
Transforming Execution-Time Boundable Code into
Temporally Predictable Code

Peter Puschner
Institut for Technische Informatik. Technische Universitdt Wien, Austria

Abstract: Traditional Worst-Case Execution-Time (WCET) analysis is very complex. It
has to deal with path analysis, to identify and describe the possible execution
paths through the code to be analyzed, and it has to model the worst-case
timing of the possible paths on the target hardware. The latter is again non­
trivial due to interference of modem hardware features like instruction
pipelines, caches, and parallel instruction-execution units on the processor.

To simplify WCET analysis we have proposed a new programming paradigm,
single-path programming. Every program following this paradigm has only a
single possible execution path, which makes path analysis and thus WCET
analysis almost trivial. In this work we show how any real-time program code
that is WCET-analyzable can be transformed into single-path code. This
demonstrates that the single-path paradigm provides a universal solution to
simplify WCET analysis.

Key words: real-time systems, programming paradigms, worst-case execution time,
computer architectures

1. INTRODUCTION

Knowing the worst-case execution time (WCEr) of tasks is crucial for
building real-time systems. Only if safe WCEr bounds for all time-critical
tasks of a real-time system have been established can the correct timely
operation of the whole real-time computer system be verified. During the
last decade many research groups have undertaken research on (static)

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
B. Kleinjohann et al. (eds.), Design and Analysis of Distributed Embedded Systems

10.1007/978-0-387-35599-3_29

http://dx.doi.org/10.1007/978-0-387-35599-3_29

164 Peter Puschner

WCET analysis of real-time tasks and many sub-problems of WCET
analysis have been solved, see (Puschner and Bums, 2000).

Despite the numerous efforts and results in WCET -analysis research
there are still three significant obstacles to a safe and exact WCET analysis:
1. Limits of automatic path analysis: To compute a tight WCET bound,

WCET analysis needs exact knowledge about the possible execution paths
through the analyzed code. Deriving this information automatically is, in
general, not possible: First, the control flow of a program typically
depends on the input data of the program. Thus a WCET bound cannot be
predicted purely from code analysis but needs additional information
about possible input data or about the effects the possible input data have
on the control flow. Second, the fully automatic program analysis would
be in conflict to the halting problem. In order to allow for a WCET
analysis despite these fundamental limits, current WCET tools rely on the
user to provide the lacking path information (Colin and Puaut, 2000;
Engblom and Ermedahl, 2000). Deriving this path information is an
intellectually difficult, time-consuming, and error-prone task.

2. Lack of hardware-timing data: Modem processors use speed-up
mechanisms like caches, instruction pipelines, parallel execution units,
and branch-prediction to enhance execution performance. These
mechanisms are complex in their implementation and have mutual
interferences in their timing. Besides, the mechanisms and their timing
are generally scarcely documented to protect the manufacturer's
intellectual property (Petters and Farber, 1999). These facts taken together
make it difficult if not impossible to build reliable tools for static WCET
analysis of modem processors.

3. Complexity of analysis: It has been shown that the number of paths to be
analyzed for an exact WCET analysis grows exponentially with the
number of consecutive branches in the analyzed code when this code is to
be executed on modem processors. Except for very simple programs this
high complexity makes the full path enumeration needed for an exact
WCET analysis intractable (Lundqvist and Stenstrom, 1999). WCET
analysis therefore has to do with pessimistic approximations. These
approximations, however, over-estimate WCET and make a certain waste
of resources at runtime unavoidable.
In a previous paper (Puschner and Burns, 2002) we presented the single­

path paradigm, a radical programming paradigm that avoids the problems of
WCET analysis. Using this paradigm, programmers write programs whose
behaviour is independent of input data. These programs only have a single
execution path that is executed in each program execution. The execution
time of programs written in the praradigm is therefore exactly predictable.

