
ANALOGY SUPPORTS FOR SOFTWARE REUSE AND 

Chung-Horng Lung3, Gerald T. Mackulakb, and Joseph E. Urbane 
QDepartment o/Systems and Computer Engineering 
Carleton University. Ottawa. Canada 
chlung@Sce.carleton.ca 

b Department o/Industrial Engineering 
Ariona State Univeristy. Tempe. AZ 
mackulak@asu.edu 

CDepartment o/Computer Science & Engineering 
Arizona State Univeristy. Tempe. AZ 
joseph. urban@asu.edu 

1. INTRODUCTION 

Analogical reasoning is critical in problem solving and is fundamental in 
learning and cognitive development, because analogy is a key factor in 
hypothesis formation, explanation, and the definition of abstract concepts 
[1,2,4]. Many analogy theories have been proposed to solve the problem 
A:B::C:X. Given that Ais related to B as C is related to some X, find that X. 
For example, car:engine::gear:tooth. 

Software reuse is similar to analogical reasoning in some respects. To 
reuse an existing solution for a new problem, we are essentially solving a 
problem like p(X):s(X)::p(Y):s(X'), where problems p(X) and p(Y) are 
identical or analogous, and solutions s(X) and s(X') are identical or similar. It 
may or may not be easy to identify the similarities and differences between 
p(X) and p(Y). Software reuse can also be at different levels, such as soft­
ware architectures or at the code level. 

Knowledge management deals with the way of how to capture, organize, 
update, share, and use the knowledge. Knowledge management is closely 
coupled with analogy in that both areas discuss the transfer of knowledge 
from one problem (base) to another problem (target). 

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2002
M. A. Musen et al. (eds.), Intelligent Information Processing

10.1007/978-0-387-35602-0_35

http://dx.doi.org/10.1007/978-0-387-35602-0_35


276 Chung-Horng Lung, G. T Mackulak and JE. Urban 

These three areas have many in common. All deals with similar 
dimensions, including representation, retrieval, elaboration, mapping, 
evaluation, integration, generalization, c1assification, and learning. 
Furthermore, analogy community advocates that rich representation must 
include syntactic, semantic, and pragmatic components [3,4]. Same ideas are 
used in software engineering discipline. 

The objective of this paper is to present some crucial discoveries in 
analogy [1-4]. We have developed an approach based on analogy to support 
software modelling. A study in the manufacturing problem domain is briefly 
described. The study shows reuse from the discrete manufacturing domain to 
continuous manufacturing problem area. Compared with the base, the 
development time for the target problem artifacts is significantly reduced 
from days to hours. The result suggests researchers in software engineering 
and knowledge management may benefit more by exploring further in the 
analogy community. 

2. ANALOGICAL REASONING 

Here, we highlight two critical aspects of analogy, namely modelling of 
high-order relations and reasoning of semantic relations. 

A often discussed area in various analogical reasoning theories is relations 
[1-4]. Relations between concepts, not just the representation of individual 
concepts, are the key in identifying analogy. Relational modelling in this 
paper emphasizes two aspects: higher-order relations and c1assification of 
semantic relations. 

The central idea in Gentner's structure-mapping theory [3] is the principle 
of systematicity, which states that analogy is a mapping of systems of 
relations govemed by higher-order relations with inferential import, rather 
than isolated predicates. Higher-order relations capture the relation of 
relations. 

Take the analogy between the structure of our solar system and the atom 
system as an example. Several relations between the sun and a planet include 
distanee, attraet, more-massive, revolve-around, and hotter-than. Together, 
distance, attract, more-massive, and revolve-around form a higher-order 
relation: 

CAUSE [distance(sun, planet), attract(sun, planet), more 
massive(sun, planet), revolve-around(planet, sun)] 

This higher-order relation can be mapped to the atom system. Some 
solutions for the solar system can then be mapped to the atom system. 
Isolated relations, such as the sun is hotter-than the planet, are discarded in 
the mapping phase. 

Next, the ability to readily compare relations means that relations are 
readily decomposed into more primitive elements [2]. People readily 



Intelligent Information Processing 277 

compare relations. This requires that relations can be decomposed into 
aspects in which they are the same and aspects in which they differ. Bejar et 
al. [1] presented a taxonomy of the semantic relations. Two of relation 
classes are closely related to object-oriented methods. They are class inclu­
sion (ls-A) and part-whole (Has-A). 

3. APPLICATION OF ANALOGY TO SOFTWARE REUSE 
AND KNOWLEDGE TRANSFER 

The idea of software reuse through analogy is not new [5,6]. In order to 
support the modelling of higher-order relations, the approach comprises 
object modelling, functional modelling, relational modelling, and dynamic 
modelling. Object, functional, and dynamic modelling are similar to object­
oriented methods. Specifically, the main artifacts adopted from those 
model1ing phases include entity relationship diagram, data flow diagram, 
functional descriptions, and a rule-based Petri net representation. The 
artifacts can be replaced with other similar representation schemes. 

Object Modelling. We start with a detailed comparison of the main 
components between the discrete and continuous manufacturing. The main 
purpose is to identify both similarities and differences. Both domains have 
similar material handling systems, whose primary operation is to move and 
store materials, parts, and products. In a continuous problem, the number of 
machines is fewer, but generally each machine is costly and performs more 
complex operations. Because the stations are more sophisticated in the 
continuous domain, planning for maintenance and equipment failure is more 
important than in the discrete domain. Another significant difference is the 
scheduling process due to the difference in product type and machine 
stations. As a result, simulation models needed for these two domains are 
also different. In the discrete domain, finite state machines and discrete event 
models are commonly used. In the continuous domain, difference equations 
or differential equations are needed. 

