
TEMPORAL PARTITIONING AND SEQUENCING
OF DATAFLOW GRAPHS ON RECONFIGURABLE
SYSTEMS

Christophe Bobda
Heinz Nixdorf InstituteiPaderbom University
Fuerstenallee II, D-33J02 Paderbom, Gennany
bobda@upb.de

Abstract FPGAs(Fie1d Programmable Gate Arrays) are often used as reconfigurable de­
vice. Because the functions to be implemented in FPGAs are often too big to
fit in one device, they are divided into several partitions or configurations which
can fit in the device. According to dependencies given in the function a Schedule
is calculated. The partitions are successively downloaded in the device in accor­
dance with the schedule until the complete function is computed. Often the time
needed for reconfiguration is too high compared to the computation time [1. 11].
This paper presents a novel method for the reduction of the total reconfigura­
tion time of a function by the generation of a minimal number of configurations.
We present the framework that we developed for the fast and easy generation of
configurations from a function modeled as DFG (dataflow graph).

Keywords: Reconfigurable Computing. Temporal Partitioning. Fast Synthesis

1. INTRODUCTION
Combining the dataflow aspect and the inherent parallelism which char­

acterizes some classes of functions, FPGAs can be used to implement those
functions more efficiently than CPUs and more flexible than ASICs. FPGAs
have successfully been used to provide fast computation in many application
areas including text and image processing and floating point computation.
Reconfiguration is used to implement functions of any size in FPGAs with small
capacity. This is done by dividing the functions in partitions which fits in the
FPGAs. The partitions are implemented as configurations or bitstreams which
are successively downloaded into FPGAs to compute the desire functions. This
process is usually called temporal partitioning or temporal placement. Most
of the works done on temporal partitioning assume the FPGAs to be either
partially reconfigurable or time multiplexed. That means many configurations

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
B. Kleinjohann et al. (eds.), Design and Analysis of Distributed Embedded Systems

10.1007/978-0-387-35599-3_29

http://dx.doi.org/10.1007/978-0-387-35599-3_29

186 Christophe Bobda

are stored on the chip and can be quickly (in nano seconds) downloaded in the
FPGAs when needed. But the reality is different. Most of commercials FPGAs
are neither time multiplexed nor really partial reconfigurable. For this purpose,
many solutions proposed are not easily applicable. In practice high level tools
are used to capture and solve problems which are geometrically based. The
consequence is an inefficient use of the FPGA capabilities like the regularity
structure. This paper examines the use of non-partial reconfigurable FPGAs to
implement large functions. The goal is to minimize the reconfiguration over­
head which is always too high compare to the computation time of function in
FPGAs. We have developed a framework for the capture, the temporal parti­
tioning and the generation of configurations from a given function in form of
a DFG. Our framework is based on the JBits[6] API. We reduce the temporal
placement problem to the placement of a small amount of modules in different
configurations by dealing with cores. The rest of the paper is organized as
follows: Section 2 presents the main work which has been carried in the tem­
poral placement and temporal partitioning. In section 3 the formulation of the
temporal placement problem based on the definitions already given in [12, 14]
is given. The realization of overlapping between cores is shown in section
4. Section 5 presents the list scheduling based temporal partitioning method.
To illustrate the concept of section 5, the partitioning method is applied on a
real life problem in section 8. Section 9 concludes the paper and gives some
directions for future work.

2. RELATED WORK
The most used and perhaps the simplest approach to solve the temporal par­

titioning problem is the (enhance)list scheduling [11,3, 10,4, 13]. This method
first places all the nodes of a DFG representing the problem to be solved in a
list. Partitions(configurations) are built stepwise by removing nodes without
predecessor in the list and allocate them to a partition until the size of the par­
tition reached a limit(the size of the FPGA). Integer linear programming(ILP)
[10, 5, 8] can be applied to solve some optimization constrains like timing.
Other methods like network flow [9] and genetic algorithm [15] are also ap­
plied to find temporal partitions and optimize parameters like communication
cost and configuration latency.

