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Abstract: In the embedded systems domain predictability, fault tolerance and high-speed 
data transmission rates are key challenges for the interface design. Multiple 
tasks and channels communicate through different protocols with each other. 
In this paper we present a consistent design approach for configurable real­
time interfaces. An interface design methodology therefore should regard the 
relationship between distributed tasks, channels and supported protocols 
within a HW/SW Codesign scenario. The model dependent parameters are 
important information for this process and are represented in a formal UML­
based way. As result of the design process an interface-block (IPB) is 
generated which considers all these parameters. A complex embedded system 
in the context of a case study implements a collision avoidance algorithm for 
two interacting robots. It demonstrates the usability of this concept for an 
implementation of HW/SW-interfaces with respect to the real-time 
restrictions .. 
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1. INTRODUCTION 

In this paper we present a new modeling approach for configurable real­
time interfaces. The interface design is driven by high needs in data 
transmission techniques and rising computing performance in terms of 
operations per second in the embedded system domain. Much effort has been 
spent in improving these aspects but the affected interfaces also have to be 
discussed to avoid weak points in system-architecture. Especially embedded 
systems (ES) include several kinds of interfaces, mostly in form of HW IHW-
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or HW/SW-interfaces. In many cases modem ES are distributed systems, 
need to be fault tolerant, have to cope with several kinds of media and hard 
real-time restrictions of multiple tasks have to be met. As a result the large 
amount of different interfaces leads to the need for an automated design 
process for reconfigurable real-time interfaces. This process requires a 
consistent and integrated design methodology, from the specification to the 
implementation. 

protocol ! ! q 
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Figure 1. Overview of interface design relevant aspects 

The main components of our interface design view can be structured into 
four parts: task, medium, protocol and target platform dependencies (see 
Figure 1). This is a refinement of the very general view symbolized on the 
left side of Figure 1. The traditional parts protocol and medium are merged 
to a logical block named "Channel". Functional or spatial dependent tasks 
are joined together with an interface-block (IFB) to the "Application". All 
relationships between the application, the channel and the target platform 
with respect to the design process can be modeled in UML. The structure 
and the dependencies between these items are represented by class diagrams. 
Timing aspects are modeled in form of sequence charts and activity 
diagrams. The charts and diagrams have to include sufficient information to 
specify the IFB that implements the reconfigurable thus dynamic interface. 
Tasks as well as the IFB may be implemented in hardware or software. 

Every communication between two distributed tasks is processed by the 
dedicated IFB, which handles the medium access on the one hand and 
controls the task activation on the other hand. This means that the IFB is an 
active interface. To guarantee hard real-time restrictions the whole system 
uses a static pre-processed scheduling for medium access. The parameters 
which are needed to specify the IFB are separated from the UML models of 
the different tasks, the media and the target platform. 

Reconfiguration of the IFB means to change the scheduling strategy 
implemented in the control unit. The executed IFB behavior from the task 
activation to the medium access and the internal IFB control may be varied. 
Our approach also supports the usage of full custom protocols. These are 
defined by the appropriate task specification and are only restricted by the 
data transfer rate of the used medium through its physical properties. As 
these full custom protocols need to be adaptable to the target platform the 
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platform dependent parameters have to be considered in the design process 
as well. A design methodology from an abstract formal specification model 
(UML) to a dedicated hardware description language (HDL) or a 
programming language (SystemC) is considered to realize this approach. 

2. APPLICATION RELEVANCE 

Several techniques for interface design like SLIP or OCB have been 
presented in the past. But all these ideas are limited to a partial viewpoint on 
the design process. Using an IFB-model includes several advantages: 
Different channels, protocols and tasks are supported and all implementation 
relevant parameters can be extracted from one abstract modeling language. 
The requirements are modeled in the well-known and easy-to-understand 
UML [2, 3, 7] technique in form of class diagrams, sequence charts and 
statecharts. Therefore it is important to define an exact semantic meaning for 
the specification language in addition to a non-ambiguous syntax 
description. An automaton based approach in form of statecharts offers a 
compact methodology to specify the behavior of the IFB. Afterwards the 
transformation to the Timing Dependency Graph (TDG) [5] can be done to 
include timing constraints within the automaton representation. So the time 
constraints can be modeled high-level, here by UML sequence charts and 
then transferred to the TDG. The VHDL code which is generated by a 
transformation of the IFB is the input for the succeeding synthesis process. 
Special restrictions of the synthesis process have to be considered by the 
VHDL code generation as well. This can be done by modeling these 
parameters within the platform dependent diagram. Eventually the 
restrictions and properties of used synthesis tools can be counted to the 
platform parameters itself. 

