
How to integrate Webservices in Embedded System 
Design? 

Achim Rettberg, Wolfgang Thronicke 
University of Paderborn & Siemens Business Services I C-LAB. 
Fuerstenallee 11. D-33102 Paderborn.Germany 
Tel:. +495251 606110. Fax: + 495251 606065. 
Email: achim.rettberg@c-lab.de.wolfgang.thronicke@c-Iab.de 

Abstract: The structure of Internet applications and scenarios is evolving rapidly. New 
software architectures and formats for transfer of data and site-spanning 
interoperability are emerging and reshaping the realm of web-centered 
computing . These changes are having repercussions that will change the 
established methodologies of design processes and business-to-business 
applications. Therefore. these effects on the domain of the electronic design 
automation (EDA) have to be considered and their validity shown.. In this 
paper we present an approach to exploit webservices technology in the field of 
embedded system design. 

Key words: webservices, embedded system design. collaborative design 

1. INTRODUCTION 

In general the structure of Internet applications is changing rapidly. New 
information technologies and standards are emerging and - together with 
new infrastructures (high speed internet, wireless applications, UMTS) -
design processes and business-to-business transactions are reshaping. 

In addition to Internet technology that has been a true enabler for 
distributed technologies and applications the development in this area is 
shifting towards service-oriented structures. This falls into line with the 
evolution of programming paradigms: Object-orientation denotes the view of 
a program during design and execution as a collection of objects that send 
messages to each other invoking certain qualified operations. Deliberate 

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2002
B. Kleinjohann et al. (eds.), Design and Analysis of Distributed Embedded Systems

10.1007/978-0-387-35599-3_29

http://dx.doi.org/10.1007/978-0-387-35599-3_29


268 Achim Rettberg, Wolfgang Thronicke 

design of software-systems seemed to become feasible and several 
methodologies have proven their value in this field, like UML-based 
techniques [12], [13]. However, the notation had to be augmented to cope 
with describing distributed systems effectively. Using distributed objects 
complex networked applications with high interoperability could be 
specified. On the one side, definition and implementation on object level is 
still the adequate design style for tightly coupled components, on the other 
side with respect to Internet scenarios the concept of interacting services is 
now the state-of-the-art specification method. This service-based 
programming paradigm is backed by new Internet protocols and languages 
like SOAP [14] and WSDL [15] which serve exactly the purpose of defining 
and describing services and their intercommunications. New applications or 
services can rely on services from other service-providers. Since the client of 
a service is not defined at the time the service is provided the deployment 
and publication are a most important part during its life cycle. With UDDI 
[16] a "dictionary" with a standardized access mechanism has been defined 
to alleviate this problem. 

Since issues like time-to-market and distributed development and design 
are common factors in the affected processes, this progress affects the 
traditional tool-centered engineering domains as well. Moreover the 
sophistication of tools reaches a new level as the design technology for new 
products evolves rapidly. So they present valuable assets for a company by 
forming an important part of their intellectual property (IP). 

Using the service-centered approach such companies have the chance to 
offer their knowledge without the need to transfer programs or algorithms. 
For the user of such services one important question is how to integrate such 
a service into their work environment. Usually integration focuses on the 
principle of coupling existing applications or components tightly together to 
ensure smooth and reliable operation. The resulting (and available) 
integration environments use therefore proprietary integration mechanisms 
on top of existing base-technologies like CORBA [18], JAVA [19], and 
JA V ABEANS [20] or similar middleware components. In fact, CORBA­
Services for instance realize conceptually the same idea as webservices with 
WSDL. They define a common interface that can be accessed from different 
applications. The important difference of this approach is that webservices 
are build on top of a foundation that is centered on the Internet platform. 
Which means the common denominator for running such services is a 
standard webserver technology (or any kind of server implementation 
supporting Internet protocols), TCPIIP networks and the HTIP protocol 
accompanied by the flexible XML metaformat. Thus integration technology 
will change and hopefully become as the usual way of accessing content in 
the Internet [17]. The usage of this technology for embedded system design 



How to integrate Webservices in Embedded System Design? 269 

is of high interest, because on the one side it offers more freedom for the 
user and on the other side new business concepts or licensing models for the 
tool vendor. 