In order to reduce the reconfiguration overhead, Pandey et al[11] suggested
the reduction of number of partitions with resource sharing. For a new partition,
a minimal resource set is chosen and a partition is built upon this resource
set. Trimberger[13] proposed a time multiplexed FPGA architecture in which
configurations can be stored directly on the chip. Reconfiguration is done in
micro cycle. In a micro cycle a new configuration is downloaded from the
on-chip memory. The CLBs(configurable logic block) contain micro-registers

Temporal Partitioning and Sequencing of Dataflow Graphs on RS 187

to temporally hold results of previous computation step when switching from
one configuration to another.

The geometrical view of the partial reconfiguration is considered in some
extent in [12, 14]. The space and temporal placement of computational nodes
of a DFG representing the problem to be computed in the FPGA is mapped,
for example, to a packing problem[12]. Problems with high reconfiguration
time(which are the focus of this paper) have been defined as a matter of future
work. In practice high level description languages and tools are used to specify
and solve a problem with important geometrical aspects. This leads to a non ef­
ficient use of the regularity structure of FPGAs[2] as well as waste of resource.
We present an approach for the minimization of reconfiguration. For the Xilinx
Virtex FPGA family that we use as RPU(reconfigurable processing unit), cores
can be generated in the JBits environment. This java-based interface provides
some basic functions like adders, comparators, subtracters, multipliers, multi­
plexers which can directly be placed on different locations on the FPGA and
routed together to build complex functions.

3. PROBLEM FORMULATION
This section deals with definition and formulation of the problem to be solved.

Since the definitions provided in [12, 14] are the most adapted for the temporal
placement, we choose to adopt it and adjust them to fetch our considerations.

Definition 1 (Dataflow Graph) GivenasetoftasksT = {Tt, , Td a dataflow
graph is a directed acyclic graph G = (V, E), where V = T. An edge
e = (Ti' Tj) E E is defined through the (data)dependence between task 11
and taskTj.

Each node T in the DFG is equivalent to a core C which can be placed on the
RPU H with length hx and width hy.

Definition 2 (Temporal placement) Given a DFG G = (V, E) and a RPU
H with the size (hx, hy), a temporal placement is a three dimensional vector
junctionp = (Px,Py,Pt) : n N3, where the values Px(C), Py(C) denote the
coordinates of the lower left position of the core C associate to a task T E V
on the RPU. The core C occupied the space [Px(C), .. ,Px(C) +wx(C)] in the x
direction, [Py (C), .. , Py (C) + Wy (C) 1 in the y direction and [Pt (T), .. , Pt (T) +
Wt (C)] in the time dimension.

Figure 1 illustrate a temporal placement of a problem graph with three
cores(+),(*) and (>) representing tasks Tl , T2 and T3) with dependencies (Tl
T2) and (Tl T3) on a partial reconfigurable FPGA.

In our formulation of the temporal partitioning, modules are allowed to over­
lap in space and time. Reconfiguration happens in today's FPGAs by the com­
plete replacement of configuration, a process which is too costly compare to the

188

connluratlon
sequence

n-Ih (Onn.

2nd (Onn.
1st Conn,

Figure 1. A temporal Placement

Christophe Bobda

computation time[ll, 1]. To avoid such overhead, we exploit the free resources
of modules already selected to run in the FPGA in a time interval to implement
the modules for other computation. This process require no additional over­
head, because only free resource are use.

In fig.2, all the modules could not be placed simultaneously on the device if
overlapping was not allowed.

(a) A DFG (b) Temporal Placement with over­
lapping

Figure 2. A DFG and the corresponding temporal placement with ressource sharing

4. IMPLEMENTATION OF OVERLAPPING CORES
AND RESSOURCE SHARING

If two cores C1 and C2 share the same resource Co and if the free resource
in core Co are enough to implement the functionality of Co, then Co can be
shared by C1 and C2 without additional resource. For example, a Virtex register
implemented in the JBits use only the Fl and G 1 inputs of the slice 0 or 1 of a

Temporal Partitioning and Sequencing of Dataflow Graphs on RS

ALGORITHM I: generate_partitions(DFG G, DEVICE dev)
1 BEGIN;
2 list-nodes := generate_nodes_lisL with_priority(G);
3 WHILE (lIist-node.emptyO) DO
4 aIlocated_list.resetO;
5 FOR(i:= 1; i < Iist_nodes.sizeO;i++)
6 chosen_node:= node_list[i);
7 besLnode:= geLbest-overlapping_nodeO;
8 IF (best_node = NULL)
9 IF (allocated_list.size + chosen_node.size < dev.size)
1 0 aIlocated_list.insert(chosen_ node);
11 IisLnode.remove(chosen_node);
12 ELSE
13 implement_overlap(chosen_node, besLnode);
14 IisLpartition.insert(allocated_list);
15 END;

