
Design Technology for Systems-on-Chip 

Raul Camposano and Don MacMillen 
Synopsys, Inc 

Abstract: Advancing technology impacts design along several vectors. Interconnect 
delay became dominant in many designs at O.18J.1I1l; to obtain timing closure, it 
was necessary to unify synthesis and placement. Moving forward, increasing 
degradation of signal integrity will be caused by capacitive cross coupling, by 
inductive effects and by several other physical effects. This will require the 
integration of fast and accurate analysis that can drive avoidance and 
correction of signal integrity problems primarily in routing, as well as in 
synthesis and placement. Advancing technology also means increasing 
complexity. Verification is particularly affected by technology as exemplified 
by the ever-increasing simulation needs. Using hundreds of millions of devices 
effectively will be possible only by reusing pre-designed intellectual property 
(lP) effectively and by addressing system-level issues in EDA. This 
presentation poses EDA solutions to these challenges, gives concrete 
examples, and argues that complete solutions, rather than point tools, will 
increasingly and justifiably dominate the EDA field. 

1. INTRODUCTION 

Electronic Design Automation (EDA) is one of the key enablers of the 
semiconductor industry [1]. No chip is designed without EDA. Conversely, 
semiconductors drive EDA technology. Throughout the last four decades 
this has happened mainly along two vectors: technology and complexity. 

Technology drives EDA in many ways. Early on, EDA efforts 
concentrated on capturing and editing artwork. This has led to automatic 
placement and routing. Eventually synthesis raised the design level to the 
Register-Transfer Level (RTL). Synthesis, placement and routing are 
enabled by multiple technology constraints: a logic library, usually in the 
form of standard cells of the same height and similar size which simplifies 
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2002
M. Robert et al. (eds.), SOC Design Methodologies

10.1007/978-0-387-35597-9_40

http://dx.doi.org/10.1007/978-0-387-35597-9_40


88 R. Camposano, D. MacMillen 

placement and routing, decouples technology from logic and enables 
synthesis. Furthermore, until recently interconnect was assumed to have 
negligible delay and digital circuits were modeled without "analog" effects 
such as cross talk. Power consumption issues were limited to the power grid. 
All that has changed. Chips today typically are designed using large pre­
designed blocks referred to as Intellectual Property (IP) as well as standard 
cells which may be up to six orders of magnitude smaller [2]. 

Interconnect can no longer be ignored, since for many designs under 
O.25J.1m interconnect delay actually becomes larger than circuit delay [3]. 
Capacitive coupling may produce severe cross talk. Power issues are not 
limited to power grid design: optimizing overall power consumption may be 
the foremost goal of the design, electro migration and hot spots need to be 
prevented, and leakage may become a serious power contributor second only 
to dynamic power. Section 2 examines how technology is driving EDA 
today. We will show how design technology is radically changing to cope 
with the changes in semiconductor technology. 

The second vector, which has driven EDA relentlessly, is complexity. 
Moore's Law epitomizes complexity growth: device density on a chip 
doubles every 18 months. Design tools need to keep pace, making capacity 
increases a perennial requirement. Nowhere has this reality been more 
pronounced than in simulation, particularly in logic simulation. The 
simulator has to keep up not only with the increasing size of the designs to 
simulate but also with an exploding numbers of vectors to simulate. Moore's 
Law has yielded a hundred times the number of devices per chip in the last 
12 years, but the number of vectors needed to simulate a chip to achieve 
functionality confidence has increased ten thousand times during that same 
period. A simulator thus has to cope with a complexity that has grown by six 
orders of magnitude in slightly over a decade. The argument for the 
development of formal verification techniques, emulators and smart test 
benches is easy to understand in this context [4]. Section 3 shines more light 
on how verification techniques are being driven to cope with complexity. 

But there is another profound change affecting EDA besides technology. 
As chips become more complex, they increasingly encompass larger and 
larger subsystems or complete electronic systems. The electronic design of 
these "Systems-on-Chip" (SOC) requires system knOWledge. Conversely, 
designing systems becomes increasingly designing chips. Given this 
increasingly strong correlation, how does system design automation (SDA) 
relate to EDA? System design has been automated much less than electronic 
design. Furthermore, SDA tends to be much more domain specific than 
EDA. Finally, system design today is mostly IP-based. Processors enable the 
implementation of large parts of functionality in SW. The concept of IP is 
further extended by defining "platforms," which are basic architectures 



Design Technology for Systems-on-Chip 89 

geared towards specific families of applications. In section 4 we examine the 
influence of system design on EDA, expanding the arguments made above. 

The paper concludes summarizing the main trends we see in design 
technology for systems-on-chip. 

