
Towards Design Verification and Validation at 
Multiple Levels of Abstraction· 
Correct Design of Distributed Production Control Systems 

Holger Giese, Martin Kardos, and Ulrich Nickel 
University of Paderbom, Germany 

Abstract: The specification of software for distributed production control systems is an 
error prone task. The ISILEIT project aims at the development of a seamless 
methodology for the integrated design. analysis and validation of such 
embedded systems. Suitable subsets of UML and SDL for the design of such 
systems are therefore identified in a first step. The paper then focuses on how 
we use a series of formal semantics of our design language to enable the 
effective evaluation of software designs by means of validation and 
verification. We will further explain how the use of multiple Abstract State 
Machine meta-models permits simulation and model checking at different 
levels of abstraction 

Key words: embedded system design. UML. SDL, formal semantics meta-models, ASM. 
formal verification. model-checking, validation. code generation 

1. INTRODUCTION 

In today's embedded systems, the fraction of hardware, which realizes the 
functionality of the system is decreasing and replaced by decentralized and 
complex software systems. Modeling approaches and software development 
processes and techniques for the production of correct, stable and flexible 
adjustable distributed embedded software systems are thus required. 
Integrating software development into the overall system engineering 
process is one step. Moreover, analysis techniques, that fulfill the additional 
requirements system engineering brings into the game, have to be embedded. 

• This work has been supported by the German Research Foundation (SPPlO64, GA 45617). 

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2002
B. Kleinjohann et al. (eds.), Design and Analysis of Distributed Embedded Systems

10.1007/978-0-387-35599-3_29

http://dx.doi.org/10.1007/978-0-387-35599-3_29


72 Bolger Giese, Martin Kardos, and Ulrich Nickel 

The ISll..EIT project [1] aims at the development of a seamless methodology 
for the integrated design, analysis and validation of distributed embedded 
production control systems. Its focus is the (re-)use of accepted techniques 
which should be improved with respect to formal analysis, simulation and 
automatic code generation. 

Figure 1. Construction and evaluation during design 

The methodology defined in the ISILEIT project consists of several 
consecutive design steps. Together, they form a consistent development 
process that covers all aspects of system design, i.e. analysis, specification, 
design and implementation (see partially Figure 1). At the beginning of 
every system design process, a core system specification has to be 
developed. This specification then further serves as an input to the design 
process for the different system elements including the software. In the 
overall process, effects backwards are somehow required to be minimal 
(dashed arrows), because changes in hardware would result in high costs. In 
contrast, in the later phases of the software design and implementation, we 
have a more iterative process where construction and evaluation alternates to 
ensure that the specification is met (see Figure 1). 

To describe embedded system software during the construction phase 
with UML [2] and SDL [3], we integrated SDL block diagrams, UML 
statecharts and collaboration diagrams [4] to form an executable 
specification language that allows us to specify reactive behaviour as well as 
complex application specific object structures. 

The evaluation of a particular possible incomplete software model 
against the requirements imposed on its behaviour is also part of the design. 
A number of informal techniques, such as reviews or walkthroughs can be 
used. However, informal approaches often fail to identify the 
misconceptions related to the complex interplay of multiple processes and 
timing effects present in distributed embedded systems. Therefore, in our 
approach also the formal system evaluation is supported in form of (1) 
verification by means of model-checking and (2) validation by means of 



Towards Design Verification and Validation ... 73 

simulation or testing. We adapted Abstract State Machine (ASM) [5] as a 
formalism that helps us to tailor the system models to any given or desired 
level of abstraction by means of different meta-models. This allows us to 
manipulate the designed system state-space and its size. The validation in 
our approach is based on this series of formal semantics with different levels 
of abstraction or running the generated executable code. For the automatic 
formal verification of a designed system model, a transformation is used, 
that generates a corresponding low-level model-checking description based 
on its ASM model and it's meta-model. Such a low-level model description 
can be model-checked and the results are propagated back to the design 
view. 

In Section 2 the design language and modelling activities during the 
construction are described. The support for multiple levels of abstraction and 
the verification are then considered in Section 3. In Section 4 the validation 
of a design at different abstraction levels and the implementation model are 
presented. The paper closes with an overview about related work in Section 
5 and a conclusion and outlook on future work (Section 6). 