Figure 3. The temporal partitioning algorithm

189

CLB(Configurable logic Block). Its outputs are the Xq and Yq outputs of the
corresponding slice. The resource F2, .. , G 4, F2, .. , G3 , cin, X, X B, YB as well
as the remaining Xq and Yq are free in the two slices of the CLBs allocated to
the register core. They can be used 0 implement another register in the same
core.

If the core Co has no additional resource, I/O Multiplexing is commonly
used to allocate the common resource Co either to C1 or to C2 depending
on a predefined schedule. For two inputs II and 12 and a condition C, I/O
multiplexing is implemented as follow: If C = 1 then Z = II, else Z = h.
This is equivalent to the boolean equation Z = C.l1 + notZ = C.12 which
can easily be implemented in a 3-inputs LUT.
As we can see in this example, sharing resource in FPGA without additional
overhead is possible, since the cores provided in the JBits environment use only
a fraction of the resource allocated to them.

5. THE TEMPORAL PARTITIONING ALGORITHM
This section provides the description of our partitioning algorithm. The

method generate_partitions (ALGORITHM I) is a list scheduling like method
which takes as inputs a DFG G and a device type dev and return a list of all
partitions lisLpartition.

At the begin all the nodes of the DFG are inserted in lisLnodes in order of
decreasing priority (line 2). In order to make a maximum use of overlapping
capability, the priority is high in function of the non inclusion of the core in
other cores, the non precedence by other cores in the list and the size of the core.
At each step of the partitioning, a node chosen_node with maximum priority

190 Christophe Bobda

is removed from lisLnodes and inserted in allocatedJist(lines 6, 10 - 11, 14
- 16), which is the list of all elements of the current partition. It represents the
resource running in the FPGA in a time interval. In order to make an efficient
use of those resource for the next time interval, we first check for intersection
between chosen_node and the nodes currently assigned to allocatedJist. The
function get_besLoverlapping_node will return the node which has a maxi­
mum overlapping core with chosen_node. If no such node exists, chosen_node
will be added to the current partition allocatedJist, if the resulting partition fits
in the device (lines 7 - 11). In the case where a best overlapping node exists, the
overlapping concept as shown in section 4(lines 12 - 13) will be implemented.
The current partition allocatedJist is inserted in the list of all partitions when
all the nodes in lisLnodes have been processed (line 14). If the list of nodes
lisLnodes is not empty, a new partition is created and the processing continues
(lines 3 - 14).

6. PLACEMENT OF MODULES IN
CONFIGURATIONS

Having the list of all partitions, we use an enhanced eigenvector based place­
ment to arrange the cores of each partition on the surface of the device and the
resource inside the merged cores. This method has the advantage of placing
Inputs and Outputs (110) elements at the boundary of the cores and the device,
which makes pipelining easier. The method is based on the two dimensional
spectral embedding of the nodes of the DFG using eigenvectors. Having a
spectral embedding of the nodes in the plane, a post -processing method is used
to successively remove the nodes not in the actual partition and fit the rest in
the device area. The computation of the positions of modules on the device
surface happen as follow: Given a DFG G = (V, E) representing the modules
and their interconnexion, the connection matrix, degree matrix and laplacian
are first computed.

• The connection matrix of G is the symetric matrix C = (Ci,j) with
(1 :5 i,j :51 V I) and Ci,j = 1 {::::::> (Vi, Vj) E E.

• The degree matrix ofG is the diagonal matrix D = (di,j), (1 :5 i,j :51
V I) with i 4 J' --t d· . = 0 and d· . = r, . ., t,3 t,I L.J3=1 '1,3'

• The laplacian matrix of G is the matrix B = D - C.

In [7] Hall proved that the r eigenvectors of the laplacian matrix related to the
r smallest non zero eigenvalues of B define the coordinates of the 1 V 1 modules
of G in an r-dimensional vector space, such that the sum of the distances
between the modules is minimal. We first compute the r smallest eigenvalues,

Temporal Partitioning and Sequencing of Dataflow Graphs on RS 191

then we use a post-processing step to generate the definitive position of each
core in the corresponding bitstream.