2. TECHNOLOGY DRIVES EDA 

A state-of-the-art design flow consists of some 50 individual design 
tools. These can be divided into design and verification tools. Technology 
drives changes in both. In this section we will focus on how technology is 
influencing design tools and drives EDA towards integrated design flows by 
migrating "up" in the design tool chain. 

Figure 1 shows a simplified design flow for cell-based digital Application 
Specific Integrated Circuits (ASICs). This kind of methodology was widely 
used for digital ASICs down to 0.25J..lm processes. It assumes that you can 
effectively separate different phases of the design such as logic design, 
placement, routing, etc., which in turn relies on the fact that physical effects 
can be "abstracted" (ignored) at higher levels. For example, wire delays can 
be assumed to be zero or can be modeled statistically during logic design. 

Figure 1. Simplified Design Flow 

As technology progressed below 0.25mm these assumptions do not 
longer hold. Wire delay becomes more important than circuit delay in many 
cases. Figure 2 shows the delay of a 43J..lm long wire in aggressive copper 
technology compared with the smallest gate delay. 



90 R. Camposano, D. MacMillen 

650 500 350 250 180 150 100 70(nm) 

Figure 2. Wire Delay vs. Gate Delay 

As a consequence, wire delays can't be ignored in logic design any more, 
meaning that synthesis needs to have a good estimate for wire delays. The 
initial solution we adopted long ago was the so-called "wire load model," 
which is a statistical model of delay dependent on the design size. Clearly 
this doesn't work well below 0.25J,lm. Our solution was to do placement and 
synthesis together so that wire lengths can be accurately estimated during 
combined synthesis and placement. 

Delay (ps) 
60 

50 

40 

30 

20 

10 

Cu 1.71JO·cm 
Low K><2.0 

650 500 350 250 

,/ 

--

/ 
/ 

/ 
'I 

Worst-ease 
Interconnect 
Delay Due To 
X-talk 

Interconnect 
Delay 

180 150 100 7O(nm) 

Figure 3. Interconnect Delay due to Crosstalk 

Moving forward, as the technology node approaches 0.10J,lm, other 
physical effects come into play. Capacitive coupling gives rise to cross talk. 
Cross talk can be measured as additional delay before a signal stabilizes at 
the driven value. Worst-case cross talk for a pair of 43J,lm long wires is 
illustrated in Figure 3 and compared to interconnect delay in the absence of 
cross talk. 

Cross talk can no longer be ignored in logic design for technology nodes 
below 0.18J,lm. Computing cross talk requires knowledge of the exact 
position of the wires involved. Avoiding cross-talk can be achieved by 
several mechanisms: signals can be offset so that they switch at different 
times, wires can be placed further apart, driver strengths can be increased, 
additional buffers can be inserted, etc. Hence, we expect to see a much 
tighter integration of synthesis, placement and routing. 



Design Technology for Systems-on-Chip 91 

In addition to the two examples given above, there are several additional 
physical effects which will require changes in the design flow. We will only 
mention some of the most important ones here. Inductivity, typically ignored 
on chips so far, becomes noticeable for long wires at high speed such as 
busses of several mm of length operating at more than 1-2GHz [5]. This is 
already a problem for microprocessor design. The design flow will have to 
incorporate delays due to inductive effects. 

Power dissipation of CMOS circuits so far has been well approximated 
by exclusively modeling the dynamic power. As we approach O.lOllm, 
leakage power will become significant. Again, EDA needs to incorporate 
models for leakage and then minimize it by, for example, using multiple 
threshold-voltage libraries [6]. 

Another example involves masks. The physical layout, which defines the 
patterns for the fabrication process is not used directly for mask 
manufacturing. To compensate for limited optical resolution, optical 
proximity correction adds patterns to the masks. Additional resolution 
enhancements can be achieved using phase-shift masks. In EDA, this 
resolution enhancement technology is being incorporated into integrated 
layout verification I mask production tool suites [7]. 

We hope we made our point: technology drives EDA. As we move 
towards smaller technology nodes, more physical effects need to be taken 
into account during design. In tum, this drives the integration of design tools, 
ultimately towards an integrated RTL to layout flow and a layout to mask 
flow. 

3. DEALING WITH COMPLEXITY 

Nowhere is the effect of complexity felt more than in design verification. 
Moore's Law has enabled a growth of one order of magnitude (lOx) every 6 
years in device density and the same growth in design size. The complexity 
of "system behavior" (the number of input vectors necessary to cover the 
function of a system) has been increasing by roughly two orders of 
magnitude over the same period. Functional verification is proportional to 
the product of the design size and system behavior complexity. For this 
section, we selected functional verification to show how EDA is dealing 
with complexity. 