2. CONSTRUCTION 

The major emphasis of the ISILEIT project lies on (re-)using existing 
techniques, which are used by engineers in industry for the specification of 
the control software of a material flow system (MFS). Thus, during the first 
phase of the project, we analysed our case study to identify which 
specification technique is most suitable for which part of the system 
specification with respect to the domain of production control systems. 
Figure 2 shows the schematic overview of the regarded system. 

Q Processor Nodos 

- Data links 51 Sioppe:r 

c> Travel DIrection M Motor 

.. Slgnal OIrec1lon S Sensor 

Figure 2. Schematic overview of the material flow system (MFS) 



74 Holger Giese, Martin Kardos, and Ulrich Nickel 

The material flow system, which connects several manual working 
stations and robots, is track based. The MFS is controlled by processor 
nodes, which are connected by a field bus. Every node is responsible for a 
part of this distributed system. In Figure 2, a processor node is depicted, 
which controls a gate. The sensors and actors are connected with the node by 
the process interface. 

The here described system can be seen as a system of asynchronously 
communicating automata. Therefore, we decided to take SDL block 
diagrams to specify the overall static communication structure. SDL is a 
design language, which is well known from the area of telecommunication 
engineering. It has a well defined formal semantics, which captures the 
asynchronous communication aspects of our system [6]. We integrated parts 
of the available ASM specification of SDL into the formal semantics of our 
design language. Figure 3 shows the result of the first step. It is a simple 
SDL block diagram showing the system as a network of logical control 
nodes - processes running in parallel and communicating via signal 
channels. 

Figure 3. SDL block diagram of the 
sample factory 

Figure 4. Simple statechart describing the 
shuttle control 

We derive the initial (UML) class diagram of the desired system. At this, 
each process(type) identified in the SDL block diagram generates a class in 
the class diagram. In addition, each signal received by a process in an SDL 
block diagram creates a signal method in the corresponding class. In the next 
step, we can now refine this class diagram by adding further classes, which 
the active classes use to implement their functionality. 

SDL block diagrams (and the derived class diagrams) specify the number 
of signals which are understood by the different processes. Now, we have to 
define how each process will react on these signals. Thus, for each process 



Towards Design Verification and Validation ... 75 

class, one has to provide a statechart modelling the general process 
behaviour. These statecharts should at least cover all signals that are 
understood by/declared in the corresponding process class. In the 
engineering field, usually SDL process diagrams are used for this purpose. 
However, we prefer statecharts here, due to the additional expressive power 
of nested states and history states. Following this idea, we assign to every 
active class (process) one UML statechart that describes its behaviour. 
Figure 4 shows the statechart that specifies the behaviour of the process (or 
active class) shuttle. 

In current practice, when the detailed behaviour of the system needs to be 
specified, pseudo-code or statements of the target language are used. To 
avoid this in our approach, we decided to use a well defined subset of 
activity and collaboration diagrams which are combined to so called story 
diagrams. We use this visual programming language for the specification of 
do, entry, exit, and transition actions within the statecharts. 

To conclude, we integrate SDL block diagrams, statecharts and 
collaboration diagrams to form an executable design language that allows us 
to specify reactive behaviour as well as complex application specific object­
structures. A more detailed description of the presented methodology can be 
found in [4]. 

3. VERIFICATION 

ASM serves in our approach as method that integrates all modelling 
languages combined in our graphical modelling language at one common 
semantic base. In other words, it models the semantics of this language. In 
our approach, we model distributed control systems with possibly complex 
behaviours that imply large system state spaces. Therefore, different levels 
of abstraction can be achieved using mUltiple ASM meta-models and only a 
single ASM encoding of the concrete system model (see Figure 5). The 
ASM meta-models are operating as interpreters of the specific ASM 
encoding of the concrete system model and automatically abstract from not 
required details. 

The verification of a designed system model is based on the generation of 
an ASM encoding of the system model. This is done by filling in the 
unspecified data structure (domains and functions) of an ASM meta-model. 
For example, the sets of states, transitions and events of the statechart from 
Figure 4 form the data structure that will be filled in ASM meta-model I. 
The required complete ASM model is derived by combining an ASM meta­
model with the specific ASM encoding of a concrete system. This complete 
ASM model is further fed into a transformation process that generates a 
corresponding low-level model-checking description, e.g., a description in a 



76 Holger Giese, Martin Kardos, and Ulrich Nickel 

specific model-checker language [7] or a particular BDD representation. 
Finally, this low-level model description can be model-checked and the 
results can be propagated back to the system design. 