The algorithm described here is implemented in a framework that we devel­
oped.

7. CONFIGURATION SEQUENCING
Given a DFG, our tool compute a configuration graph(figA) in which nodes

represents configurations. Configurations communicate via inter configura­
tion registers(figA), which are automatically inserted in bitstreams when an
arc of the DFG connects two components in different configurations. The inter
configuration registers are mapped in the CPU address room and are used for
the communication between nodes in different configurations. The nodes of the
configuration graph, that means the configurations are successively downloaded
in the FPGA until the computation of the original DFG completes.

Inter Connguratlon
registers

Figure 4. A Configuration Graph

8. CASE STUDY: NUMERICAL SOLUTION OF A
DIFFERENTIAL EQUATION

To illustrate and show the efficiency of the method described in this paper,
a numerical method for solving a differential equation as described in [12] is
considered.

Fig 5 shows the DFG for solving a differential equation of the form Y" +
3xyl + 3y = 0 in the interval [xo l a] with step size dx and initial values y(xo) =
Yo, yl(XO) = Uo, using Euler's method as presented in [12]. We consider
the worst case, where no additional resource is left in the available cores to
implement the core overlapping. I/O multiplexing have to be considered in this
case. The size of the different modules for the Xilinx Virtex architecture is given
in table 1. As we can see, the size of a 2 inputs 1 output 16 Bit-Multiplexer is
less than (10 x 1). Since the size of a 16 Bit-multiplier is more than (5 x 20),
merging two cores sharing a mUltiplier module will have a reduction of the

192

M1IL. ADDI.

% % .., .. M1ILI

Christophe Bobda

o -N

O-c-

Figure 5. DFG For the DE-Integrator

Table 1. Cores Size(in CLB) for the Xilinx Virtex Architecture

Cores X..size y..size
16-Bit Add 8 1
16-Bit Sub 8 1

16-BitComp 8 1
2 In/I-Out 16-Bit Mux 10 1

16-Bit Mul 5 20

size of a multiplier (5 x 20) and an augmentation of 3 times the size of a
multiplexer(3 x (9 xl) on the size of the resulting core. The net gain we have
is about 70 CLBs. With this observation the method described in 5 is suited to
implement the DFG in a Virtex device. When targeting any of the Virtex above
the Virtex 300 with a minimum area of (32 x 48), the design will completely
fit in it. Only one partition will be generated and reconfiguration is not needed.

When targeting the Virtex 100 with size (20 x 30), the device can not hold
more than 4 multipliers simultaneously. Another temporal partitioning algo­
rithm will produce a minimum of two partitions in order to implement the
DFG. For 1000 iterations of the DFG computations, the device will be config­
ured 1000 times. With a reconfiguration time of 28 the time needed only for
reconfiguration will be 20008. This solution is not applicable. The algorithm
provided in this paper will generate only one partition for the same device. This
means the reconfiguration time is reduced to zero.

The device will contain 3 multipliers, 2 substracters one adder one compara­
tor and 9 multiplexers in the worst case. The total number of CLBs needed is
464. The design easily fits in the target device (Virtex 100). Table 2 gives an
overview over the sharing of modules among cores in the device.

Temporal Partitioning and Sequencing of Dataflow Graphs on RS 193

Table 2. Resource sharing for the problem of section 8

(1) (2) (3) (4) (5) (6) (7)
Addl - - - - X - -
Subl - - - - - X -
Sub2 - - - - - - X

Compl - - - - X - -
Mull - - - X - X -
Mul2 X - - - - - X
Mul3 - X X - - - -

9. CONCLUSION
This paper has presented a novel approach for the temporal placement of

DFG on a reconfigurable platform. The paper shows that allowing overlapping
of cores in the space and time can lead to a reduction in the number of parti­
tions. Sharing modules in FPGAs and switching from one core to another can
increase the latency of the partitions. Because the latency of a bitstream varies
from nanoseconds to microseconds, while the reconfiguration time of an FPGA
is more than a second, the overall performance of functions depends more on
the reconfiguration time than the computation time.

