 'cardioselective beta-blocker.'"
Here we have only one statement: "drug class name is Beta-Bloker­
Cardioselective." To account for this type of variation, we generalize the
templates to allow an arbitrary number of conditions and resulting
statements. For example, we can generalize the above pattern to:

There exists an instance ofclass _ that contains (value _ in slot _,) (*N) (1)

The "N" modifier indicates that there can be more than one condition or
statement. Therefore, this template generalizes patterns such as:

There exists an instance of class _ that contains value _ in slot _ .

There exists an instance of eIass _ that contains value _ in slot _ and value

inslot.

Ihis convenient notation allows template designers to store structurally
similar patterns into one template. Ihis notation therefore prevents users
from enumerating every variation to ensure coverage of the library as if there
was a one-to-one mapping from patterns to templates. We will explain the
use of varying operations such as those represented inside the round brackets
to generate additional patterns.

3.1.2 Varying operations

Another way to customize a template is to specify an explicit operation or to
use the built-in varying operations. Consider the following further
generalization of pattern (1):

There must be (at least one/exactly one/at most one) instance of eIass _ that

contains/does not contain value _ in slot _

This example provides choices of operations among "only one/ at least
one/ at most one," and between "contains value / does not contain value
_." Ihus, the template can lead to equally valid fill-in-the-blank patterns
such as:

Intelligent Information Processing 85

1) Qnly one slot _ of instances of class _ contains value _.

2) At most one slot _ of instances of class _ does not contain value _.

3) At least one of the instances of class _ contains _ in its slot_.

Each slot type entails a specific set of operations on the slot. For example,
for a numeric slot, operations are comparison functions such as <, <=, =, >=,
>, =, not =; for a slot that has other instances as its value, operations are
"contains/does not contain"; for a string-valued slot, operations are about
substrings, such as "presentlnot presentlbegins withlends with". These
variations are implicit in the template because we can derive them directly
from the slot value type.

3.2 Properties of templates

A process that is equally important to identifying templates is devising a
strategy to organize them. We believe that organizing the templates into an
inheritance hierarchy is not feasible: The templates are usually so abstract
that even more general "super-templates" will be very vague and
incomprehensible. A template mayaiso fall into multiple categories.
However, the latter situation contributes to an alternate solution for
organizing templates. First, consider the following example that shows how a
template can belong to multiple categories. We identified a group of
templates that is concerned with expressing a condition that is true as long as
one particular instance ofthe referenced group satisfies the condition:

1. All instances of class _ appear at least once in slot _ of any instance of

class_.

2. Every instance (A) of class _ that is a value of slot _ of instance (B) of

elass _ must have the same value in its slot _ as in slot _ ofB.

Similarly, there is another group represented by the following
characteristic: the value of an instance's slot is determined by the slots of
other instances in the former instance's slots.

1. Every value (B) of slot _ of an instance (A) of class _ must contain the

same value in siot _ of A and the value in siot _ of B.

2. Every instanee (A) of class _ that is a value of siot _ of instanee (B) of

elass _ must have the same value in its siot _ as in siot _ ofB.

Note that the second templates from both examples are identical. We
identified several properties oftemplates, which are not mutually exclusive:

1. Constraint involves direct comparisons between every instance of a
class.

2. Constraint expresses a condition that is true as long as one particular
instance ofthe referenced group satisfies the condition

3. Constraint involves value(s) of a slot determined by another own slot(s)

86 c.l. Hau, N. F. Nay and M. A. Musen

4. Constraint involves value(s) of a slot determined by the slots of other
instances(inlnot in former instance's) slots

5. Constraint involves multiple constraining/constrained slots.
We distinguish these high-level descriptions of templates from the

previously discussed "super-template," because the former is not an attempt
to find a more structurally general representation of template groups. Rather,
this type of categorization describes the templates at a very high level that
assurnes no knowledge about the templates' structure, but only the common
"thoughts" that they express.

We believe that these characterizations oftemplates can serve as the basis
of implicit organization through descriptions rather than through a
hierarchical organizational scheme; hence we call them "properties" of
templates. We create a flat hierarchy oftemplates in which all templates have
the superclass template, but each contains a seetion describing the properties
that it satisfies. This strategy also permits much flexibility; the user can
customize the templates by creating new properties. This feature also enables
searching for templates by filtering out the ones that do not satisfy user's
particular characterization, rather than searching through a predetermined
sequence of classifications/tree-traversals unfamiliar to the intended users.