Figure 5. Constructing the ASM model 

In the most abstract view (meta-model I), we consider the processes just 
in a black box view. We abstract from the concrete communication behavior 
assuming only the non deterministic occurrence of events that are accepted 
by the process, i.e. the rule selectEvent in Figure 6 left-hand-side non­
deterministically choose one element from the set of all events acceptable by 
the process (cf. pessimistic abstraction [8]). Also the state representation 
together with actions and guards are ignored in order to hide any 
implementation details. Therefore, the guard evaluation rule evalGuard 
chooses non-deterministically between true or false and action evaluation 
rule executeAction executes just an empty rule skip. Thus, the result is an 
ASM meta-model describing the semantics of a statechart ignoring all 
implementation details related to events, guards and actions. 

I 

II evaluate specified guard 
evalGuard(g as Guard) as Boolean 
= choose v in {true, false} 

II select event for dispatching 
II chose any possible one 
selectEvent() as Event = 
choose e in acceptable_events 

II 
I 
ill evaluate specified guard 
ievalGuard(g as Guard) as Boolean 
1= choose v in {true, false} 
I 

111 select event for dispatching 
!II take first event (FIFO queue) 
!selectEvent(a as Agent) as Event 
!a.events : = tail(a.events) 
!return a . events(O) 
I . II execute specified action 

executeAction(a as Action) = skip!11 execute specified action 
!executeAction(a as Action) skip 
I 

Figure 6. Sample of abstractions in ASM meta-model I and II 

It is obvious that this level is sometimes too abstract and restricts the set 
of verifiable properties to a small subset working just without any bounds to 
implementation (e.g., the object hierarchy), but it serves as a good base for 



Towards Design Verification and Validation ... 77 

the further refinement going down from this very high-level ASM meta­
model to more detailed ones. This abstract view can be step by step refined 
taking into account more and more details of the implementation: variables, 
the object structure etc. 

In Figure 6 right-hand-side the selectEvent rule of the refined meta­
model II is presented. In contrast to the version of the meta-model I, this 
time the concrete event queue is contained in the model and therefore the 
statechart is evaluated in a more detailed context. The rule extracts the first 
element e of the event queue events and returns it. Note that the selectEvent 
rule of the meta-model II is indeed a refinement of that one of the meta­
model I, because for any event e stored as first element in the event queue 
events will hold e E acceptab1cevents. This refinement only holds w.r.t. 
safety properties, because the abstraction does not include the question 
whether an event occurs at all. 

The rather abstract view of each component provided by the meta-model 
I occurs during the system design, when the internal component behavior is 
designed. For the overall architecture and coordination between shuttles and 
the rest of the system at least the possible event processing has to be added. 
While in the first case the supported abstraction levels permit to verify each 
object independently as an autonomous process reacting to the stimuli of its 
environment, the more detailed view requires that the process for a 
reasonable subset of all objects are embedded into a network of 
interconnected, communicating processes. Therefore, the processes will be 
mapped to a set of distributed ASM agents which are interconnected (see 
Agent parameter a of selectEvent in Figure 6 right-hand-side). At the more 
detailed levels the communication is therefore refined by replacing the non­
deterministic occurrences of event by explicit managed event queues. In the 
end, we refine the base ASM meta-model by taking into account all 
implementation details, such as objects and their hierarchy, action execution 
semantics, guard evaluation against object attributes and their values. All 
these features extend our basic ASM, i.e. its data structure by defining new 
ASM domains and functions and its operation set in terms of new ASM rule 
definitions. 

Other ASM meta-models may take other details into account that cover 
the dynamic semantics of statecharts and the non active local 00 data 
structures and would therefore allow verifying properties which depend on 
the particular objects and their attribute values. Also, the communication can 
be refined by additional ASM agents that cover the more sophisticated 
behavior of communication channels. Note, we will adapt parts of the 
already existing ASM semantics for SDL [6]. The resulting lattice of 
different abstraction levels w.r.t. refinement permits to verify specific 
properties at an appropriate abstraction level. These different views also 



78 Holger Giese, Martin Kardos, and Ulrich Nickel 

reflect the transition from an architectural design (coarse-grain design) to a 
fine-grain-design and the details of an implementation. 

