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Abstract: Traditional Worst-Case Execution-Time (WCET) analysis is very complex. It 
has to deal with path analysis, to identify and describe the possible execution 
paths through the code to be analyzed, and it has to model the worst-case 
timing of the possible paths on the target hardware. The latter is again non­
trivial due to interference of modem hardware features like instruction 
pipelines, caches, and parallel instruction-execution units on the processor. 

To simplify WCET analysis we have proposed a new programming paradigm, 
single-path programming. Every program following this paradigm has only a 
single possible execution path, which makes path analysis and thus WCET 
analysis almost trivial. In this work we show how any real-time program code 
that is WCET-analyzable can be transformed into single-path code. This 
demonstrates that the single-path paradigm provides a universal solution to 
simplify WCET analysis. 

Key words: real-time systems, programming paradigms, worst-case execution time, 
computer architectures 

1. INTRODUCTION 

Knowing the worst-case execution time (WCEr) of tasks is crucial for 
building real-time systems. Only if safe WCEr bounds for all time-critical 
tasks of a real-time system have been established can the correct timely 
operation of the whole real-time computer system be verified. During the 
last decade many research groups have undertaken research on (static) 
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WCET analysis of real-time tasks and many sub-problems of WCET 
analysis have been solved, see (Puschner and Bums, 2000). 

Despite the numerous efforts and results in WCET -analysis research 
there are still three significant obstacles to a safe and exact WCET analysis: 
1. Limits of automatic path analysis: To compute a tight WCET bound, 

WCET analysis needs exact knowledge about the possible execution paths 
through the analyzed code. Deriving this information automatically is, in 
general, not possible: First, the control flow of a program typically 
depends on the input data of the program. Thus a WCET bound cannot be 
predicted purely from code analysis but needs additional information 
about possible input data or about the effects the possible input data have 
on the control flow. Second, the fully automatic program analysis would 
be in conflict to the halting problem. In order to allow for a WCET 
analysis despite these fundamental limits, current WCET tools rely on the 
user to provide the lacking path information (Colin and Puaut, 2000; 
Engblom and Ermedahl, 2000). Deriving this path information is an 
intellectually difficult, time-consuming, and error-prone task. 

2. Lack of hardware-timing data: Modem processors use speed-up 
mechanisms like caches, instruction pipelines, parallel execution units, 
and branch-prediction to enhance execution performance. These 
mechanisms are complex in their implementation and have mutual 
interferences in their timing. Besides, the mechanisms and their timing 
are generally scarcely documented to protect the manufacturer's 
intellectual property (Petters and Farber, 1999). These facts taken together 
make it difficult if not impossible to build reliable tools for static WCET 
analysis of modem processors. 

3. Complexity of analysis: It has been shown that the number of paths to be 
analyzed for an exact WCET analysis grows exponentially with the 
number of consecutive branches in the analyzed code when this code is to 
be executed on modem processors. Except for very simple programs this 
high complexity makes the full path enumeration needed for an exact 
WCET analysis intractable (Lundqvist and Stenstrom, 1999). WCET 
analysis therefore has to do with pessimistic approximations. These 
approximations, however, over-estimate WCET and make a certain waste 
of resources at runtime unavoidable. 
In a previous paper (Puschner and Burns, 2002) we presented the single­

path paradigm, a radical programming paradigm that avoids the problems of 
WCET analysis. Using this paradigm, programmers write programs whose 
behaviour is independent of input data. These programs only have a single 
execution path that is executed in each program execution. The execution 
time of programs written in the praradigm is therefore exactly predictable. 
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The fact that programs only have a single execution path makes WCET 
analysis trivial: First, path analysis is superfluous - observing the execution 
path of a code execution with any input data yields the singleton execution 
path. Second, there is no need for static WCET analysis. If programs only 
have a single path, as proposed, this singleton path is necessarily the worst­
case path. Thus, obtaining the WCET by "exhaustive" measurements (either 
on the target or on a cycle-accurate hardware simulator) is possible. There is 
no need to build highly sophisticated tools for static analysis as this is the 
case for traditional code where the high number of input-data dependent test 
cases makes measurement-based WCET analysis infeasible. 

Another property of the single-path approach is that the execution time of 
single-path code is free of jitter. Thus it is not necessary to introduce delay 
constructs into the code if a constant execution time of the code is required. 
Also, the timing analysis of multiple tasks with communication or 
synchronization constraints gets less complex if the execution times of the 
code between communication and synchronization points is fixed as opposed 
to the case when code execution times are variable. 