Full custom protocols which have been mentioned in the introduction are 
a further advantage of the IFB model and can be calculated automatically 
from the specification. Although SDL is one of the common ways for 
modeling protocols and interfaces [11, 13], this paper considers a UML 
conform approach to possess a consistent description formalism to specify 
all necessary information needed for the design process [3,4, 12]. 

3. MODELING OF INTERFACE PARAMETERS 

There are three possible fields of application for an IF'B-model: For 
medium access of tasks, task adaptation and protocol conversion. The first 
case covers a consistent bus access of several tasks to multiple channels. If 
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you want to include one task to an existing design the IFB works as an 
adapter (see Figure 2) and in case there are only channels the IFB acts as a 
protocol-gateway. 

Figure 2. Adaptation of tasks into an 
existing context Figure 3. Task-IFB-Level as packet diagram 

A set of UML packet diagrams is used to describe the hierarchical 
content of the interface structure. An excerpt of the packet structure is shown 
in Figure 3. You can see the "Task-IFB-Level", where several tasks access 
the "IF _IFB" of the IFB. Also the connection from the IFB to the channel 
interface "IF_Channel" is symbolized in the lower right of the figure. 

As UML was chosen as the modeling language a class diagram is the 
adequate form to represent structures and dependencies of the required IFB 
parameters. Figure 4 shows a task's diagram which can either be a HW­
block or a SW -program. "Task" is a class that communicates with the 
abstract class "IF _IFB" which is implemented within the IFB and defines its 
interface. The parameters in the class model are extensible and have to be 
adjusted to the appropriate model. 

Figure 4. Task modeled as UML 
class diagram 

Figure 5. Channel modeled as 
UML class diagram 

Figure 5 represents a channel which includes the medium as well as the 
protocol aspect. The class "Channel" that implements the abstract class 
"IF_Channel" defines the access point for the IFB. Some specific 
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realizations of denoted classes are modeled using inheritance for the class 
channel, protocol and medium with the connectors. 

The third class diagram represents the target platform dependent 
parameters for SW or HW (see Figure 6). Main class of the diagram is 
"Target Platform". It is associated to classes "HW-Target" and "SW­
Target". ''Technical Requirements" and "Synthesis Process" are connected 
to the HW -development by compositions. Prohibited and recommended kind 
of source code can be modeled in the "Synthesis Process". 

Physical 

given P r1l •• 
by • 

• lfO.Pins 
'Componenl8 
Voila Levell 

Figure 6. Target platform modeled as UML class diagram 

Another important aspect for HW -target code generation is the used 
component library. A SW-target consists of a "Code Generation Process" 
that offers "Recommended Code" and uses a specific "SW Library". 

The next step is to explain the IFB-model [6, 8] which is parameterized 
by the information given in the diagrams. The succeeding chapter deals with 
the representation of an IFB by statecharts and an overview of the functional 
concept. Statecharts are extended automata and seem to be good candidates 
for an automated code generation for FPGAs [5, 10]. Sequence charts are 
used to specify the timing aspect of the included statecharts and the control 
unit within the IFB. 

4. PROTOTYPING 

An FPGA has been chosen for the hardware implementation of the IFB. 
A rnicro-controller can be taken for a software implementation as well. The 
medium, e.g. twisted pair cable is connected to the prototyping platform. 
Tasks can be implemented separated from the platform or integrated as well. 
The protocol as an abstract element is implemented within the IFB which 
consist of a control unit and a generator pipeline - the sequence- and the 
protocol generator. The job of the control unit is to activate tasks and handle 
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the generator pipe. The sequence generator communicates with the tasks to 
fetch and collect their data and prepare it for the protocol unit. Further on 
predefined pieces of data can automatically be inserted here which allows 
complex features instantiated in sequence generation. That is very useful if a 
receiving task (actor) expects a dedicated data stream and the sending task, 
like simple sensor, only generates fragments of the data content available. In 
the protocol generator these sequences are adapted to the appropriate 
protocol. Another feature of the protocol generator is the medium access 
which is guarded by the control unit. 

An automata based approach has been selected to implement the IFB­
model because the synthesis process is supported very well for this design 
methodology [10]. Therefore Figure 7 represents the resulting structure of 
the communicating automata. On top the "Control Unit" controls the 
sequence generator (SO), the protocol generator (PO) and as here included 
the task (Task). The control unit requires feedback information in form of 
status signals. To realize dynamic interfaces different behavior is 
implemented by sub-automata of the SO, PO and where necessary of the 
task. 