This paper is organized as follows. First we describe the web-based 
integration scenario. Then, we present a collaborative design environment 
for embedded system design, called PARADISE [2]. After that, we describe 
the combination of the web-based integration scenario with the existing 
PARADISE environment. We conclude with a discussion of the presented 
approach. 

2. THE WEB-BASED INTEGRATION SCENARIO 

For integration aspects, webservices can provide a suitable solution to 
overcome certain critical issues in exploiting remote facilities: Description 
and protocols. With XML-based formats like WSDL and SOAP, that 
additionally defines the messages which are used to access and control 
remote services, a common infrastructure is provided. 

Popular pre-web integration methodologies have been focusing on 
combining tools and software components by using enabling technologies. 
These have supplied the inter-tool "glue" which allowed assembling a new 
solution from these parts and supports reuse in different scenarios. The new 
scenario using a web-service is shown in Figure 1: The main difference 
concerning the integration method is that there is no tight coupling of the 
integrated service in the client's process. The integration efforts are usually 
taken at the site of the provider of the webservice. The provider registers his 
service at a webservice directory where it can be queried using a 
standardized format. As a result the client retrieves the description and 
address of the service and can locally integrate the webservice interface. 
Using this two-step approach of dynamically integration has different 
advantages: 

• The provider can move the implementation of the webservice to 
another server, which will be reflected in the directory. So the 
client process adjusts automatically to the new location (address). 

• For reliable services the provider can supply different instances 
of the webservice at different sites, so that the others will 
compensate the failure of one server. 

• Different providers may offer the same service at different costs. 
So the client can select dynamically the most cost-effective one. 



270 Achim Rettberg, Wolfgang Thronicke 

There are certain advantages that appear during the design phase of an 
application: The designer of a new client process can search for needed 
services conveniently in the directory and create highly distributed scenarios 
without configuring network structures or determining concrete hosts. Since 
WSDL is standardized, effective user-friendly integration assistants will 
simplify the whole integration process on the implementation side so that 
more weight can be laid on conceptual issues. The XML-based webservice 
technology is well supported from major IT -providers with sets of tools, so it 
can be assumed that this standard will have a lasting life cycle in the fast 
changing world of applications and technology trends. 

Wor!<process using a webservlce 

O W"' ... """ 
erabler 

Figure 1. Integrating a webservice 

However, ordinary integration technologies still have their merits. 
Because webservices represent a weak coupling and require a more dynamic 
processing for the protocols a certain overhead is generated which slows 
down the interaction. Especially "popular" webservices may have long 
latencies that reflect the same behavior as visiting a heavy-loaded 
webservers. In the intranet the common integration techniques are to be 
preferred because the location of tools and applications under direct 
administration. Additionally this technique of integration allows an efficient 
adaptation to the clients requirements, whereas changing a webservice 
depends on the cooperation of the service provider. Usually there are 
different clients with contradicting requirements which are not easy to meet 
by the provider. 



How to integrate Webservices in Embedded System Design? 271 

3. THE PARADISE APPROACH 

The PARADISE design environment is implemented with the ASTAI(R) 
tool [11] that has been developed at C-LAB [2], [3], [4]. This design 
environment focuses on the design of embedded hardware/software systems. 
The design complexity of embedded systems combined with a very tight 
time-to-market window has revolutionized today's embedded system design 
process. Several interacting design dimensions to implement parallelism, 
distribution over different locations, hard real-time requirements [1] and the 
collaboration have to be addressed by a design environment. Furthermore the 
usage of IP components is important for embedded system designs [10]. 