Transforming Code into Temporally Predictable Code 165

The fact that programs only have a single execution path makes WCET
analysis trivial: First, path analysis is superfluous - observing the execution
path of a code execution with any input data yields the singleton execution
path. Second, there is no need for static WCET analysis. If programs only
have a single path, as proposed, this singleton path is necessarily the worst­
case path. Thus, obtaining the WCET by "exhaustive" measurements (either
on the target or on a cycle-accurate hardware simulator) is possible. There is
no need to build highly sophisticated tools for static analysis as this is the
case for traditional code where the high number of input-data dependent test
cases makes measurement-based WCET analysis infeasible.

Another property of the single-path approach is that the execution time of
single-path code is free of jitter. Thus it is not necessary to introduce delay
constructs into the code if a constant execution time of the code is required.
Also, the timing analysis of multiple tasks with communication or
synchronization constraints gets less complex if the execution times of the
code between communication and synchronization points is fixed as opposed
to the case when code execution times are variable.

An approach that only permits programs with a single execution path
may seem to allow programmers to write only very simple programs. In this
paper we demonstrate that the proposed approach is not at all that restrictive.
In fact, we show how any piece of code that is WCET -analyzable can be
translated into single-path code. The translation builds on if-conversion
(Allen et al., 1983) to produce code that keeps input-data dependent
alternatives local to single conditional operations with data-independent
execution times. While if-conversion only translates branching code within
innermost loops, the here-presented conversion also converts loops - all
loops with input-data dependent termination conditions are translated into
loops with constant iteration counts.

The paper is structured as follows: Section 2 explains the terms and
assumptions used throughout the paper. Section 3 introduces the main
concepts of the single-path approach. Section 4 explains the translation rules
that are needed to translate WCET -analyzable programs into programs with
a single execution path. Section 5 provides a program example and shows its
conversion into single-path code. Section 6 gives a summary and conclusion.

2. TERMS AND ASSUMPTIONS

We view a program as a piece of code that defines the transformation of
an initial store (assignment of values to all program variables) into a new,
final store. The valid set of initial stores for an application is assumed to be
known. The program itself consists of actions whose deterministic semantics

166 Peter Puschner

define the single operations (assignment, expression evaluation, condition
evaluation, etc.) and the control flow of actions in this transformation. The
control-flow semantics describe the starting point and the end points of the
program as well as the transitions and the transition conditions between
actions. The control flow semantics of an action define zero, one, or two
alternative successors of the action. We call actions with one successor
sequential actions and actions with two alternative successors branches.
Actions with no successors mark program end points.

The programs considered in this work are purely computational. They are
free of any communication, synchronization, or other blocking during their
execution, see the simple-task model described in (Kopetz, 1997). Instead we
assume that inputs to a program are available before its execution starts (as
part of the initial store) and results are written to memory locations that are
read by the 110 subsystem when the execution has completed. Also, the
values of variables only change as the result of the operations performed by
the program execution. There are no volatile or shared variables that change
their values asynchronously to program execution.

We defme an execution path as a sequence of actions that starts with a
valid initial store at the starting point, obeys the semantics of the actions, and
terminates at an end point of the program. The program code and the
possible initial stores characterize the feasible execution paths of a program.

For each pair of different execution paths there is a maximal sequence of
actions that is a prefix of both paths. By definition the last operation of such
a prefix is a branch. As all operations are assumed to be deterministic and
the actions preceding the branch are identical for both paths, the choice of
different successors has to be due to differences in the initial store (i.e., input
variables) of the executions. We therefore call such a branch an input-data
dependent branch. There are also branches that are not input-data dependent.
The latter do not occur as the last operations of a maximum common prefix
of any two execution paths.

Each action of an execution path has an execution time, a positive
integral number (e.g., number of processor cycles). We assume that the
execution time of an action depends on the semantics of the operation it
performs and the sequence of actions preceding the action on the execution
path. The execution times of actions on a path are considered to be
unaffected by actions that are not local to the path (e.g., the actions
performed prior or in parallel to that path). The execution time of an action is
further assumed to be independent of the store on which the action is
performed, i.e., the durations of operations are assumed to be independent of
the actual values of their operands and memory access times are assumed to
be homogeneous for all variables. The execution time of an execution path is
the sum of the execution times of the actions of the path.