4. VALIDATION 

The design phase is characterized as the alternation of the construction 
and evaluation activities. To allow the designer to evaluate his or her system 
model in practice, besides verification validation in form of simulation and 
testing is common. To also support the evaluation of abstract and incomplete 
designs, we can use the same lattice of abstractions built by our ASM meta­
models. Simulation of our ASM generated models is possible, because we 
use the AsmL [9] specification language, which supports the transformation 
of AsmL specifications into C++ code. Therefore, the executable ASM 
models permit the designer to validate his or her intermediate designs using 
the same abstraction levels presented for the verification. 

When the final system should be simulated including all implementation 
details, it is however not useful to use a full ASM formalization with all its 
inherent overhead. Instead, the execution and debugging of the generated 
code is more appropriate (cf. [10]). Such an approach closes the gap between 
the simulation system (interpretation) and the software running on the real 
system following the "test what you run, run what you test" philosophy. Our 
attempt is to use the same code both, for the simulation as well as for the 
running system. So, the generated code has to be free from any kind of 
debug information and could be optimised for special issues, i.e. speed or 
space optimisations. To observe the running system, we developed a 
graphical debugging tool called 'Dobs' (Dynamic Object Browsing System). 
Dobs is able to display the internal object structure of a running Java virtual 
machine by various graphical representations [11]. 

5. RELATED WORK 

The verification of software by means of model-checking is usually only 
feasible, when instead of the full system model of the software system an 
abstraction with reasonable state space size is considered. This process 
usually happens in an additional abstraction step that precedes the 
application of model-checking tools (cf. [12]). Therefore, experimenting 
with multiple abstraction levels to identify a one, which provides the 
required feasible model containing the relevant properties, is rather 
cumbersome without tool support. 

Several projects exist, that deal with SDL or UML based design and 
verification by means of model-checking (e.g., [13][14][15][16][17]). For 



Towards Design Verification and Validation ... 79 

example, an approach dealing with model-checking SDL specifications can 
be found in [13]. It also transforms the SOL code into an intermediate 
representation which can be further verified using a model-checker. 
However, these approaches, in contrast to the presented work, support only a 
single abstraction level. 

Concerning simulation as the validation method, in contrast to other tools 
and simulation environments, e.g. STATEMATE [18], PROGRES [19], 
which simulate the specified model like an interpreter, our approach is to 
generate source code out of the specification and observe the running 
system. 

In commercial sphere, there are already some tools available that allow 
the user to check his or her UML or SOL specification on a very high 
abstraction level. The case tool Telelogic TAU [20] is an example for the 
practical use of different abstraction levels for the validation of SOL 
specifications. On the highest abstraction level for example, only atomic 
transitions between the states of a process diagram are considered. The 
validation can then be refined by considering more details, like intermediate 
states or signals that take an undefined amount of time for their transmission. 
However, the focus of TAU lies on the verification of SOL specifications 
with limited possibilities concerning complex object structures and their 
modification. 

6. CONCLUSION AND FUTURE WORK 

In this paper, we presented an approach, of how to construct and evaluate 
distributed and embedded systems. The construction of the system is 
realized by using a well defined design language, which employs a subset of 
UML and SOL. The presented support for multiple levels of abstractions by 
means of different ASM meta-models enables the validation and verification 
during the ongoing design. Therefore, it permits analysis of even incomplete 
models of complex distributed embedded system software and thus helps to 
cope with the state-space explosion problem. The presented approach is 
further embedded into the overall design methodology developed within the 
ISILEIT projectfor distributed production control systems. 

REFERENCES 

[1] Integrative Specification of Distributed Control Systems for the Flexible Automated 
Manufacturing (lSILEIT), German Research Foundation (DFG) program "integrative 
specification of engineering applications".: http://www.upb.delcS/isileitJ 



80 Holger Giese, Martin Kardos, and Ulrich Nickel 

[2] Booch, G., Rumbaugh, 1, Jacobson, I.: The Unified Modeling Language User Guide. 
Addison-Wesley, Reading, Massachusetts, 1999. 