Consequently, the modem, structured design process has to deal with 
heterogeneous requirements and restrictions. Therefore, the collaborative 
work is very important for efficient embedded system design. That mean, 
hardware and software designers and system architects must synchronize 
their work progress to optimize and debug a system in joint effort. The 
PARADISE environment distinguishes between these different design 
domains (see Figure 2). Each design domain reflects a core competency in 
the design of an embedded system. Each design domain is structured by 
levels and views. For example the HW -Synthesis design domain corresponds 
to the structuring of Gajski Y-Chart [7], [8]. PARADISE integrates this 
databased design methodology with a variety of tools that are suitable for 
certain design steps. For the fIrst time, the distribution of tools, data and 
developers over different network domains is possible. This means that any 
developer at any location can launch a tool from another location. The 
ASTAI(R) software ensures consistency and the protection of private data. 
All design steps can be monitored and controlled by means of a design flow. 
Developers with access to local or remote locations can incorporate existing 
design data in the design flow. Therefore, system designs can then be carried 
out with the aid of the bottom-up or top-down method. Besides the 
integration of tools in a workflow, ASTAI(R) supports the distribution and 
generation of a design data. Also the update of design data is well supported. 
Tools within a workflow for which input data does not exists or is invalid yet 
are automatically blocked until the data is available and valid. Newly 
generated data is initially classifIed as local data until developers release it 
explicitly. Releasing the data effects all levels within the hierarchical design 
flow to be notifIed without delay. Developers on these other levels can then 
accept or reject this data. This protocol is managed by ASTAI(R) by using 
the Internet. Therefore, the location at which a design data, tool or design 
flow is stored or installed is irrelevant. A complete overview of the installed 
tools within PARADISE can be found in [2], [5] and [6]. 



272 Achim Rettberg, Wolfgang Thronicke 

To show the practicability of the PARADISE design environment two 
design scenarios are shortly described. The first example is the design of a 
traffic light controller and the second one is the extension of mobile robot. 

The traffic light controller is specified on a very high level of abstraction 
using Predicatetrransition-Nets (Prlf-Nets). This formalism is supported 
within the PARADISE design environment by the 'System Engineering and 
Animation' tool SEA. The tool provides a homogeneous model based on 
Prlf -Nets. To analyze the worst-case execution time (WCET) of a single 
task, we use the C-LAB Hard Real-Time System (CHaRy) [1]. This is a 
software synthesis system for distributed (parallel) periodic hard real-time 
applications. The application is described on a high level (e.g. using SEA), 
whereas the implementation is left to CHaRy. CHaRy analyzed the WCET 
for each task of the task-graph. The annotated task-graph is read into the tool 
SSEA which was developed jointly at the ETH Zurich and the University of 
Paderbom for the purpose of solving the generalized hardwarelsoftware­
partitioning problem. This includes also the design space exploration of 
multi-objective cost functions for the system-level synthesis of embedded 
systems. For a detailed description of the traffic light controller design see 
[3]. This design scenario shows the modeling of an embedded system on a 
high-abstraction level by using PrTINets and how to analyze the model with 
the respect of mapping model tasks to functional units of a given target 
architecture. 

The second design scenario is the extension of a small mobile robot 
called Pathfinder. This mobile robot is an experimental platform and is as 
simple as possible in order to keep the focus on the methodological issues 
and not on the vehicle itself. The Pathfinder until now is fully operational, 
see [21]. The software has been manually coded and implemented on the 
Pathfinder. The architecture is component aware, i.e. is prepared to integrate 
new modules that add functionality. For demonstration of our IP-based 
design approach we extend our example in order to establish an advanced 
interaction facility of the vehicle with it's environment, especially persons 
being around there. Thus we would like to communicate with people around 
the Pathfinder, i.e. the robot is equipped with a microphone and speakers. 
Any solution that will fit the needs has to be aware of the existing system 
architecture and it's real-time characteristics. The time-critical parts of this 
new functionality are speech compression and decompression tasks. 
Therefore, the tools of the PARADISE design environment are used to 
develop or integrate existing solutions in the Pathfinder architecture. For the 
extension of the architecture we use the modeling tool SEA. CHaRy 
analyzed the WCET for the different software tasks. Within PARADISE we 
use a generalized approach to HW/SW-partitioning problem which has been 
implemented by the previously mentioned tool SSEA. The tool TEReCS 



How to integrate Webservices in Embedded System Design? 273 

decides which of the developed or existing solutions really can be combined, 
i.e. whether their interfaces are compatible. For a detailed description of the 
scenario see [10]. 