Transforming Code into Temporally Predictable Code 167

3. THE SINGLE-PATH APPROACH

As mentioned before, WCET analysis is in general complex because
programs behave differently for different input data, i.e., different input data
cause the code to execute on different execution paths with differing
execution times. The single-path approach avoids this complexity by
ensuring that the code has only a single execution path. This approach uses
code transformations to transform input-data dependent loops and branches.
It transforms loops with input-data dependent termination conditions into
loops with invariable iteration counts. Input-data dependent branches with
the semantics of if or case statements and their alternatives are transformed
into strictly sequential code. To be precise, the code resulting from the
transformation of branches avoids data dependencies in execution times by
keeping input-data dependent branching local to single operations with data­
independent execution times.

The sequential code generated by the above-mentioned transformation
includes so-called predicated operations, i.e., operations that realize branches
within single machine instructions and have a constant, data-independent
execution time. The predicated instruction used is the conditional move
instruction. It is implemented on a number of modern processors (e.g.,
Motorola M -Core, Alpha, Pentium P6) and has the following general form:

movCC destination, source

The conditional move compares the condition code CC with the condition
code register. If the result is true the processor copies the contents of the
source register to the destination register. If the condition evaluates to false,
the value of destination remains unchanged.

In the next section we show how the conditional move instruction and
program transformations are used to create code whose execution time is
constant and therefore fully predictable.

4. CONVERTING WCET-ANALYZABLE CODE
INTO SINGLE-PATH CODE

Every well structured and WCET -analyzable piece of program code can
be translated into code with a single execution path. (By WCET-analyzable
code we understand code for which the maximum number of loop iterations
for every loop is known. A WCET bound is thus computable.) The
translation replaces all input-data dependent alternative statements and loops
by deterministic code, i.e., code that restricts all input-data dependencies to
conditional move instructions.

168 Peter Puschner

In the following we show how input-data dependent conditional
statements and loops are translated. We use if statements with two
alternatives to illustrate the translation of conditionals. The translation of
conditionals with more than two alternatives is very similar and therefore not
specifically described. Further, goto and exit statements are not considered in
this paper. Any functionality can also be implemented without the latter.

4.1 Translation of Conditionals

Conditional branching statements conditionally change the values of one
or more variables. The translation of conditional branches is straightforward.
It generates sequential code with conditional move assignments for each of
the conditionally changed variables. This conversion from control
dependencies into data dependencies is called if-conversion (Allen et aI.,
1983, Park and Schlansker, 1991) and is traditionally only used to translate
the bodies of innermost loops into non-branching code, see Figure 1.

tmpl := exprl;
if cond tmp2 .- expr2;
then result := exprl; test cond;
else result := expr2; movt result, tmpl;

movf result, tmp2;

Figure 1. Branching statement and corresponding sequential code generated by if-conversion.

When translating assignments in nested conditional branches that are
input-data dependent, the conditions of all nested branches have to combined
in the conditions of the generated conditional assignments.

To describe the translation of conditionals more formally, we assume that
each branch uses the input variables v/, ... ,vm' to compute the values for
variables Vj'''',Vn' Thus, using if-conversion an if statement is translated into
sequential code as shown in Figure 2.

if cond
then (Vj, ... ,vn) := F1(v/, ... ,vm
else (vj, ... ,vn) := F2(v/, ... ,vm

(hj, ... ,hn) := F1(v/, ... ,vm

(h/, ... ,hn := F2(v/, ... ,vm

cond: (vj, ... ,vn) := (hj, ... ,hn)
not cond: (Vj, ... ,vn):= (h/, ... ,hn

Figure 2. General form of if-conversion.

The last two lines of the code on the right side of Figure 2 are guarded
assignments with the guards being the condition of the if statement and its
negation, respectively. We use these guarded assignments of tupels to

Transforming Code into Temporally Predictable Code 169

represent a number of conditional move operations. The guard represents the
condition of the respective conditional moves (see also Figure 1).

Figure 3 shows how nested if statements are translated. First, the
condition of the current if and the enclosing conditions are combined. This
new conditional is then translated into sequential code using if-conversion.

-- conditions so far: cond-old
if cond-new
then .. .
else .. .

if cond-old and cond-new
then .. .
else .. .

