
A Consistent Design Methodology for Configurable
HW/SW-Interfaces in Embedded Systems
Embedded Systems Design

Stefan llimor, Markus Visarius, Wolfram Hardt
{ihmor I visi I hardt}@upb.de
University of Paderborn, Warburger Str.] 00, D-33098

Abstract: In the embedded systems domain predictability, fault tolerance and high-speed
data transmission rates are key challenges for the interface design. Multiple
tasks and channels communicate through different protocols with each other.
In this paper we present a consistent design approach for configurable real­
time interfaces. An interface design methodology therefore should regard the
relationship between distributed tasks, channels and supported protocols
within a HW/SW Codesign scenario. The model dependent parameters are
important information for this process and are represented in a formal UML­
based way. As result of the design process an interface-block (IPB) is
generated which considers all these parameters. A complex embedded system
in the context of a case study implements a collision avoidance algorithm for
two interacting robots. It demonstrates the usability of this concept for an
implementation of HW/SW-interfaces with respect to the real-time
restrictions ..

Key words: dynamic reconfigurable interface design and modeling, HW/SW Interfaces

1. INTRODUCTION

In this paper we present a new modeling approach for configurable real­
time interfaces. The interface design is driven by high needs in data
transmission techniques and rising computing performance in terms of
operations per second in the embedded system domain. Much effort has been
spent in improving these aspects but the affected interfaces also have to be
discussed to avoid weak points in system-architecture. Especially embedded
systems (ES) include several kinds of interfaces, mostly in form of HW IHW-

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
B. Kleinjohann et al. (eds.), Design and Analysis of Distributed Embedded Systems

10.1007/978-0-387-35599-3_29

http://dx.doi.org/10.1007/978-0-387-35599-3_29

238 Stefan Ihmor, Markus Visarius, Wolfram Hardt

or HW/SW-interfaces. In many cases modem ES are distributed systems,
need to be fault tolerant, have to cope with several kinds of media and hard
real-time restrictions of multiple tasks have to be met. As a result the large
amount of different interfaces leads to the need for an automated design
process for reconfigurable real-time interfaces. This process requires a
consistent and integrated design methodology, from the specification to the
implementation.

protocol ! ! q
Medium

Application Channel

q -+ I
T Restrictions I Mediump I Target Platform

Figure 1. Overview of interface design relevant aspects

The main components of our interface design view can be structured into
four parts: task, medium, protocol and target platform dependencies (see
Figure 1). This is a refinement of the very general view symbolized on the
left side of Figure 1. The traditional parts protocol and medium are merged
to a logical block named "Channel". Functional or spatial dependent tasks
are joined together with an interface-block (IFB) to the "Application". All
relationships between the application, the channel and the target platform
with respect to the design process can be modeled in UML. The structure
and the dependencies between these items are represented by class diagrams.
Timing aspects are modeled in form of sequence charts and activity
diagrams. The charts and diagrams have to include sufficient information to
specify the IFB that implements the reconfigurable thus dynamic interface.
Tasks as well as the IFB may be implemented in hardware or software.

Every communication between two distributed tasks is processed by the
dedicated IFB, which handles the medium access on the one hand and
controls the task activation on the other hand. This means that the IFB is an
active interface. To guarantee hard real-time restrictions the whole system
uses a static pre-processed scheduling for medium access. The parameters
which are needed to specify the IFB are separated from the UML models of
the different tasks, the media and the target platform.

Reconfiguration of the IFB means to change the scheduling strategy
implemented in the control unit. The executed IFB behavior from the task
activation to the medium access and the internal IFB control may be varied.
Our approach also supports the usage of full custom protocols. These are
defined by the appropriate task specification and are only restricted by the
data transfer rate of the used medium through its physical properties. As
these full custom protocols need to be adaptable to the target platform the

Configurable HWISW-Interfaces in Embedded Systems 239

platform dependent parameters have to be considered in the design process
as well. A design methodology from an abstract formal specification model
(UML) to a dedicated hardware description language (HDL) or a
programming language (SystemC) is considered to realize this approach.