At this time four partners participate in the PARADISE design 
environment. These are namely the C-LAB, the University of Paderborn 
with two different departments and the University of California at Irvine. 
The main server is located in the C-LAB. All other partners run clients and 
small servers to distribute the appropriated tool in the environment over the 
Internet. 

SW-Synthesls 

Modelling 

Analysis 

HW­
Synthesis 

Figure 2.PARADISE design domains 

4. SYSTEM DESIGN WITH WEBSERVICES 

Surely, the presented realization of the PARADISE design environment 
is a good structuring of today's embedded system design but it lacks by 
using new approaches like webservices. Therefore, the extension of 
PARADISE with web services is a solution to integrate this new trend in the 
electronic system design area. Clearly, it is not necessary to use webservices 
for in-house realization of a design environment, because AST AIR(R) offers 
all necessary services for integration and workflow implementation for in­
house solutions. Additionally AST AI(R) takes full advantage of the Intranet 
infrastructure leading to a very efficient integration of tools. Web services are 
only necessary for collaborative work between different departments on 
different locations. 

In our approach we interpreted a tool as a webservice. Consequently in 
the area of embedded system design, especially for our PARADISE 
scenario, each tool from an EDA vendor could be registered in the 
webservice directory (see Figure 1). Through this directory any client can 
transparently select and access the tools required for a certain design-task. 



274 Achim Rettberg, Wolfgang Thronicke 

Furthermore, the designs or workflows can also be interpreted as 
webservices and be registered in the webservice directory. This mechanism 
has the following advantages for the user of such a system: 

• Webservices are in fact a standardized integration approach. 
They are not limited to one environment, but can be integrated 
into every software-system that is webservice-aware. 

• Webservices can be built from other webservices. This means the 
integration of tools as webservices into complex design flows 
which can be republished as a new high-level webservice. 
Through this approach a client could easily access a complete 
design methodology. 

• The directory can act like a marketplace enabling a client to 
choose from different solutions the most suitable one for his 
design problems. 

Consequently, the combination of PARADISE by the webservice 
scenario, described in section 2 offers a really new design method for 
embedded systems. 

Currently ASTAI(R) is expanded by a webservice integration module. 
This module will provide the following functionality: 

• Any "regular" tool can be encapsulated by the server-side 
module and thus becomes accessible as a webservice. Therefore 
a standard set of tool-control functions is provided by the tool­
webservice module. Using this part conceptually any web 
service-aware program or tool could use the integrated tool. On 
the tool site, there is not necessary to install any ASTAI(R) 
specific software components. 

• The integration module on the ASTAI(R) side is embedded into 
ASTAI(R)'s tool encapsulation specification and therefore 
virtually undistinguishable from other tools from the AST AI(R) 
point of view. 

• The actual configuration for a tool is stored in a tool description 
file using XML. This definition serves two purposes: First it is 
used by the tool-webservice module to configure the actual 
calling parameters of the webservice. Additionally a query of 
these tool properties is possible through the webservice. Second 
the tool description is used to create an appropriate webservice 
stub for AST AI(R) in order to make the tools properties visible 
in workflows, especially in the workflow editor. 



How to integrate Webservices in Embedded System Design? 275 

On the client side within the PARADISE environment it is not necessary 
to deploy AST AI(R) itself. Only the integration module for AST AI(R) has to 
be installed which can be interpreted as a webservice adapter. 

5. CONCLUSION AND FUTURE WORK 

The notion of "webservices" has introduced a very promising new 
integration approach, fully based on open Internet standards. This alliance 
including structured portable data formats addresses both data and service 
integration issues. In combination with already proven environments, this 
technology can leverage the power of distributed scenarios in combination 
with a standardized integration approach. More important "providing a 
service" may offer a greater market-potential than "supplying a tool" in 
highly cooperative design environments. 

This paper introduces webservices as means to integrate remote tools in 
a workflow-driven design process for embedded systems. Thus alleviating 
certain aspects of tool access and extending the area of integration beyond a 
single environment. 

However, the implementation and toolkit support of webservices is yet 
under development and is estimated to become commercially usable in 2002. 
Our solutions will provide us with basic components start using this 
technology in the design domain. 