An approach that only permits programs with a single execution path 
may seem to allow programmers to write only very simple programs. In this 
paper we demonstrate that the proposed approach is not at all that restrictive. 
In fact, we show how any piece of code that is WCET -analyzable can be 
translated into single-path code. The translation builds on if-conversion 
(Allen et al., 1983) to produce code that keeps input-data dependent 
alternatives local to single conditional operations with data-independent 
execution times. While if-conversion only translates branching code within 
innermost loops, the here-presented conversion also converts loops - all 
loops with input-data dependent termination conditions are translated into 
loops with constant iteration counts. 

The paper is structured as follows: Section 2 explains the terms and 
assumptions used throughout the paper. Section 3 introduces the main 
concepts of the single-path approach. Section 4 explains the translation rules 
that are needed to translate WCET -analyzable programs into programs with 
a single execution path. Section 5 provides a program example and shows its 
conversion into single-path code. Section 6 gives a summary and conclusion. 

2. TERMS AND ASSUMPTIONS 

We view a program as a piece of code that defines the transformation of 
an initial store (assignment of values to all program variables) into a new, 
final store. The valid set of initial stores for an application is assumed to be 
known. The program itself consists of actions whose deterministic semantics 
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define the single operations (assignment, expression evaluation, condition 
evaluation, etc.) and the control flow of actions in this transformation. The 
control-flow semantics describe the starting point and the end points of the 
program as well as the transitions and the transition conditions between 
actions. The control flow semantics of an action define zero, one, or two 
alternative successors of the action. We call actions with one successor 
sequential actions and actions with two alternative successors branches. 
Actions with no successors mark program end points. 

The programs considered in this work are purely computational. They are 
free of any communication, synchronization, or other blocking during their 
execution, see the simple-task model described in (Kopetz, 1997). Instead we 
assume that inputs to a program are available before its execution starts (as 
part of the initial store) and results are written to memory locations that are 
read by the 110 subsystem when the execution has completed. Also, the 
values of variables only change as the result of the operations performed by 
the program execution. There are no volatile or shared variables that change 
their values asynchronously to program execution. 

We defme an execution path as a sequence of actions that starts with a 
valid initial store at the starting point, obeys the semantics of the actions, and 
terminates at an end point of the program. The program code and the 
possible initial stores characterize the feasible execution paths of a program. 

For each pair of different execution paths there is a maximal sequence of 
actions that is a prefix of both paths. By definition the last operation of such 
a prefix is a branch. As all operations are assumed to be deterministic and 
the actions preceding the branch are identical for both paths, the choice of 
different successors has to be due to differences in the initial store (i.e., input 
variables) of the executions. We therefore call such a branch an input-data 
dependent branch. There are also branches that are not input-data dependent. 
The latter do not occur as the last operations of a maximum common prefix 
of any two execution paths. 

Each action of an execution path has an execution time, a positive 
integral number (e.g., number of processor cycles). We assume that the 
execution time of an action depends on the semantics of the operation it 
performs and the sequence of actions preceding the action on the execution 
path. The execution times of actions on a path are considered to be 
unaffected by actions that are not local to the path (e.g., the actions 
performed prior or in parallel to that path). The execution time of an action is 
further assumed to be independent of the store on which the action is 
performed, i.e., the durations of operations are assumed to be independent of 
the actual values of their operands and memory access times are assumed to 
be homogeneous for all variables. The execution time of an execution path is 
the sum of the execution times of the actions of the path. 
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3. THE SINGLE-PATH APPROACH 

As mentioned before, WCET analysis is in general complex because 
programs behave differently for different input data, i.e., different input data 
cause the code to execute on different execution paths with differing 
execution times. The single-path approach avoids this complexity by 
ensuring that the code has only a single execution path. This approach uses 
code transformations to transform input-data dependent loops and branches. 
It transforms loops with input-data dependent termination conditions into 
loops with invariable iteration counts. Input-data dependent branches with 
the semantics of if or case statements and their alternatives are transformed 
into strictly sequential code. To be precise, the code resulting from the 
transformation of branches avoids data dependencies in execution times by 
keeping input-data dependent branching local to single operations with data­
independent execution times. 

The sequential code generated by the above-mentioned transformation 
includes so-called predicated operations, i.e., operations that realize branches 
within single machine instructions and have a constant, data-independent 
execution time. The predicated instruction used is the conditional move 
instruction. It is implemented on a number of modern processors (e.g., 
Motorola M -Core, Alpha, Pentium P6) and has the following general form: 

movCC destination, source 

The conditional move compares the condition code CC with the condition 
code register. If the result is true the processor copies the contents of the 
source register to the destination register. If the condition evaluates to false, 
the value of destination remains unchanged. 