2. APPLICATION RELEVANCE

Several techniques for interface design like SLIP or OCB have been
presented in the past. But all these ideas are limited to a partial viewpoint on
the design process. Using an IFB-model includes several advantages:
Different channels, protocols and tasks are supported and all implementation
relevant parameters can be extracted from one abstract modeling language.
The requirements are modeled in the well-known and easy-to-understand
UML [2, 3, 7] technique in form of class diagrams, sequence charts and
statecharts. Therefore it is important to define an exact semantic meaning for
the specification language in addition to a non-ambiguous syntax
description. An automaton based approach in form of statecharts offers a
compact methodology to specify the behavior of the IFB. Afterwards the
transformation to the Timing Dependency Graph (TDG) [5] can be done to
include timing constraints within the automaton representation. So the time
constraints can be modeled high-level, here by UML sequence charts and
then transferred to the TDG. The VHDL code which is generated by a
transformation of the IFB is the input for the succeeding synthesis process.
Special restrictions of the synthesis process have to be considered by the
VHDL code generation as well. This can be done by modeling these
parameters within the platform dependent diagram. Eventually the
restrictions and properties of used synthesis tools can be counted to the
platform parameters itself.

Full custom protocols which have been mentioned in the introduction are
a further advantage of the IFB model and can be calculated automatically
from the specification. Although SDL is one of the common ways for
modeling protocols and interfaces [11, 13], this paper considers a UML
conform approach to possess a consistent description formalism to specify
all necessary information needed for the design process [3,4, 12].

3. MODELING OF INTERFACE PARAMETERS

There are three possible fields of application for an IF'B-model: For
medium access of tasks, task adaptation and protocol conversion. The first
case covers a consistent bus access of several tasks to multiple channels. If

240 Stefan Ihmor, Markus Visarius, Wolfram Hardt

you want to include one task to an existing design the IFB works as an
adapter (see Figure 2) and in case there are only channels the IFB acts as a
protocol-gateway.

Figure 2. Adaptation of tasks into an
existing context Figure 3. Task-IFB-Level as packet diagram

A set of UML packet diagrams is used to describe the hierarchical
content of the interface structure. An excerpt of the packet structure is shown
in Figure 3. You can see the "Task-IFB-Level", where several tasks access
the "IF _IFB" of the IFB. Also the connection from the IFB to the channel
interface "IF_Channel" is symbolized in the lower right of the figure.

As UML was chosen as the modeling language a class diagram is the
adequate form to represent structures and dependencies of the required IFB
parameters. Figure 4 shows a task's diagram which can either be a HW­
block or a SW -program. "Task" is a class that communicates with the
abstract class "IF _IFB" which is implemented within the IFB and defines its
interface. The parameters in the class model are extensible and have to be
adjusted to the appropriate model.

Figure 4. Task modeled as UML
class diagram

Figure 5. Channel modeled as
UML class diagram

Figure 5 represents a channel which includes the medium as well as the
protocol aspect. The class "Channel" that implements the abstract class
"IF_Channel" defines the access point for the IFB. Some specific

Configurable HWISW-Interfaces in Embedded Systems 241

realizations of denoted classes are modeled using inheritance for the class
channel, protocol and medium with the connectors.

The third class diagram represents the target platform dependent
parameters for SW or HW (see Figure 6). Main class of the diagram is
"Target Platform". It is associated to classes "HW-Target" and "SW­
Target". ''Technical Requirements" and "Synthesis Process" are connected
to the HW -development by compositions. Prohibited and recommended kind
of source code can be modeled in the "Synthesis Process".

Physical

given P r1l ••
by •

• lfO.Pins
'Componenl8
Voila Levell

Figure 6. Target platform modeled as UML class diagram

Another important aspect for HW -target code generation is the used
component library. A SW-target consists of a "Code Generation Process"
that offers "Recommended Code" and uses a specific "SW Library".

The next step is to explain the IFB-model [6, 8] which is parameterized
by the information given in the diagrams. The succeeding chapter deals with
the representation of an IFB by statecharts and an overview of the functional
concept. Statecharts are extended automata and seem to be good candidates
for an automated code generation for FPGAs [5, 10]. Sequence charts are
used to specify the timing aspect of the included statecharts and the control
unit within the IFB.