Figure 3. First step of the translation of a nested if statement.

4.2 Translation of Loops

Loops with input-data dependent termination conditions are translated in
two steps. First, the loop is changed into a simple counting loop with a
constant iteration count. The iteration count of the new loop is set to the
maximum iteration count of the original loop. The old termination condition
is used to build a new branching statement inside the new loop. This new
conditional statement is placed around the body of the original loop and
simulates the data dependent termination of the original loop in the newly
generated counting loop.

Second, the new conditional statement, that has been generated from the
old loop condition, is transformed into a constant-time conditional
assignment. As a result the entire loop executes in constant time.

Figure 4 illustrates the first step of the loop transformation. In the
translated version (right), the variable finished x has been introduced to store
the information if the original loop would have executed the current iteration
or would already have terminated.

-- conditions so far: cond-old
while cond-new do max expr times

stmts;

finished x := false;
for ix := 1 to expr do
begin

if not cond-new
then finished x := true;
if cond-old and notfinishedx

thenstmts;
end

Figure 4. Translation of a loop.

Applying the described transformation to existing real-time code may
yield temporal predictability at very high cost, i.e., execution time. Thus we

170 Peter Puschner

consider the illustration of the transformation as a demonstration of the
general feasibility of our approach, rather than proposing to use the
transformation for generating temporally predictable code from arbitrary
real-time code. In order to produce code that is both temporally predictable
and well performing the programmer needs to use adequate algorithms, i.e.,
algorithms with no or minimal input-data dependent branching.

5. AN EXAMPLE

The example illustrates the described transformation. It shows an
implementation of bubble sort and the corresponding single-path code.

On its left side Figure 5 lists a typical traditional implementation of
bubble sort. The function has one parameter, the array a to be sorted. The
function uses two nested loops to transport elements to their correct
positions. In each iteration of the inner loop two neighbouring array
elements are compared. If the comparison evaluates to true the two elements
are swapped, otherwise no operation is performed.

static void bubblel(int all)
{

int i, j, t;
for(i=SIZE-l; i>O; i--)
(

for(j=l; j<=i; j++)
{

if (a[j-ll > a[j])
{

t = a[jl;
a[jl = a[j-ll;
a[j-ll = t;

static void bubble2(int all)
{

int i, j, s, t;
for(i=SIZE-l; i>O; i--)
(

for(j=l; j<=i; j++)
{

s = a[j-ll;
t = a[jl;
s <= t: a[j-ll = s;
s > t: a[j-ll = t;
s <= t: a[jl = t;
s > t: a[jl = s;

Figure 5. Traditional (left) and single-path (right) version of bubble sort.

Note that the branching statement causes an execution-time variability in
the inner-loop body. Depending on the result of the branching condition the
duration of each iteration of the inner loop is either long or very short. As the
body of the inner loop executes SIZE(SIZE-l)/2 times when sorting an array
of SIZE elements, one immediately concludes that bubble1 has at least
SIZE(SIZE-l)/2+ 1 possible execution times. If branch prediction hardware is
used the number of possible execution times is in fact much higher.

On its right side Figure 5 shows the bubble sort code after the
transformation of input-data dependent branches. The if statement in the
inner loop has been replaced by four conditional move instructions.

Transforming Code into Temporally Predictable Code 171

To compare the execution characteristics of the two implementations we
generated executable programs for both versions. The bubble] version was
directly compiled and linked for the Motorola M-Core processor (Motorola,
1997). As our compiler does not translate the guarded assignments we
produced the code for bubble2 by editing the machine code of bubbleJ - we
replaced the conditional branch of the if statement by sequential code,
including conditional move instructions. Both versions were then tested on a
cycle-accurate M-Core simulator. The results are summarized in Table 1.
For the experiment an array size of 10 was assumed.

Table 1. Number of execution paths, minimum and worst-case execution time of bubble sort
variants for array size 10.