Functional verification is based mainly on simulation. How has 
simulation speed kept up with the thousand-fold increase of simulation need 
every 6 years (Figure 4)? For a simulator running on a single general­
purpose computer, simulation speed increases stem from mainly two 
sources: 



92 R. Camposano, D. MacMillen 

Faster simulators. In our experience, Verilog simulators have provided a 
speed gain of approximately two times per year over the last six years, 
resulting in a total speedup of 50 times. This has been achieved through 
migration from gate to RTL simulation and through optimizations in the 
simulators algorithms. 

1000..---------------: Simulation need 

Simulator speed 

10 Processor speed 

1995 1996 1997 1998 1999 2000 2001 

Figure 4. Normalized Simulation Speed 1995=1 

Increasing processor speed. Processor speed is a complex function of 
many variables such as clock frequency, memory speed, architecture, etc. 
Over the last 6 years clock speeds have increased by a factor of 10-12. 
Memory speed has not kept up, while architectural changes have delivered 
more performance. Overall, processor speed has increased by one order of 
magnitude in the last six years. 

Thus, functional simulation speed has increased by roughly 10*50=500 
times over the last 6 years, approximately half the rate of the thousand-fold 
need. Further speedup can be achieved by hardware acceleration or 
emulation. Emulation can be 4 to 5 orders of magnitude faster than 
functional simulation. Emulation speed has scaled with the chip (mostly 
FPGA based) speed increases dictated by Moore's law. Another way of 
achieving speedup is parallelism. Computer "farms" running thousands of 
independent simulation runs in parallel provide a cost-effective way of 
obtaining a 3 order of magnitude simulation speedup. 

It needs to be emphasized that simulator speedup has come at the cost of 
losing the detail that gate-level simulation provides. For example, it is not 
possible to do an accurate timing simulation at the RTL level. As a 
consequence, static timing analysis, which scales essentially with the size of 
a design only, has become adopted as a standard to determine and sign-off 
timing in SoC design. 

Another interesting trend is based on the observation that generating and 
feeding billions of simulation vectors to a simulator can be as or more time 
consuming than the simulation itself. Test bench automation aims at 



Design Technology for Systems-on-Chip 93 

optimizing this process and at effectively monitoring the simulation of a test 
bench. 

A simulation cannot be exhaustive (with the exception of very simple 
cases). This raises the question of how much simulation is enough or how 
good is a test bench. To measure this, the concept of simulation coverage is 
introduced and coverage tools monitor how much of a design has been 
"covered" by a simulation (a test bench). 

But simulation alone, since it can't be exhaustive for large designs, is not 
enough. Formal techniques have emerged as a powerful aid to functional 
verification. Equivalence checking asserts whether two net lists (or RTL 
descriptions) implement the same Boolean function. Although this is an NP­
complete problem, in practice equivalence checking works on many large 
designs up to millions of gates. Equivalence checking allows comparing 
designs against a "golden" model, which has been extensively simulated and 
is assumed to be functionally correct. Thus it relieves the designer from the 
need of having to simulate after changes have been made to a design. 

Property checking asserts that a given property holds for a given 
implementation under all conditions. For example, a protocol may require 
for a design to output an acknowledge signal before a given number of 
cycles after receiving a request signal. If this can be verified formally, there 
is no need to simulate for this property. There is another interesting link 
between simulation and property checking. Property checking can prove that 
a set of given states can never be reached. Hence, when measuring the state 
coverage of a given test bench, those states can be excluded, something 
simulation alone wouldn't allow. 

Static' Timing 
Analvsls 

Static Timing 
Analysis 

Teatbench 

Equivalence 
Checking 

Figure 5. Functional Verification How 



94 R. Camposano, D. MacMillen 

Figure 5 shows a verification flow using the tools discussed above. 
Again, we hope we made our point: EDA is dealing with complexity by 
constantly increasing tool capacity (such as simulator speed), by innovation 
(e.g., making formal verification practical), and by integrating tools into 
flows which leverage the combined strength of all tools (such as decreasing 
the need for simulation by formal verification and measuring coverage). 

4. SYSTEM LEVEL DESIGN NEEDS TO BE 
AUTOMATED 

With the advent of SoCs, the electronic system design and chip design 
become more tightly integrated. The system designer needs to know what 
can be done on a chip to deliver good designs and the chip designer needs to 
understand the systems he/she is designing. Increased communication among 
system and chip designers can be achieved in many ways, two of which are 
especially relevant to EDA: system level design (SLD) tools and the use of 
pre-designed blocks or sub-systems called IP. 

