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Abstract: In the paper, a proposition for a systematic approach to fault detection in 
building a dependable and fault-tolerant control system is presented. A 
network of simple monitoring cells that monitor and evaluate functioning of 
critical sub-processes of the system is proposed. Further, different approaches 
for the implementation of the monitoring cells are observed. 
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1. INTRODUCTION 

A typical present day control system consists of physical process 
components, sensors, actuators, distributed computers with communication 
networks, and several thousands of lines of code. Examples of these are 
control systems in industrial plants, nuclear reactors, avionics, etc. The size 
and the complexity of such systems increase every year and so does the 
probability of a fault in one of the many components. Each fault in such a 
system can cause severe material loss or even endanger human lives. 

Most of the researchers working on the problem of fault-tolerant 
computing are only providing partial solutions (e.g. [1,2,3]). However, for 
appropriate consideration of all problems, a holistic approach is necessary. 

The work presented in the paper is a part of the research founded by the 
Slovenian Ministry of Education, Science and Sport. The primary issue of 
this research is the study and the development of methods and tools for 
hierarchically organized fault-tolerant control systems. The proposed model 
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should deal with faults in the environment, in the hardware and in the 
software of the embedded system. Basic research topics covered with the 
project are fault detection, fault localization and isolation, graceful 
degradation of the functionality of the system in a case of minor fault, and 
controlled and safe shut-down of the system in the case of severe defects. 

In the article, a practical proposition of how to deal with fault detection 
of such systems is given. The basic idea is to use a network of simple 
monitoring cells that monitor and evaluate functioning of critical sub­
processes of the system. 

2. FAULT DETECTION BY MEANS OF 
MONITORING CELLS 

A typical control system can be usually divided into a set of well-defined 
sub processes or tasks. Each task takes its inputs from sensors and from the 
results of other processes, and produces results that are used by other tasks, 
or influence the controlled system through actuators. Tasks are triggered by 
synchronous or asynchronous events. 

There are several causes of faults in such a model. E.g., the components 
of the controlling process can breakdown due to hardware or software 
related errors. For the same reasons, values of input and output signals can 
be out of their predefined ranges or they do not apply to functional 
specifications of the system. In hard real-time systems, improper temporal 
behaviour is also considered as a fault. Another not so obvious source of 
errors can be temporal inconsistencies of the signals; e.g. the dynamics of 
changing of signals can be too steep, frequencies of event occurrence can be 
to high, etc. 

Failure in the systems can be handled by redundancy and diversity, with 
reconfiguration etc. [2], but first the failure in the system must be detected. 
To do this, some sort of a dependable monitoring subsystem must be used 
that detects abnormalities in the system and triggers appropriate corrective 
actions. To lower the complexity, safety related issues of the system should 
be designed, evaluated and implemented independently and in parallel with 
the functional part. This is also true for fault detection. To achieve this, a set 
of monitoring components (we named it monitoring cell- MC) is introduced. 
In early phases of the development of the system each MC is considered as 
an abstract object. In later phases, the MCs can be implemented as hardware 
and/or software components. The basic task of the monitoring cell is to 
monitor the validity of input and output values of the sub process. A 
monitoring cells are only parts of larger fault detection and fault prevention 
system. 
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Figure I. Concept of the Monitoring cell 

Monitoring cell should be simple and should produce as little interference 
with the production environment as possible. It should be built from simple 
and robust components with low probability of failure. It should work with 
both custom built and Commercial Off-The-Shelf (COTS) components. It is 
supposed to be built in such way that it could be formally verified and 
possibly certified by a certification authority. Even if by this we cannot 
formally prove that the system will be dependable as a whole, we should 
prove that the safety-related subsystem is. When MC detects failure in the 
sub-process it usually does not react on its own. Instead, it signals the source 
and cause of error to the upper layers in the safety-related subsystem. 

The proposed architecture of MC can be divided into four parts: decoder 
logic, validation logic, state machine and timing logic. 

Decoder logic converts observed variables of the system into a form that 
can be used by monitoring systems. Usually it partitions the definition 
domain of each input and output value into a set of ranges and assigns to 
them appropriate discrete values. With this, discrete and continuous values 
can be mapped into a manageable set of states. Another possibility is that 
observed values are degraded by means of its accuracy to reduce complexity 
of the monitoring function (e.g. for AID conversion of inputs fewer bits are 
used than that used by observed function). If it is convenient, all relevant 
internal variables that represent the current context of the task can also be 
observed in this way. 

Decoder logic can also detect if observed values are out of predefined 
ranges and produce the appropriate diagnostic signals. Further, some 
physical characteristic of the hardware components can be measured to 
detect any abnormalities (e.g. measurement of the environment temperature 
or measurement of electric current consumption). Thus, early correction 
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actions can be taken by the system even before the controlled function is 
activated. 

Decoder logic also latches all relevant values of the inputs to be used 
when outputs are produced and/or when a validation of dynamic changes is 
performed. 