4. DISCUSSION

After exammmg axioms in existing ontology libraries we identified two
important facts: (I) Many ontologies simply lack axioms, likely because
axioms are very hard for domain experts to write. (2) Most ofthe axioms that
do exist in the ontologies can be described by a small set of templates. We
can use these templates to allow users to specify axioms by selecting an
appropriate template and filling in the blanks rather than by having to
conceptualise and express a complex axiom in first-order logic.

Tu and Musen [11] observe in a cIinical domain that most of the axioms
that domain experts need to write follow a limited set of patterns. They
created a Protege-based knowledge-acquisition tool for medical guidelines.
In their approach, instead of writing an axiom in P AL, a domain expert fills
in a form that looks exactly as a form for any regular instance in the
knowledge base. For example, there is a check box to mark whether actions
are predicated on the presence or the absence of a particular criterion; there is
a box to select from the list of time periods; there is a box to select a value
from the list of conditions, and so on. Once the user fills in the form, the
system automatically generates an axiom in P AL. In this approach, the user
can specify a large fraction ofaxioms simply by performing a fairly intuitive
task-filling in blanks in a form. However, the templates are specific to

Intelligent Information Processing 87

defining medical guideline criteria. It would be impossible to use them
verbatim in another application area.

Research in classifying and representing axioms in a user-friendly way has
been relatively sparse in the knowledge base community. Staab and Mädche
[9] recommend an approach similar to ours: They note that many axioms that
they encountered in ontology-engineering projects follow similar patterns.
They abstract several classes ofaxioms, such as algebraic axioms (e.g.,
reflexivity and symmetry of properties), axioms dealing with composition of
relations, axioms describing part-whole relations and so on. The
representation of an axiom (the one that the user sees) is then a predicate for
which a user needs only to specify arguments. The user does not need to
worry about the symbolic representation of the axiom in a specific language.
For the types ofaxioms that the authors discuss, the predicate approach
works weil. However, it is unclear how the same approach would work for
slightly different variations ofaxioms and axioms with varying number of
conditions. In addition, for many users a look at the predicate name does not
immediately clarify what the underlying axioms are about (e.g., consider a
predicate "PartonomicRolePropagation"). In the ontology Iibraries that we
considered, most axioms did not fall in the categories identified by Staab and
Mädche. However, we affirm the approach of representing axioms as objects
in a knowledge base and allowing users to represent axioms at a conceptually
high level of abstraction.

Researchers have applied this idea not only to specifying single axioms
but also to specifying sets ofaxioms. In some cases, a set of axioms
represents a complex knowledge-base component, such as the description of
a physical process [1,2]. In other cases, a set of parameterised axioms
represents a new constraint that cannot be directly expressed in the
corresponding language [10]. As a result, the task of the knowledge-base
designer is greatly simplified, since all he needs to do is to instantiate a
particular pattern rather than to write a set ofaxioms from scratch. In
addition, the user creates the definition in an intuitive syntax and the system
can translate it into several specific languages if necessary. We not only
identify a set of these recurring patterns, but we do so as a result of analysing
a large set of real-world axioms that users have created in their ontologies.

The use of design patterns in object-oriented programming [4] is another
approach to adopting recurring representation patterns as the building blocks
of design. A design pattern records, explains, and evaluates patterns of code
in object-oriented systems. Similar to our templates, design patterns encode
information for structuring, creating, and managing the 'design idioms.'

Our primary goal in designing the set ofaxiom templates is to facilitate
the task of specifying axioms for domain experts. Naturally, the primary