Implementation
Traditional
Single Path

Paths
3628800

1

min. Exec. Time
675
972

weET
810
972

The traditional version of bubble sort has a big variability of execution
times (675-810 CPU cycles). As expected, the single-path version has a
single execution time for all inputs (972 cycles). The WCET of the single­
path implementation is about 20% greater than that of the conventional
implementation. This seems to be a reasonable price given the fact that
finding this execution time is trivial - there is only one path to evaluate. The
traditional solution has more than 3.6 million paths (a huge number given
that simple piece of code). While identifying the worst-case path is not too
difficult for this simple, one can immediately think of more complex code
with a much greater number of paths that are not so easy to analyze. In that
case the advantage of having a single path is obvious. As path analysis is
unnecessary the problems of path analysis, i.e., potential flaws and
pessimism, are non-existent.

6. CONCLUSION

In an earlier paper we presented the single-path programming paradigm.
This programming paradigm makes it possible to write programs that can be
easily analyzed for their WCET. The key element of this programming
paradigm is to keep input -data dependent branching local to single machine
instructions with invariable execution times. The conditional move
instruction is the most important of those instructions.

In this paper we showed how every piece of code that is WCET­
analyzable (i.e., the maximum number of iterations can be bounded for all
loops) can be transformed into single-path code. This is done by converting
all input -data dependent conditional statements and loop statements and by

172 Peter Puschner

using if-conversion to translate all remaining input-data dependent branches
into sequential code with conditional moves. WCET analysis for the single­
path code is trivial: The WCET is obtained by executing the code with any
valid input data on a hardware simulator or even the target hardware and
measuring the execution time of the single execution path.

Although we demonstrated how input-data dependent code is
transformed we do not consider this transformation as an adequate method
for producing single-path code from any piece of code - Relying purely on
the transformation will, in general, leave the programmer with very
inefficient code. To get code that cannot only easily be analyzed for its
WCET but also has a good performance, developing or selecting algorithms
where execution paths do only marginally or not at all depend on input data
is important. Identifying and developing algorithms that are well-suited for
our approach will be a central focus of our further research.

REFERENCES

Allen, 1., Kennedy, K., Porterfield, C., and Warren, J. 1983. Conversion of Control
Dependence to Data Dependence. Proceedings 0/ the 10th ACM Symposium on Principles
o/Programming Languages: 177-189.

Colin, A., and Puaut, I. 2000. Worst Case Execution Time Analysis for a Processor with
Branch Prediction. Real-Time Systems, 18(2/3):249-274.

Engblom, 1., and Ermedahl, A. 2000. Modeling Complex Flows for Worst-Case Execution
Time Analysis. Proceedings of the 21st IEEE Real-Time Systems Symposium: 163-174.

Kopetz, H. 1997. Real-Time Systems. Kluwer Academic Publishers.
Lundqvist, T., and Stenstr()m, P. 1999. Timing Anomalies in Dynamically Scheduled

Microprocessors. Proceedings of the 20th IEEE Real-Time Systems Symposium: 12-21.
Motorola Inc. 1997. M-Core Reference Manual.
Park, 1., and Schlansker, M. 1991. On Predicated Execution. Technical Report HPL-91-58,

Hewlett Packard Software and Systems Laboratory, Palo Alto, CA, USA.
Petters, S., and Fllrber, G. 1999. Making Worst Case Execution Time Analysis for Hard Real­

Time Tasks on State of the Art Processors Feasible. Proceedings of the 6th IEEE
International Conference on Real-Time Computer Systems and Applications: 442-449.

Puschner, P., and Bums, A. 2000. Guest Editorial: A Review of Worst-Case Execution-Time
Analysis. Real-Time Systems, 18(213):115-127.

Puschner, P., and Bums, A. 2002. Writing Temporally Predictable Code. Proceedings of the
7th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems.

	Transforming Execution-Time Boundable Code intoTemporally Predictable Code
	1. INTRODUCTION
	2. TERMS AND ASSUMPTIONS
	3. THE SINGLE-PATH APPROACH
	4. CONVERTING WCET-ANALYZABLE CODEINTO SINGLE-PATH CODE
	4.1 Translation of Conditionals
	4.2 Translation of Loops

	5. AN EXAMPLE
	6. CONCLUSION
	REFERENCES