4. PROTOTYPING

An FPGA has been chosen for the hardware implementation of the IFB.
A rnicro-controller can be taken for a software implementation as well. The
medium, e.g. twisted pair cable is connected to the prototyping platform.
Tasks can be implemented separated from the platform or integrated as well.
The protocol as an abstract element is implemented within the IFB which
consist of a control unit and a generator pipeline - the sequence- and the
protocol generator. The job of the control unit is to activate tasks and handle

242 Stefan Ihmor, Markus Visarius, Wolfram Hardt

the generator pipe. The sequence generator communicates with the tasks to
fetch and collect their data and prepare it for the protocol unit. Further on
predefined pieces of data can automatically be inserted here which allows
complex features instantiated in sequence generation. That is very useful if a
receiving task (actor) expects a dedicated data stream and the sending task,
like simple sensor, only generates fragments of the data content available. In
the protocol generator these sequences are adapted to the appropriate
protocol. Another feature of the protocol generator is the medium access
which is guarded by the control unit.

An automata based approach has been selected to implement the IFB­
model because the synthesis process is supported very well for this design
methodology [10]. Therefore Figure 7 represents the resulting structure of
the communicating automata. On top the "Control Unit" controls the
sequence generator (SO), the protocol generator (PO) and as here included
the task (Task). The control unit requires feedback information in form of
status signals. To realize dynamic interfaces different behavior is
implemented by sub-automata of the SO, PO and where necessary of the
task.

ContrOl
r-S-ta'-e --.I Unit

Tasks Sequence
1-----+1 Generator r----foj

Data and
Handshake

Data and '----------/ Bus
Handshake Acee ••

Figure 7. Automata based way to implement an IFB

The sub-automata of SO and PO realize the "generator modes", To
execute different behavior the control unit activates dedicated sub-automata
through the SO and PO and the task itself, respectively. The communication
flow between task and channel is routed through the SO- and PO-FSM using
data signals and handshake wires. Figure 8 represents the dependencies as a
UML class diagram.

As the main class of the diagram, "Control Unit" implements the abstract
interface-class "IFB_Control". On the left "IF _IFB", the interface to the
tasks is implemented by the sequence generator and on the right the protocol
generator accesses the interface of class "Channel", The "Protocol" defined
in the "Channel" class diagram is a template for the possible instances of the
generator pipe. To the sequence generator a "data template" is offered in this
way, which is used for data preparation for the protocol generator. The

Configurable HWISW-Interfaces in Embedded Systems 243

requirements for the creation of the supported protocols within the PO are
extracted from the "protocol template".

Figure 8. UML class diagram of an IFB

The illustrated kind of implementation is for the access of tasks to
different media. In case of adaptation or protocol conversion the IFB fulfills
nearly the same job which differs only in its meaning.

The design process, in combination with the IFB is a step towards an
automated code generation, because it offers a unified and capable solution
for the explained problems. It will be necessary to refine the demonstrated
class models to accomplish an entire high-level and automated design
process. For some constructs it's obvious how a transformation could look
like, e.g. state charts to VHDL automata. But therefore it's necessary to
define the syntax and semantic meaning for a unique mapping.

5. EXPERIMENTAL RESULTS

A scenario with two integrated interacting industry robots demonstrates
that the concept can be realized for practice relevant application (see Figure
9). One of the robots (Rl) is manually controlled by a joystick, whereas
robot R2 executes a predefined job. In case of an potential collision R2 has
to swerve to avoid any contact between Rl and R2.

To fulfill this task, a TIP! A communication between the controlling
FPOAs, using a serial V24 connection, has been established [9] in form of an
IFB. On this way the motor data of robot Rl is submitted from FPGAI to
FPGA2. The FPGAs are connected to the robots also using a serial V24
channel which is realized by an IFB as well. The serial V24 (RS232)
interface is a common interface in the embedded systems domain and can be
used to set up a real-time communication. The design methodology of an
IFB (see Figure 10) is illustrated by the V24 interface as an example.

244 Stefan [hmor, Markus Visarius, Wolfram Hardt

Figure 9. UML Scenario of the interacting robots and the different communication channels

Figure 10 and 11 show the specification of the used V24 serial interface
for manual robot control. The aspects "Task, Control Unit, Sequence
Generator and Protocol Generator" are represented as statecharts. The task
differentiates between an active joystick control and a homing state.

