
Fault detection in safety-critical embedded systems

nOMEN VERBER i, MA TJAl COLNARIC i , AND WOLFGANG A.
HALANG2

JUniversity of Maribor, Faculty of Electrical Engineering and Computer Science, 2000 Maribor,
Slovenia; 2FernUniversitat Hagen, Faculty of Electrical Engineering, 58084 Hagen, Germany

Abstract: In the paper, a proposition for a systematic approach to fault detection in
building a dependable and fault-tolerant control system is presented. A
network of simple monitoring cells that monitor and evaluate functioning of
critical sub-processes of the system is proposed. Further, different approaches
for the implementation of the monitoring cells are observed.

Key words: Safety-critical embedded systems, fault-tolerant control systems, fault
detection, fault localization and isolation

1. INTRODUCTION

A typical present day control system consists of physical process
components, sensors, actuators, distributed computers with communication
networks, and several thousands of lines of code. Examples of these are
control systems in industrial plants, nuclear reactors, avionics, etc. The size
and the complexity of such systems increase every year and so does the
probability of a fault in one of the many components. Each fault in such a
system can cause severe material loss or even endanger human lives.

Most of the researchers working on the problem of fault-tolerant
computing are only providing partial solutions (e.g. [1,2,3]). However, for
appropriate consideration of all problems, a holistic approach is necessary.

The work presented in the paper is a part of the research founded by the
Slovenian Ministry of Education, Science and Sport. The primary issue of
this research is the study and the development of methods and tools for
hierarchically organized fault-tolerant control systems. The proposed model

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
B. Kleinjohann et al. (eds.), Design and Analysis of Distributed Embedded Systems

10.1007/978-0-387-35599-3_29

http://dx.doi.org/10.1007/978-0-387-35599-3_29

114 D. VERBER, M COLNARIC, W. A. HALANG

should deal with faults in the environment, in the hardware and in the
software of the embedded system. Basic research topics covered with the
project are fault detection, fault localization and isolation, graceful
degradation of the functionality of the system in a case of minor fault, and
controlled and safe shut-down of the system in the case of severe defects.

In the article, a practical proposition of how to deal with fault detection
of such systems is given. The basic idea is to use a network of simple
monitoring cells that monitor and evaluate functioning of critical sub­
processes of the system.

2. FAULT DETECTION BY MEANS OF
MONITORING CELLS

A typical control system can be usually divided into a set of well-defined
sub processes or tasks. Each task takes its inputs from sensors and from the
results of other processes, and produces results that are used by other tasks,
or influence the controlled system through actuators. Tasks are triggered by
synchronous or asynchronous events.

There are several causes of faults in such a model. E.g., the components
of the controlling process can breakdown due to hardware or software
related errors. For the same reasons, values of input and output signals can
be out of their predefined ranges or they do not apply to functional
specifications of the system. In hard real-time systems, improper temporal
behaviour is also considered as a fault. Another not so obvious source of
errors can be temporal inconsistencies of the signals; e.g. the dynamics of
changing of signals can be too steep, frequencies of event occurrence can be
to high, etc.

Failure in the systems can be handled by redundancy and diversity, with
reconfiguration etc. [2], but first the failure in the system must be detected.
To do this, some sort of a dependable monitoring subsystem must be used
that detects abnormalities in the system and triggers appropriate corrective
actions. To lower the complexity, safety related issues of the system should
be designed, evaluated and implemented independently and in parallel with
the functional part. This is also true for fault detection. To achieve this, a set
of monitoring components (we named it monitoring cell- MC) is introduced.
In early phases of the development of the system each MC is considered as
an abstract object. In later phases, the MCs can be implemented as hardware
and/or software components. The basic task of the monitoring cell is to
monitor the validity of input and output values of the sub process. A
monitoring cells are only parts of larger fault detection and fault prevention
system.