In the next section we show how the conditional move instruction and 
program transformations are used to create code whose execution time is 
constant and therefore fully predictable. 

4. CONVERTING WCET-ANALYZABLE CODE 
INTO SINGLE-PATH CODE 

Every well structured and WCET -analyzable piece of program code can 
be translated into code with a single execution path. (By WCET-analyzable 
code we understand code for which the maximum number of loop iterations 
for every loop is known. A WCET bound is thus computable.) The 
translation replaces all input-data dependent alternative statements and loops 
by deterministic code, i.e., code that restricts all input-data dependencies to 
conditional move instructions. 
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In the following we show how input-data dependent conditional 
statements and loops are translated. We use if statements with two 
alternatives to illustrate the translation of conditionals. The translation of 
conditionals with more than two alternatives is very similar and therefore not 
specifically described. Further, goto and exit statements are not considered in 
this paper. Any functionality can also be implemented without the latter. 

4.1 Translation of Conditionals 

Conditional branching statements conditionally change the values of one 
or more variables. The translation of conditional branches is straightforward. 
It generates sequential code with conditional move assignments for each of 
the conditionally changed variables. This conversion from control 
dependencies into data dependencies is called if-conversion (Allen et aI., 
1983, Park and Schlansker, 1991) and is traditionally only used to translate 
the bodies of innermost loops into non-branching code, see Figure 1. 

tmpl := exprl; 
if cond tmp2 .- expr2; 
then result := exprl; test cond; 
else result := expr2; movt result, tmpl; 

movf result, tmp2; 

Figure 1. Branching statement and corresponding sequential code generated by if-conversion. 

When translating assignments in nested conditional branches that are 
input-data dependent, the conditions of all nested branches have to combined 
in the conditions of the generated conditional assignments. 

To describe the translation of conditionals more formally, we assume that 
each branch uses the input variables v/, ... ,vm' to compute the values for 
variables Vj'''',Vn' Thus, using if-conversion an if statement is translated into 
sequential code as shown in Figure 2. 

if cond 
then (Vj, ... ,vn) := F1(v/, ... ,vm 
else (vj, ... ,vn) := F2(v/, ... ,vm 

(hj, ... ,hn) := F1(v/, ... ,vm 

(h/, ... ,hn := F2(v/, ... ,vm 

cond: (vj, ... ,vn) := (hj, ... ,hn) 
not cond: (Vj, ... ,vn):= (h/, ... ,hn 

Figure 2. General form of if-conversion. 

The last two lines of the code on the right side of Figure 2 are guarded 
assignments with the guards being the condition of the if statement and its 
negation, respectively. We use these guarded assignments of tupels to 
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represent a number of conditional move operations. The guard represents the 
condition of the respective conditional moves (see also Figure 1). 

Figure 3 shows how nested if statements are translated. First, the 
condition of the current if and the enclosing conditions are combined. This 
new conditional is then translated into sequential code using if-conversion. 

-- conditions so far: cond-old 
if cond-new 
then .. . 
else .. . 

if cond-old and cond-new 
then .. . 
else .. . 

Figure 3. First step of the translation of a nested if statement. 

4.2 Translation of Loops 

Loops with input-data dependent termination conditions are translated in 
two steps. First, the loop is changed into a simple counting loop with a 
constant iteration count. The iteration count of the new loop is set to the 
maximum iteration count of the original loop. The old termination condition 
is used to build a new branching statement inside the new loop. This new 
conditional statement is placed around the body of the original loop and 
simulates the data dependent termination of the original loop in the newly 
generated counting loop. 

Second, the new conditional statement, that has been generated from the 
old loop condition, is transformed into a constant-time conditional 
assignment. As a result the entire loop executes in constant time. 

Figure 4 illustrates the first step of the loop transformation. In the 
translated version (right), the variable finished x has been introduced to store 
the information if the original loop would have executed the current iteration 
or would already have terminated. 

-- conditions so far: cond-old 
while cond-new do max expr times 

stmts; 

finished x := false; 
for ix := 1 to expr do 
begin 

if not cond-new 
then finished x := true; 
if cond-old and notfinishedx 

thenstmts; 
end 

Figure 4. Translation of a loop. 

Applying the described transformation to existing real-time code may 
yield temporal predictability at very high cost, i.e., execution time. Thus we 
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consider the illustration of the transformation as a demonstration of the 
general feasibility of our approach, rather than proposing to use the 
transformation for generating temporally predictable code from arbitrary 
real-time code. In order to produce code that is both temporally predictable 
and well performing the programmer needs to use adequate algorithms, i.e., 
algorithms with no or minimal input-data dependent branching. 