[3] ITU-T Recommendation Z.lOO, Specification and Description Language (SDL), 
International Telecommunication Union (ITU), Geneva, 1994 + Addendum 1996. 

[4] H.J. KOhler, U. Nickel, J. Niere, and A. ZUndorf. Integrating UML Diagrams for Pro­
duction Control Systems. In Proc. of the 22th Int. Conf. on Software Engineering 
(ICSE), Limerick, Irland. ACM Press, 2000. 

[5] Y. Gurevich: Evolving Algebras 1993: Lipari Guide; E. BOrger (Eds.): Specification and 
Validation Methods; Oxford University Press, 1995. 

[6] R. Eschbach, U. GIl1sser, R. Gotzhein, M. von LOwis and A. Prinz: Formal Definition of 
SDL-2000 - Compiling and Running SDL Specifications as ASM Models. Journal of 
Universal Computer Science (lUCS), October 2001. 

[7] G. del Castillo and K. Winter: Model checking support for the ASM high-level language. 
In S. Graf and M. Schwartzbach, editors, Proc. on 6th Int. Conf. TACAS 2000, volume 
1785 ofLNCS, pages 331-346, 2000. 

[8] H. Giese, M. Kardos and U. Nickel: Integrating Verification in a Design Process for 
Distributed Production Control Systems. Second International Workshop on Integration 
of Specification Techniques for Applications in Engineering (INT 2002). Grenoble, 
France, April 2002. (to appear) 

[9] http://www.research.microsoft.comlfse/AsmUdefault.html 
[10] James D. Arthur, Markus K. G"oner, Kelly I. Hayhurst, and C. Michael Holloway. 

Evaluating the Effectiveness of Independent Verification and Validation. IEEE 
Computer, 32(10):79-83, October 1999. 

[11] U. Nickel and 1 Niere, 'Modelling and Simulation of a Material Flow System', in Proc. 
of Workshop 'Modellierung' (Mod), Bad Lippspringe, Germany, Gesellschaft fUr 
Informatik, 2001. 

[12] William Chan, Richard J. Anderson, Paul Beame, Steve Bums, Francesmary Modugno, 
David Notkin, and Jon D. Reese. Model Checking Large Software Specifications. IEEE 
Transactions on Software Engineering, 24(7):498-520, 1998. 

[13] M. Bozga, J.CI. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, J. Sifakis. 
IF: An Intermediate Representation for SDL and its Applications. Proceedings of SDL­
FORUM 1999 (Montreal, Canada) June 1999 .. 

[14] Gihwon Kwon. Rewrite Rules and Operational Semantics for Model Checking UML 
Statecharts. In Andy Evans, Stuart Kent, and Bran Selic, editors, Proceedings of the third 
International Conference on the Unified Modeling Language (UML 2000), York, UK, 
volume 1939, page 528ff. Springer Verlag, October 2000. 

[15] Johan Lilius and Ivan Porres Paltor. vUML: a Tool for Verifying UML Models. In 
Proceedings of the 14th IEEE International Conference on Automated Software 
Engineering, Cocoa Beach, Florida, USA, 1999. 

[16] Prasanta Bose. Automated Translation of UML Models of Architectures for Verification 
and Simulation Using SPIN. In Proceedings of the 14th IEEE International Conference 
on Automated Software Engineering, Cocoa Beach, Florida, USA, 1999. 

[17] http://www-omega.imag.fr/. 
[18] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Tauring, 

and M. Trakhtenbrot. STATEMATE: A Working Environment for the Development of 
Complex Reactive Systems, IEEE Trans. Soft. Eng., 16, 403-414, 1990, Paderborn, 
1999. 

[19] A. SchUrr, A. 1. Winter, A. Zundorf. Graph grammar engineering with PROGRES. In W. 
Schlifer, Editor, Software Engineering - ESEC '95, LNCS 989, Springer Verlag, 1995. 

[20] Telelogic Tau SDL Suite: http://www.telelogic.com 


	Towards Design Verification and Validation atMultiple Levels of Abstraction·
	1. INTRODUCTION
	2. CONSTRUCTION
	3. VERIFICATION
	4. VALIDATION
	5. RELATED WORK
	6. CONCLUSION AND FUTURE WORK
	REFERENCES