Fault detection in safety-critical embedded systems 115

Diagnostic

I Me I
I I

Internal states

...
OBSERVED

:: (SU8)SYSTEM ...
v v

Inputs Outputs

Figure I. Concept of the Monitoring cell

Monitoring cell should be simple and should produce as little interference
with the production environment as possible. It should be built from simple
and robust components with low probability of failure. It should work with
both custom built and Commercial Off-The-Shelf (COTS) components. It is
supposed to be built in such way that it could be formally verified and
possibly certified by a certification authority. Even if by this we cannot
formally prove that the system will be dependable as a whole, we should
prove that the safety-related subsystem is. When MC detects failure in the
sub-process it usually does not react on its own. Instead, it signals the source
and cause of error to the upper layers in the safety-related subsystem.

The proposed architecture of MC can be divided into four parts: decoder
logic, validation logic, state machine and timing logic.

Decoder logic converts observed variables of the system into a form that
can be used by monitoring systems. Usually it partitions the definition
domain of each input and output value into a set of ranges and assigns to
them appropriate discrete values. With this, discrete and continuous values
can be mapped into a manageable set of states. Another possibility is that
observed values are degraded by means of its accuracy to reduce complexity
of the monitoring function (e.g. for AID conversion of inputs fewer bits are
used than that used by observed function). If it is convenient, all relevant
internal variables that represent the current context of the task can also be
observed in this way.

Decoder logic can also detect if observed values are out of predefined
ranges and produce the appropriate diagnostic signals. Further, some
physical characteristic of the hardware components can be measured to
detect any abnormalities (e.g. measurement of the environment temperature
or measurement of electric current consumption). Thus, early correction

116 D. VERBER, M COLNARIC, W. A. HALANG

actions can be taken by the system even before the controlled function is
activated.

Decoder logic also latches all relevant values of the inputs to be used
when outputs are produced and/or when a validation of dynamic changes is
performed.

Validation logic makes sure that the outputs of the system are consistent
with the inputs. In the basic case when input and output values are
transcribed into small sets of discrete states, a list of all valid combinations
can be enumerated and later observed. In more general cases, validation
logic can be understood as a pattern-matching algorithm. It tests of a current
combination of (mapped) inputs and outputs is valid. In this case validation
logic can be represented as a Boolean function of the observed inputs,
outputs, internal states and time. In addition to Boolean output of validation
logic, other diagnostic signals can be generated that may give the hints as to
what is the cause of the failure.

State machine is an optional component that moderates when evaluation
logic should perform its evaluation. There are situations where behaviour of
the monitored component changes significantly during the application
execution (e.g. when the system can operate in several different modes).
Also, if the controlled function is performed in several steps, it may be
desired to observe and monitor each individual step separately. By this,
inconsistencies in process execution can be detected early enough, and some
correction measures can be taken. In a simple scenario, state machine logic
can be left out because the evaluation is done only twice: first, when input
values are evaluated and second when output values and input/output
combinations are tested. This can be triggered by data arrival or by
additional signals from controlled sub-process.

Timing logic is an optional component that can be used to validate
temporal properties of the process. In the most basic scenario, this logic
performs a similar function to a simple watchdog timer. When a task starts,
the timer is set to the task's deadline. The timer is reset by the production of
outputs. If no output is generated in a predetermined time, Me signals to the
fault-tolerant subsystem that temporal requirements are violated. In more
complex situations, timing logic is coupled with the state machine and
additional checkpoints are added into the process. Again, this allows
temporal inconsistencies to be detected early enough to react in time.

Other usage of the timing logic is in the monitoring of dynamic
behaviour of the system. For example, by comparing two successive signals

Fault detection in safoty-critical embedded systems 117

in a given time interval, it can detect if the changes are too steep or if the
frequency of arrival of the signals is to high.

3. IMPLEMENTATION OF Me

There are several possible approaches for the implementation of MCs,
and when mapping is simple enough, its implementation can be automated
and/or emulated in the early stages of development.