ContrOl 
r-S-ta'-e --.I Unit 

Tasks Sequence 
1-----+1 Generator r----foj 

Data and 
Handshake 

Data and '----------/ Bus 
Handshake Acee •• 

Figure 7. Automata based way to implement an IFB 

The sub-automata of SO and PO realize the "generator modes", To 
execute different behavior the control unit activates dedicated sub-automata 
through the SO and PO and the task itself, respectively. The communication 
flow between task and channel is routed through the SO- and PO-FSM using 
data signals and handshake wires. Figure 8 represents the dependencies as a 
UML class diagram. 

As the main class of the diagram, "Control Unit" implements the abstract 
interface-class "IFB_Control". On the left "IF _IFB", the interface to the 
tasks is implemented by the sequence generator and on the right the protocol 
generator accesses the interface of class "Channel", The "Protocol" defined 
in the "Channel" class diagram is a template for the possible instances of the 
generator pipe. To the sequence generator a "data template" is offered in this 
way, which is used for data preparation for the protocol generator. The 
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requirements for the creation of the supported protocols within the PO are 
extracted from the "protocol template". 

Figure 8. UML class diagram of an IFB 

The illustrated kind of implementation is for the access of tasks to 
different media. In case of adaptation or protocol conversion the IFB fulfills 
nearly the same job which differs only in its meaning. 

The design process, in combination with the IFB is a step towards an 
automated code generation, because it offers a unified and capable solution 
for the explained problems. It will be necessary to refine the demonstrated 
class models to accomplish an entire high-level and automated design 
process. For some constructs it's obvious how a transformation could look 
like, e.g. state charts to VHDL automata. But therefore it's necessary to 
define the syntax and semantic meaning for a unique mapping. 

5. EXPERIMENTAL RESULTS 

A scenario with two integrated interacting industry robots demonstrates 
that the concept can be realized for practice relevant application (see Figure 
9). One of the robots (Rl) is manually controlled by a joystick, whereas 
robot R2 executes a predefined job. In case of an potential collision R2 has 
to swerve to avoid any contact between Rl and R2. 

To fulfill this task, a TIP! A communication between the controlling 
FPOAs, using a serial V24 connection, has been established [9] in form of an 
IFB. On this way the motor data of robot Rl is submitted from FPGAI to 
FPGA2. The FPGAs are connected to the robots also using a serial V24 
channel which is realized by an IFB as well. The serial V24 (RS232) 
interface is a common interface in the embedded systems domain and can be 
used to set up a real-time communication. The design methodology of an 
IFB (see Figure 10) is illustrated by the V24 interface as an example. 
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Figure 9. UML Scenario of the interacting robots and the different communication channels 

Figure 10 and 11 show the specification of the used V24 serial interface 
for manual robot control. The aspects "Task, Control Unit, Sequence 
Generator and Protocol Generator" are represented as statecharts. The task 
differentiates between an active joystick control and a homing state. 

Tasks-A1 

Task·Control 

Control Unit - R1 

SG-Control 

Seq.1 (SG·Mode 1) 

CTS.O 

Figure 10. Specification of the Task, CU and SO as statechart 
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Figure 11. Specification of the PO and the communication flow 

The resulting data stream is prepared in the SO and transmitted by the PO 
that implements a standard V24 UART HW block. A control unit is used to 
control the other units. The right side in Figure 11 characterizes the control­
and data flow within the generator pipe. The submitted data is received by 
robot Rl which is directly connected to the channel. To get the joystick data 
to the ''Task'' -FSM another IFB is realized that serves as physical interface. 

6. CONCLUSION AND FUTURE WORK 

In this paper we have presented a new concept for reconfigurable real­
time interfaces. It has been shown that the concept offers a consistent, level­
comprehensive, easy-to-extend and well-defined approach for interface 
design. In this way interfaces with widespread properties can be consistently 
modeled and implemented by an IFB. 

The demonstrator's serial interface has been used to illustrate that our 
approach covers all demanded requirements in the application domain, from 
modeling to the implementation of real-time interfaces. Furthermore our 
approach is dedicated to automatic code generation based on abstract 
modeling techniques. 

Future work will concentrate on the aspect of code generation towards 
HW (VHDL or Verilog) and SW (C). This includes aspects of graph 
transformation from formal abstract modeling languages as well as the 
computation of full custom protocols. These can be deployed beside standard 
protocols to fit best to the demands of the comprised tasks. 

In addition, validation of timing restrictions has to be considered. 
Therefore a schedule has to be computed from all the information derived 
from the task requirements. On this basis automatic evaluation can decide 
whether the required system performance meets the offered bandwidth or 
not. In case of success a schedule for the distributed IFB nodes has to be 
computed. This will be important input for the HW ISW repartitioning. The 
mentioned extensions will advance our approach to automatic design of 
HW ISW real-time interfaces. 
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