Based on above comparison and observations, and the object model for 
discrete manufacturing, an entity relationship diagram (ERD) for the 
continuous domain is derived. Based on the analysis, entities queue and 
sensor, and their associated relationships are removed for the target domain. 

Functional Modelling. The main artifact for the functional model is data 
flow diagrams (DFD). The DFD derived for the target share many similarities 
with that of the base. There are eight main processes in the base problem. 
Seven processes are derived from the discrete manufacturing and one 
(dealing with the queue) is removed. Five processes are repeated use without 
modifications. Two processes that deal with monitoring of product position is 



278 Chung-Horng Lung. G. T. Mackulak and J.E. Urban 

modified to deliver/remove materials and monitoring the product quality, 
respectively. 

Dynamic modelling. Dynamic modelling includes modelling of high-order 
relations. Dynamic models capture more detailed and more specific 
infonnation. Modelling of high er-order relations, on the other hand, conveys 
high-level cause-effect infonnation. Currently, there is no appropriate 
technique or fonnal mechanism for modelling higher-order relations, i.e., 
relations of relations. In traditional 00 modelling, we usually capture 
relations between classes or objects. Those types of relations represent low­
order relations. 

The idea is similar to the dynamic modelling in 00 modelling languages 
like UML. Features in UML to model behavioural diagrams, e.g., use case 
diagrarn, sequence diagrarn, and collaboration diagrarn, represent collection 
of relations, which is conceptually similar to the structure of relations 
proposed in analogical reasoning. However, many 00 applications focus on 
the solution space. To be effective, the problem space should be explicitly 
and clearly modelIed. Moreover, we also need to represent the problem space 
beyond objects and lower-order relations. Improvements in representation 
will facilitate the identification of similarities and differences between p(X) 
and p(Y) as stated in the introduction. 

Relational Modelling. Class inclusion (ls-A) and part-whole (Has-A) 
relations proposed in analogy are also widely used in 00 modelling. Bejar et 
al. [1] listed five members for the Is-A class and ten members for the Has-A 
class, wh ich might worth further exploring. 

For this study, part-whole relations are examined in more detail. For 
instance, an engine is part of a car. Specifically, car:engine is in the 
Object:Component category [1]. However, there are differences beyond the 
part-whole level. For the continuous manufacturing, there also exist part­
whole relations, but they fall into the Mass:Portion category as in the 
milk:skim milk example. The distinction between the two problems directs us 
to do further investigation. As a result, two different types of machine 
stations and control processes are identified for these two domains, albeit 
these two domains share a similar higher-order relation. 

Part-whole relationships are widely used in 00 modeling. There is 
confusion about the relationship [7]. In UML, composition is advocated as a 
special fonn of aggregation within which the parts are inseparable from the 
whole. The idea of separating composition from aggregation is similar to the 
classification of semantic relations. However, there exist more differences 
than just aggregation and composition. For example, car:engine and 
department:company are different even though they both share part-whole 
relationships. In the first case, car has one engine and only one. Other parts, 
e.g., transmission, are very different from engine. However, departments 



Intelligent Information Processing 279 

within a company share many similarities. In [1], both examples share part­
whole relationship, but car:engine is classified as Object:Component and 
company:department belongs to Collection:Member. 

4. CONCLUSION AND FUTURE DlRECTIONS 

This article presented an analogy-based approach to support software ruse 
and knowledge transfer. A case study was briefly presented. We highlighted 
lessons that we can leam from analogy. Some important lessons include 
modelling of high er-order relations, comparison of semantic relations, and 
00 modelling. Software engineering is a people- and knowledge-intensive 
business that would benefit from the reuse of past experience. Other relevant 
methods reported in analogical reasoning could also be applied to software 
engineering. 

5. REFERENCES 

1. 1.1. Bejar, R. Chaffin, S. Embretson, Cognitive and Psychometrie analysis of 
analogical problem solving, Springer-Verlag, 1991. 

2. R. Chaffin and D. Herrmann, "Relation Element Theory: a New Account ofthe 
Representation and Processing of Semantic Relations", Memory and Learning: The 
Ebbinghaus Centennial Con[., 1987, pp. 221-245. 

3. D. Gentner, "Structure-Mapping: a Theoretical Framework for Analogy", Cognitive 
Science, vol. 7, no. 2,1983, pp. 155-170. 

4. D. Hetman, ed., Analogical Reasoning, Kluwer Academic Publishers, 1988. 
5. C.-H. Lung and J.E. Urban, "An Expanded View ofDomain Modeling for Software 

Anatogy", Proc. of Int 'I Computer Software & Applications Con/. 1995, pp. 77-82. 
6. N.AM. Maiden and AG. Sutcliffe, "Requirements Engineering by Example: an 

Empirical Study", Proc. of IEEE Int 'I Symp. on Reqt. Eng., 1993, pp. 104-111. 
7. AL. Opdahl, et al. "Ontological Analysis ofWhole-Part Relationships in 00-

Models", Info and Software Technology, 43, 2001, pp. 387-399. 


	ANALOGY SUPPORTS FOR SOFTWARE REUSE AND KNOWLEDGE MANAGEMENT
	1. INTRODUCTION
	2. ANALOGICAL REASONING
	3. APPLICATION OF ANALOGY TO SOFTWARE REUSEAND KNOWLEDGE TRANSFER
	4. CONCLUSION AND FUTURE DlRECTIONS
	5. REFERENCES