References
[1] C. Bobda and N. Steenbock. Singular value decomposition on distributed reconfigurable

systems. In 12th IEEE International Workshop On Rapid System Prototyping(RSP'OI),
Monterey California. IEEE Computer Society, 2001.

[2] T. 1. Callahan, P. Chong, A. Dehon, and 1. Wawrzynek. Fast module mapping and place­
ment for datapaths in fpgas. In International Symposium on Field Programmable Gate
Arrays(FPGA 98), pages 123 -132, Monterey, California, 1998. ACMlSIGDA.

[3] 1. M. P. Cardoso and H. C. Neto. An enhance static-list scheduling algorithm for tem­
poral partitioning onto rpus. In IFlP TC/o WG/O.5 /0 Int. Conf. on Very Large Scale
Integration(VLSI'99), pages 485 -496, Lisboa, Portugal, 1999. IFIP.

[4] D. Chang and M. Marek-Sadowska. Partitioning sequential circuits on dynamicaly recon­
figurable fpgas. In International Symposium on Field Programmable Gate Arrays(FPGA
98), pages 161-167, Monterey, California, 1998. ACMlSIGDA.

[5] Ejnioui and N. Ranganathan. Circuit scheduling on time-multiplexed fpgas.
[6] S. Guccione, D. Levi, and P. Sundararajan. Jbits: A java-based interface for reconfigurable

computing, 1999.
[7] K. Hall. dimensional quadratic placement algorithm, 1970.
[8J M. Kaul, R. Vemuri, S. Govindarajan, and I. Ouaiss. An automated temporal partitioning

tool for a class of dsp applications, 1998.

194 Christophe Bobda

[9] H. Liu and D. F. Wong. Circuit partitioning for dynamicaly reconfigurable fpgas. In
International Symposium on Field Programmable Gate Arrays(FPGA 98), pages 187-
194, Monterey, California, 1999. ACMlSIGDA.

[10] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and R. Vemuri. An integrated parti­
tioning and synthesis system for dynamically reconfigurable multi-FPGA architectures.
In IPPs/sPDP Workshops, pages 31-36, 1998.

[11] A. Pandey and R. Vemuri. Combined temporal partitioning and scheduling for reconfig­
urable architectures. In 1. Schewel, P. M. Athanas, S. A. Guccione, S. Ludwig, and 1. T.
McHenry, editors, Reconfigurable Technology: FPGAs for Computing and Applications,
Proc. SPIE 3844, pages 93-103, Bellingham, WA, 1999. SPIE - The International Society
for Optical Engineering.

[12] 1. Teich, S. P. Fekete, and 1. Schepers. Optimizing dynamic hardware reconfiguration.
Technical Report 97.228, Angewante Mathematic Und Informatik Universitat zu Koln,
1998.

[13] S. Trimberger. Circuit partitioning for dynamicaly reconfigurable fpgas. In International
Symposium on Field Programmable Gate Arrays(FPGA 98), pages 153 - 160, Monterey,
California, 1999. ACMlSIGDA.

[14] M. Vasilko. Dynasty: A temporal floorplanning based cad framework for dynamicaly
reconfigurable logic systems. In P. Lysaght and J. Irvine, editors, Field Programmable
Logic and Aplications FPL 1999, pages 124-133, Glasgow, UK, 1999. Springer.

[15] M. Vasilko and G. Benyon-Tinker. Automatic temporal floorplanning with guaranteed
solution feasibility. In R. Hartenstein and H. GrUnbacher, editors, Field Programmable
Logic and Aplications FPL 2000, pages ViUach, Austria, 2000. Springer.

	TEMPORAL PARTITIONING AND SEQUENCINGOF DATAFLOW GRAPHS ON RECONFIGURABLESYSTEMS
	1. INTRODUCTION
	2. RELATED WORK
	3. PROBLEM FORMULATION
	4. IMPLEMENTATION OF OVERLAPPING CORESAND RESSOURCE SHARING
	5. THE TEMPORAL PARTITIONING ALGORITHM
	6. PLACEMENT OF MODULES INCONFIGURATIONS
	7. CONFIGURATION SEQUENCING
	8. CASE STUDY: NUMERICAL SOLUTION OF ADIFFERENTIAL EQUATION
	9. CONCLUSION
	References