Tasks-A1

Task·Control

Control Unit - R1

SG-Control

Seq.1 (SG·Mode 1)

CTS.O

Figure 10. Specification of the Task, CU and SO as statechart

Configurable HWISW-Interfaces in Embedded Systems 245

I realized as ha""'." modulo 1 MoIOrNo. W e
IXO OIreclion .. 0 T .. uS '0 .. S .. :,. Value ere e 0..
DJN .,'" DJ N
AD_E

Handshake RD_E

Figure 11. Specification of the PO and the communication flow

The resulting data stream is prepared in the SO and transmitted by the PO
that implements a standard V24 UART HW block. A control unit is used to
control the other units. The right side in Figure 11 characterizes the control­
and data flow within the generator pipe. The submitted data is received by
robot Rl which is directly connected to the channel. To get the joystick data
to the ''Task'' -FSM another IFB is realized that serves as physical interface.

6. CONCLUSION AND FUTURE WORK

In this paper we have presented a new concept for reconfigurable real­
time interfaces. It has been shown that the concept offers a consistent, level­
comprehensive, easy-to-extend and well-defined approach for interface
design. In this way interfaces with widespread properties can be consistently
modeled and implemented by an IFB.

The demonstrator's serial interface has been used to illustrate that our
approach covers all demanded requirements in the application domain, from
modeling to the implementation of real-time interfaces. Furthermore our
approach is dedicated to automatic code generation based on abstract
modeling techniques.

Future work will concentrate on the aspect of code generation towards
HW (VHDL or Verilog) and SW (C). This includes aspects of graph
transformation from formal abstract modeling languages as well as the
computation of full custom protocols. These can be deployed beside standard
protocols to fit best to the demands of the comprised tasks.

In addition, validation of timing restrictions has to be considered.
Therefore a schedule has to be computed from all the information derived
from the task requirements. On this basis automatic evaluation can decide
whether the required system performance meets the offered bandwidth or
not. In case of success a schedule for the distributed IFB nodes has to be
computed. This will be important input for the HW ISW repartitioning. The
mentioned extensions will advance our approach to automatic design of
HW ISW real-time interfaces.

246 Stefan Ihmor, Markus Visarius, Wolfram Hardt

REFERENCES

[1] A. Burns, Real Time Systems and Programming Languages, Addison-Wesley, Harlow
[u.a.], third edition, Ada 95, real time Java and real time POSIX., 2001

[2] G. C. Buttazzo, Hard Real Time Computing Systems: Predictable Scheduling Algorithms
and Applications, Kluwer, Boston [u.a.], third edition, 2000

[3] B. P. Douglas, Doing Hard Time: Developing Real-Time Systems with UML. Objects.
Frameworks and Patterns. Addison-Wesley, Reading Massachusetts [u.a.], first edition,
2000

[4] B. P. Douglas, Real-time: Developing Efficient Objects for Embedded Systems. Addison­
Wesley, Reading Massachusetts [u.a.], third edition, 1998

[5] W. Hardt, T. Lehmann, M. Visarius, Towards a Design Methodology Capturing Interface
Synthesis. University Paderbom, Computer Science Department, 2000

[6] W. Hardt, M.Visarius, S. Ihmor, Rapid Prototyping of Real-Time Interfaces, FPL - Field
Programmable Logic conference in Belfast, 2001

[7] G. Hassan. Designing Concurrent. Distributed, and Real-Time Applications with UML,
Addison-Wesley, Boston [u.a.], 2000

[8] S. Ihmor, Entwurfvon &htzeitschnittstellen am Beispiel interagierender Roboter, Master
Thesis, University of Paderbom, 2001

[9] H. Kopez, Principles for Distributed Embedded Applications, Kluwer Academic Pub!.,
Boston [u.a.], fourth edition, 2001

[10] D. J. Smith, HDL Chip Design. A Practical Guide For Designing. Synthesizing and
Simulating ASICs and FPGAs using VHDL or Verilog, Doone Publications, Madison, AL,
USA, seventh edition, 2000

[11] J. Teich, Digitale Hardware / Soflware-Systeme. Synthese und Optimierung, Springer­
Verlag, Berlin Heidelberg, 1997

[12] K. Tindell, Analysis of Hard Real-Time Communications, Real-Time Systems, pp. 147-
171, 1995

[13] P. Verissimo, Real-Time Communication, Addison Wesley - ACM Press, Reading,
Mass., 1993

	A Consistent Design Methodology for ConfigurableHW/SW-Interfaces in Embedded Systems
	1. INTRODUCTION
	2. APPLICATION RELEVANCE
	3. MODELING OF INTERFACE PARAMETERS
	4. PROTOTYPING
	5. EXPERIMENTAL RESULTS
	6. CONCLUSION AND FUTURE WORK
	REFERENCES