REFERENCES 

[1] Peter Altenbernd: "Timing Analysis, Scheduling, and Allocation of Periodic 
Hard Real-Time Tasks" Dissertation, Paderborn, 1996 

[2] W. Hardt, A. Rettberg, B. Kleinjohann. "The PARADISE design environment", 
1st Embedded System Conference, Auckland (New Zealand), 1999 

[3] A. Rettberg, W. Hardt, 1. Teich, M. Bednara "Automated Design Space 
Exploration on System Level for Embedded Systems", Ninth Annual 
International HDL Conference and Exhibition, San Jose (USA), March 2000 

[4] A. Rettberg, F. Rammig, A. Gerstlauer, D.D. Gajski, W. Hardt, B. Kleinjohann. 
"The Specification Language SpecC within the PARADISE Design 
Environment", in Proceedings of the Distributed and Parallel Embedded 
Systems Workshop (DIPES 2000), Paderborn, October 2000 

[5] A. Rettberg, W. Thronicke. " "Collaborative Design for Embedded 
Hardware/Software Components with the Distributed PARADISE 
Environment", Proceedings of the 5th World Multi-Conference on 
Systemics, Cybernetics and Informatics (SCI 2001), Orlando, FL (USA), July 
2001 



276 Achim Rettberg, Wolfgang Thronicke 

[6] A. Rettberg, W. Thronicke, "The Distributed PARADISE Environment for 
Collaborative Design of Embedded Hardware Components", Proceedings of the 
8th European Concurrent Engineering Conference (ECEC 2001), Valencia 
(Spain), April 2001 

[7] Franz 1. Rarnmig. "Systematischer Entwurf digitaler Systeme". B. G. Teubner, 
Stuttgart, 1989 

[8] D.D. Gajski, "Silicon Compilation", Addison Wesley Publishing Company, 
1988 

[9] R. Ernst, "Codesign of Embedded Systems: Status and Trends", Journal of IEEE 
Design & Test of Computers, pp. 45-54, April-June 1998 

[10] W. Hardt, F. 1. Rammig, C. B()ke, C. Ditze, 1. Stroop, B. Kleinjohann, A. 
Rettberg, and 1. Teich, "IP-based System Design with the PARADISE Design 
Environment", accepted for Journal of Systems Architecture, The Euromicro 
Journal 

[11J http://www.c-lab.de/astair 
[12] Ivar Jacobson, Grady Booch, James Rumbaugh. The Unified Software 

Development Process. Addison Wesley. 1998. ISBN 0-201-57169-2 
[13J Sinan Si Alhir. UML in a Nutshell. O'Reilly. 1998. ISBN 1-56592-448-7 
[14J Technical Report: SOAP Version 1.2 Working Draft. 

http://www.w3.orglTRlsoapI2 
[15J Technical Report: Web Services Description Language (WSDL) 1.1. 

http://www.w3.orgffRlwsdl 
[16J Universal Description, Discovery and Integration. http://www.uddi.org 
[17] Heinz-Josef Eikerling, Wolfgang Thronicke, Siegfried Bublitz. Provision and 

Integration of ED A Web-Services using WSDL-based Markup. FDL 2001. 
Lyon. 

[18J Robert Orfali, Dan Harkey, Jeri Edwards, Robert Crfali. Instant COREA. John 
Wiley & Sons. 1997. ISBN 0471183334. 

[19] Java 2 Platform Enterprise Edition. http://java.sun.comlj2ee 
[20] Mark Wutka. Special Edition Using Java 2: Enterprise Edition (J2EE). Que. 

May 2001. ISBN 0789725037. 
[21] http://www.c-lab.de/-pathfinder 

This work has been partially funded under grant number 01 M 3048 E 
(German BMBF project "IP-Qualifikation fUr effizientes Systemdesign 
(IPQ)"). 


	How to integrate Webservices in Embedded SystemDesign?
	1. INTRODUCTION
	2. THE WEB-BASED INTEGRATION SCENARIO
	3. THE PARADISE APPROACH
	4. SYSTEM DESIGN WITH WEBSERVICES
	5. CONCLUSION AND FUTURE WORK
	REFERENCES