88 c.J. Hou, N. F. Noy and M. A. Musen

application ofthis research is to design an easy-to-use interface, which would
enable domain experts to specify axioms quickly and easily.
In the interface, we may present a set of available templates and a list of their
properties. If a user finds the size of initial list of template unwieldy for
browsing, he can examine the list of properties (Section 3.2), and check the
ones that are likely to be compatible with his thought to filter out unlikely
candidates from the template list. A user can browse the remaining templates,
each of which is accompanied by a sampIe usage in both English and fill-in­
the-blanks representations. Once ready, the user can simply select appropriate
variations, fill in the blanks, and 'instantiate' an axiom without encountering
the obscure syntax of the axiom language. Note that such an interface will
work for many underlying axiom languages because the selection and
instantiation of a template is the same regardless of the underlying language.
We envision that advanced users will be able to extend the set of templates
which we also model as an ontology in Protege; the templates are simply
cIasses in the knowledge base. Thus, the advanced users can create new
template classes and a processing engine can incorporate them into the
interface. SimiIarly, they may create new instances of the cIass Property to
introduce additional categorization oftemplates.
We are currently implementing such a system to perform empirical
evaluation on coverage, usability, and readability of the templates. To
evaluate coverage, we will examine axioms in an ontology library that we
have not yet considered and determine what fraction ofaxioms in that library
our templates represent. To evaluate usabiIity, we will perform user studies
where we will first ask domain experts to express constraints in English that
they hope to incorporate in their knowledge base but cannot encode in an
axiom language. We can then measure the ratio ofaxioms they actually are
able to encode with our template-based system compared to the number of
constraints that we deern expressible in that language. The result will attest
the practicality of our strategy in promoting the composition of more axioms.
Finally, we will experiment with several alternatives for the English
representations ofthe templates to derive the most intuitive statements.

ACKNOWLEDGMENTS

We are very grateful to Samson Tu, Mor Peleg and Iwei Yeh for sharing
their Protege ontologies. We would also like to thank Monica Crubezy for
suggestions about template designs. This work was supported in part by a
contract from the V.S. National Cancer Institute. Johnson Hou was supported
by the Stanford President's Scholar Intellectual Exploration Grant for lower­
division undergraduate students.

Intelligent Information Processing 89

REFERENCES

1. Barker, K., Clark, P. and Porter, B. A Library of Generic Concepts for Composing
Knowledge Bases. In: 1st Int Conf on Knowledge Capture (K-Cap'OJ). Victoria, BC,
2001.

2. Clark P., Thompson, 1., and Porter, B. Knowledge Patterns. In KR'2000 (Proc 7th Int
Conj), pages 591-600, Eds: A Cohn, F. Giunchiglia, B. SeIman, CA:Kaufmann, 2000.

3. Chaudhri, V.K., Farquhar, A, Fikes, R., Karp, P.D. and Rice, J.P. OKBC: A programmatic
foundation for knowledge base interoperability. In: Fifteenth National Conference on
Artificial Intelligence (AAAI-98). Madison, Wisconsin: AAAI Pressrrhe MIT Press,
1998.

4. Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns: Elements of
Reusable Object Oriented Software. Reading, MA: Addison-Wesley, 1999.

5. Genesereth, M.R. and Fikes, R.E., Knowledge Interchange Format, Version 0.3,
Reference Manual, Knowledge Systems Laboratory, Stanford University, 1992.

6. Karp, P.D., The design space offrame knowledge representation systems, SR! AI Center:
Menlo Park, CA, 1993.

7. Ontolingua, Ontolingua System Reference Manual, Knowledge Systems Lab, Stanford
University, http://www-ksl-svc.stanford.edu:5915/doc/frame-editor/index.html

8. Prottigti, The Protege Project, Stanford Medical Informatics, Stanford University,
http://protege.stanford.edu, 2000.

9. Staab, S. and Mädche, A. Axioms are objects, too - Ontology Engineering Beyond the

Modeling of Concepts and Relations. In: ECAI 2000 Workshop on Ontologies and
Problem-Solving Methods. Berlin, 2000.

10. Staab, M. Erdmann, A. Maedche. Engineering ontologies using semantic patterns. In A
Preece & D. O'Leary (eds.), Proceedings ofthe IJCAI-01 Workshop on E-Business & the
Intelligent Web. Seattle, 2001.

11. Tu, S.W. and Musen, M.A Modeling Data and Knowledge in the EON Guideline
Architecture. In: Medlnfo 2001. London, 2001.

	A TEMPLATE-BASED APPROACH TOWARD ACQUISITION OF LOGICAL SENTENCES
	1. AXIOMS IN FRAME-BASED SYSTEMS
	2. METHODS FOR COLLECTING TEMPLATES
	2.1 Knowledge Model
	2.2 From patterns to templates

	3. AXIOM TEMPLATES AND THEIR PROPERTIES
	3.1 Variations in Templates
	3.2 Properties of templates

	4. DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