Validation logic makes sure that the outputs of the system are consistent 
with the inputs. In the basic case when input and output values are 
transcribed into small sets of discrete states, a list of all valid combinations 
can be enumerated and later observed. In more general cases, validation 
logic can be understood as a pattern-matching algorithm. It tests of a current 
combination of (mapped) inputs and outputs is valid. In this case validation 
logic can be represented as a Boolean function of the observed inputs, 
outputs, internal states and time. In addition to Boolean output of validation 
logic, other diagnostic signals can be generated that may give the hints as to 
what is the cause of the failure. 

State machine is an optional component that moderates when evaluation 
logic should perform its evaluation. There are situations where behaviour of 
the monitored component changes significantly during the application 
execution (e.g. when the system can operate in several different modes). 
Also, if the controlled function is performed in several steps, it may be 
desired to observe and monitor each individual step separately. By this, 
inconsistencies in process execution can be detected early enough, and some 
correction measures can be taken. In a simple scenario, state machine logic 
can be left out because the evaluation is done only twice: first, when input 
values are evaluated and second when output values and input/output 
combinations are tested. This can be triggered by data arrival or by 
additional signals from controlled sub-process. 

Timing logic is an optional component that can be used to validate 
temporal properties of the process. In the most basic scenario, this logic 
performs a similar function to a simple watchdog timer. When a task starts, 
the timer is set to the task's deadline. The timer is reset by the production of 
outputs. If no output is generated in a predetermined time, Me signals to the 
fault-tolerant subsystem that temporal requirements are violated. In more 
complex situations, timing logic is coupled with the state machine and 
additional checkpoints are added into the process. Again, this allows 
temporal inconsistencies to be detected early enough to react in time. 

Other usage of the timing logic is in the monitoring of dynamic 
behaviour of the system. For example, by comparing two successive signals 
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in a given time interval, it can detect if the changes are too steep or if the 
frequency of arrival of the signals is to high. 

3. IMPLEMENTATION OF Me 

There are several possible approaches for the implementation of MCs, 
and when mapping is simple enough, its implementation can be automated 
and/or emulated in the early stages of development. 

In simple cases software solutions can be applied. With this, each MC 
can be implemented as a set of monitoring routines that runs together with 
production software. Simple mapping tables or decision trees can be used by 
software implementation. These routines can be integrated into the operating 
system. In this case evaluation routines are divided into two parts. The first 
set of routines is called after inputs are acquired and before the code of the 
main function is called. It performs preparation and validation of inputs. 
After the code of the task is executed and before outputs are produced, 
another set of routines is called that evaluates outputs and input-output 
combinations. 

The next example shows how these routines can be integrated into the 
code. Each input, output and other parts of the algorithm are associated with 
a constant that identifies them. 

functon PerformTask: 
Acquirelnputs(il,i2) 
if not MCEvaluatelnputlnt (INPUT1_ID, i1) then 

HandleException 
if not MCEvaluatelnputFloat(INPUT2_ID,i2) then 

HandleException 
MCSetDeadline(FUNCTION1_ID) 
Compute(i1,i2,01) 
if not MCEvaluateOutputlnt (OUTPUT1_ID, 01) then 

HandleException 

if not MCEvaluateResults(FUNCTION1_ID) then 
HandleException 

ProduceOutputs(ol) 

A higher degree of dependability and agility can be achieved by using 
dedicated hardware solutions. In most cases they can be implemented with 
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simple discrete logic (i.e. FPGA): decoder logic can be implemented with a 
collection of comparators, validation logic is implemented by simple logical 
gates; the state machine and the timing logic are implemented by means of 
flip-flops and simple registers. 
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Figure 2. Hardware implementation of the Me 
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If the requirements are simple enough, automated generation of the 
VHDL description from the application specification is possible. 

If the observed system is very complex or if it behaves in a non­
deterministic way, then simple validation logic may not be good enough. In 
this case more sophisticated methods should be implemented. For example, 
validation logic can be observed as a pattern classification problem in the 
neural net paradigm [4], fuzzy functions can be used, etc. 

4. OTHER POSSIBLE USE OF Me 

There are some other possible uses of the Mes. When mapping functions 
are simple enough, Me can be implemented (emulated) before the actual 
process is built. By this, it can be used either as a surrogate of the process or 
as an additional test bed for then original task. 

Me can also be used as a last resort in the situation of primary process 
failure. Based on the simplified knowledge of the mapping inputs into 
outputs, it can be used to generate rough output results. In this case, for each 
valid input combination, the most appropriate output must be noted. 



Fault detection in safety-critical embedded systems 119 

5. CONCLUSION 

The paper represents the work in progress. There are several aspects of 
the problem of fault detection that are not yet adequately resolved. One of 
the problems is how are the parameters for the Me gathered from 
specifications of the system. This can be difficult if fault-tolerant issues are 
not appropriately considered in the development (e.g. definition of pre- and 
post- conditions of tasks, physical descriptions of inputs and outputs, 
temporal requirements, etc.). 

Appropriate mapping of inputs and outputs into simple states is also a 
difficult part of using MCs and is still an open issue. Some kind of learning 
technique may be used with a learning set gathered from mathematical 
models or testing runs. 

To test different approaches to MC implementation several short-term 
subprojects are started that cover software implementation, hardware 
implementation and the use of machine learning techniques (neural networks 
and fuzzy logic). 

In the future, other aspects of the development of the fault-tolerant 
system will be investigated. 
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