In simple cases software solutions can be applied. With this, each MC
can be implemented as a set of monitoring routines that runs together with
production software. Simple mapping tables or decision trees can be used by
software implementation. These routines can be integrated into the operating
system. In this case evaluation routines are divided into two parts. The first
set of routines is called after inputs are acquired and before the code of the
main function is called. It performs preparation and validation of inputs.
After the code of the task is executed and before outputs are produced,
another set of routines is called that evaluates outputs and input-output
combinations.

The next example shows how these routines can be integrated into the
code. Each input, output and other parts of the algorithm are associated with
a constant that identifies them.

functon PerformTask:
Acquirelnputs(il,i2)
if not MCEvaluatelnputlnt (INPUT1_ID, i1) then

HandleException
if not MCEvaluatelnputFloat(INPUT2_ID,i2) then

HandleException
MCSetDeadline(FUNCTION1_ID)
Compute(i1,i2,01)
if not MCEvaluateOutputlnt (OUTPUT1_ID, 01) then

HandleException

if not MCEvaluateResults(FUNCTION1_ID) then
HandleException

ProduceOutputs(ol)

A higher degree of dependability and agility can be achieved by using
dedicated hardware solutions. In most cases they can be implemented with

118 D. VERBER, MCOLNARlC, W A. HALANG

simple discrete logic (i.e. FPGA): decoder logic can be implemented with a
collection of comparators, validation logic is implemented by simple logical
gates; the state machine and the timing logic are implemented by means of
flip-flops and simple registers.

Inputsl
outputsl
internal
states

Decoder
logic

State
machine

Validation

Figure 2. Hardware implementation of the Me

Diagnostic

If the requirements are simple enough, automated generation of the
VHDL description from the application specification is possible.

If the observed system is very complex or if it behaves in a non­
deterministic way, then simple validation logic may not be good enough. In
this case more sophisticated methods should be implemented. For example,
validation logic can be observed as a pattern classification problem in the
neural net paradigm [4], fuzzy functions can be used, etc.

4. OTHER POSSIBLE USE OF Me

There are some other possible uses of the Mes. When mapping functions
are simple enough, Me can be implemented (emulated) before the actual
process is built. By this, it can be used either as a surrogate of the process or
as an additional test bed for then original task.

Me can also be used as a last resort in the situation of primary process
failure. Based on the simplified knowledge of the mapping inputs into
outputs, it can be used to generate rough output results. In this case, for each
valid input combination, the most appropriate output must be noted.

Fault detection in safety-critical embedded systems 119

5. CONCLUSION

The paper represents the work in progress. There are several aspects of
the problem of fault detection that are not yet adequately resolved. One of
the problems is how are the parameters for the Me gathered from
specifications of the system. This can be difficult if fault-tolerant issues are
not appropriately considered in the development (e.g. definition of pre- and
post- conditions of tasks, physical descriptions of inputs and outputs,
temporal requirements, etc.).

Appropriate mapping of inputs and outputs into simple states is also a
difficult part of using MCs and is still an open issue. Some kind of learning
technique may be used with a learning set gathered from mathematical
models or testing runs.

To test different approaches to MC implementation several short-term
subprojects are started that cover software implementation, hardware
implementation and the use of machine learning techniques (neural networks
and fuzzy logic).

In the future, other aspects of the development of the fault-tolerant
system will be investigated.

REFERENCES

[I J N. Storey, 'Safety-Critical Computer Systems', Addison-Wesley Pub, august 1996.
[2] D. S. Herrmann, 'Software Safety an Reliability',
[3] 1. P. Bowen in M. G. Hinchey, High-Integrity System Specification and Design', Springer,

April 1999.
[4] L.W. Fausett, 'Fundamentals of Neural Networks', Prentice Hall, 2001.

	Fault detection in safety-critical embedded systems
	1. INTRODUCTION
	2. FAULT DETECTION BY MEANS OFMONITORING CELLS
	3. IMPLEMENTATION OF Me
	4. OTHER POSSIBLE USE OF Me
	5. CONCLUSION
	REFERENCES