SLD tools enable a system designer to enter, verify and possibly 
implement a system in a way that he/she understands. Several possibilities 
are shown in Figure 6. Chip designers can use the same SLD tools as a 
"formal" specification of the design. The SLD tool may be used to execute 
(simulate) the design and possibly to automatically generate a first 
implementation, which can then be optimized. EDA technology has 
addressed mUltiple levels of abstraction. At the system level however, 
abstractions tend to be domain specific. For example, data-flow models are 
used in digital signal processing, hierarchical final state machines model 
reactive control, and protocols can be described in various languages. EDA 
has addressed system-level issues in some of these domains, but the SLD 
market is still embryonic. Recent developments, such as the widespread 
interest in SystemC and the increasing number of companies offering SLD 
technology, show that this technology is maturing and is beginning to appeal 
to a broader audience. System level design automation is a logical next step 
forEDA. 



Design Technology for Systems-on-Chip 95 

Architecture Functionality 

Processor 

Control 

O==:. 
Protocol 

Figure 6. System level Design Models 

There are no SoC designs today that don't (re)use IP. Processors, 
memories, standard interfaces, buses, etc. have become ubiquitous in SoCs. 
Processors in particular enable the implementation of system functionality in 
software. System design becomes increasingly influenced by the processor 
or combination of processors used as a "platform."[8LFor example, a 
wireless handset may require a processor and a DSP for application 
processing and a second DSP and a micro cuntroller for communication 
processing. System design then consists of integrating some hardware blocks 
into such a platform and implementing most functionality in software. 

2000 2005 2010 

Figure 7. IP Reuse as a % of a SoC 

The reuse of IP is also the most effective way of addressing complexity 
in design (Figure 7). IP is increasingly becoming one of the main 
differentiators for system and chip design. EDA and SLD need to use the 
same IP and platforms to enable effective communication between the two 
levels. 

Our final point is that SLD needs to be automated: The introduction of 
SLD tools and the increasing (re)use of IP are clear signs that this is 
happening. 



96 R. Camposano, D. MacMillen 

5. CONCLUSIONS 

EDA continues to change to meet the needs of electronic design. In this 
paper, we showed how the main forces affecting this change are technology, 
complexity, and the advent of Systems-on-Chip. As a consequence, (1) more 
technology effects are being taken into account earlier in the design process, 
(2) individual design tools are being integrated into design and verification 
flows, (3) tool capacity is keeping pace with complexity, (4) innovation 
results in smarter tools, (5) system level design is gaining increased 
attention, and (6) IP reuse and design platforms are becoming pervasive. We 
expect these trends to continue as long as integrated circuit manufacturing 
keeps moving to smaller technology nodes. 

6. REFERENCES 

[1] Don MacMillen, Mike Butts, Raul Camposano, Dwight Hill, and Thomas Williams, "An 
Industrial View of Electronic Design Automation", Transactions on CAD, Volume 19, 
No.21, IEEE, Dec.2000, pp.1428-1448 

[2] Warren Savage, John Chilton, Raul Camposano, "IP Reuse in the System on a Chip Era", 
Proceedings of the 13th ISSS, Madrid, Spain, September 20-22, 2000, pp.2-7 

[3] Jason Cong, "An Interconnect-Centric Design Flow for Nanometer Technologies", 
Proceedings of the IEEE, VOL. 89, No.4, April 2001, pp. 505-528. 

[4] Bob Bentley, "Validating the Intel Pentium 4 Microprocessor", Proceedings of the 38'h 
Design Automation Conference, Las Vegas, June 18-22,2001, pp. 244-248 

[5] Alina Deutsch, Paul Coteus, Gerard Kopcsay, Howard Smith, Christopher Surovic, Byron 
Krauter, Daniel Edelstein, Phillip Restle, "On-Chip Wiring Design Challenges for 
Gigahertz Operation", Proceedings of the IEEE, VOL. 89, No.4, April 2001, pp. 529-555 

[6] Luca Benini and Giovanni De Micheli, "Dynamic Power Management, Design 
Techniques for CAD Tools", Kluwer Academic Publishers, Boston, 1998. 

[7] Andrew Kahng and Y.C. Pati, "Subwavelength Lithography and it Potential Impact on 
Design and EDA", Proceedings of the 36th Design Automation Conference, New Orleans, 
June 21-25, 1999, pp. 799-804. 

[8] K. Keutzer, S. Malik, A.R. Newton, 1M. Rabaey, and A. Sangiovanni-Vincentelli, 
"System-Level Design: Orthogonalization ofConcems and Platform-Based Design", 
Transactions on CAD, Volume 19, No.21, IEEE, Dec.2000, pp.1523-1543 


	Design Technology for Systems-on-Chip
	1. INTRODUCTION
	2. TECHNOLOGY DRIVES EDA
	3. DEALING WITH COMPLEXITY
	4. SYSTEM LEVEL DESIGN NEEDS TO BEAUTOMATED
	5. CONCLUSIONS
	6. REFERENCES