5. AN EXAMPLE 

The example illustrates the described transformation. It shows an 
implementation of bubble sort and the corresponding single-path code. 

On its left side Figure 5 lists a typical traditional implementation of 
bubble sort. The function has one parameter, the array a to be sorted. The 
function uses two nested loops to transport elements to their correct 
positions. In each iteration of the inner loop two neighbouring array 
elements are compared. If the comparison evaluates to true the two elements 
are swapped, otherwise no operation is performed. 

static void bubblel(int all) 
{ 

int i, j, t; 
for(i=SIZE-l; i>O; i--) 
( 

for(j=l; j<=i; j++) 
{ 

if (a[j-ll > a[j]) 
{ 

t = a[jl; 
a[jl = a[j-ll; 
a[j-ll = t; 

static void bubble2(int all) 
{ 

int i, j, s, t; 
for(i=SIZE-l; i>O; i--) 
( 

for(j=l; j<=i; j++) 
{ 

s = a[j-ll; 
t = a[jl; 
s <= t: a[j-ll = s; 
s > t: a[j-ll = t; 
s <= t: a[jl = t; 
s > t: a[jl = s; 

Figure 5. Traditional (left) and single-path (right) version of bubble sort. 

Note that the branching statement causes an execution-time variability in 
the inner-loop body. Depending on the result of the branching condition the 
duration of each iteration of the inner loop is either long or very short. As the 
body of the inner loop executes SIZE(SIZE-l)/2 times when sorting an array 
of SIZE elements, one immediately concludes that bubble1 has at least 
SIZE(SIZE-l)/2+ 1 possible execution times. If branch prediction hardware is 
used the number of possible execution times is in fact much higher. 

On its right side Figure 5 shows the bubble sort code after the 
transformation of input-data dependent branches. The if statement in the 
inner loop has been replaced by four conditional move instructions. 
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To compare the execution characteristics of the two implementations we 
generated executable programs for both versions. The bubble] version was 
directly compiled and linked for the Motorola M-Core processor (Motorola, 
1997). As our compiler does not translate the guarded assignments we 
produced the code for bubble2 by editing the machine code of bubbleJ - we 
replaced the conditional branch of the if statement by sequential code, 
including conditional move instructions. Both versions were then tested on a 
cycle-accurate M-Core simulator. The results are summarized in Table 1. 
For the experiment an array size of 10 was assumed. 

Table 1. Number of execution paths, minimum and worst-case execution time of bubble sort 
variants for array size 10. 

Implementation 
Traditional 
Single Path 

# Paths 
3628800 

1 

min. Exec. Time 
675 
972 

weET 
810 
972 

The traditional version of bubble sort has a big variability of execution 
times (675-810 CPU cycles). As expected, the single-path version has a 
single execution time for all inputs (972 cycles). The WCET of the single­
path implementation is about 20% greater than that of the conventional 
implementation. This seems to be a reasonable price given the fact that 
finding this execution time is trivial - there is only one path to evaluate. The 
traditional solution has more than 3.6 million paths (a huge number given 
that simple piece of code). While identifying the worst-case path is not too 
difficult for this simple, one can immediately think of more complex code 
with a much greater number of paths that are not so easy to analyze. In that 
case the advantage of having a single path is obvious. As path analysis is 
unnecessary the problems of path analysis, i.e., potential flaws and 
pessimism, are non-existent. 

6. CONCLUSION 

In an earlier paper we presented the single-path programming paradigm. 
This programming paradigm makes it possible to write programs that can be 
easily analyzed for their WCET. The key element of this programming 
paradigm is to keep input -data dependent branching local to single machine 
instructions with invariable execution times. The conditional move 
instruction is the most important of those instructions. 

In this paper we showed how every piece of code that is WCET­
analyzable (i.e., the maximum number of iterations can be bounded for all 
loops) can be transformed into single-path code. This is done by converting 
all input -data dependent conditional statements and loop statements and by 



172 Peter Puschner 

using if-conversion to translate all remaining input-data dependent branches 
into sequential code with conditional moves. WCET analysis for the single­
path code is trivial: The WCET is obtained by executing the code with any 
valid input data on a hardware simulator or even the target hardware and 
measuring the execution time of the single execution path. 

Although we demonstrated how input-data dependent code is 
transformed we do not consider this transformation as an adequate method 
for producing single-path code from any piece of code - Relying purely on 
the transformation will, in general, leave the programmer with very 
inefficient code. To get code that cannot only easily be analyzed for its 
WCET but also has a good performance, developing or selecting algorithms 
where execution paths do only marginally or not at all depend on input data 
is important. Identifying and developing algorithms that are well-suited for 
our approach will be a central focus of our further research. 
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