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Abstract: In the field of co-simulation, the construction of a bridge between different 
simulators and the solution of problems like synchronization and data 
translation are some of the main challenges, This paper discusses the 
advantages of the HLA (High Level Architecture) standard to solve these 
problems and presents a generic architecture to support environments for 
geographically distributed co-simulation, called Distributed Co-simulation 
Backbone (DCB), which is based on the HLA. This architecture is very 
flexible and does not enforce code modifications to the simulators to be 
integrated into the environment. 
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1. INTRODUCTION 

Co-simulation is used to make experiments and get information on the 
behavior of heterogeneous systems aiming at the validation of their design 
or at the evaluation of performance, Heterogeneous systems are 
characterized by a combination of hardware and software parts or by 
descriptions in different languages and/or at different abstraction levels [1]. 
In order to validate the design of embedded electronic systems, research in 
co-simulation mainly emphasizes the cooperative simulation of hardware 
and software parts, 

Therefore, one of the major challenges in co-simulation is the 
construction of a mechanism for a consistent cooperative simulation 
involving those parts, This challenge has been increased by the evolution of 
technologies for communication and distributed processing [2]. 

Current techniques, environments, and tools for co-simulation have 
shown that one of the main bottlenecks is the communication interface, The 
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large variety of technologies and their continuous evolution make it difficult 
to conceive an adaptive (or generic) mechanism, which promotes the 
cooperation between heterogeneous simulators without imposing restrictions 
regarding their data formats or behavior. 

This paper presents an architecture for a distributed co-simulation 
backbone, called DCB, which is based on the High Level Architecture 
(lILA) [3]. lILA has its roots on defense programs and has been recognized 
as a standard by the IEEE in 2000. It proposes rules and mechanisms for the 
interoperability of distributed, heterogeneous simulators. In particular, the 
Run Time Infrastructure, which is part of the standard, offers facilities that 
give an important contribution for the construction of a generic mechanism 
supporting distributed co-simulation environments. 

The DCB architecture presents three definite advantages over other co­
simulation environments: it is based on a public standard; it is far more 
flexible than current approaches, allowing an easier definition of particular 
environments; and it allows the integration of existing simulators without 
imposing modifications on their internal structures. 

This paper is organized as follows. An overview of co-simulation is 
presented in Section 2. Section 3 discusses related work and introduces the 
contribution of DCB. The lILA standard, and its Run Time Infrastructure in 
particular, are introduced in Section 4. Section 5 thus presents DCB, which 
is a generic architecture to support the cooperation between heterogeneous 
simulators in distributed environments. Finally, Section 6 gives final 
remarks and discusses future work. 

2. AN OVERVIEW OF CO-SIMULATION 

The complexity of current embedded systems have raised so much that their 
design cannot be performed with a single design language nor at a single 
abstraction level. These systems usually aggregate hardware and software 
cooperating parts. Their designs ask for models combining descriptions at 
different abstraction levels, and multiple specification languages are needed 
for representing those parts and/or abstraction levels. Moreover, these parts 
are usually developed and validated by means of separate design processes. 
For this, the validation of the whole system must take communication and 
cooperation aspects into account, becoming extremely complex because of 
the system heterogeneity. 

Aimed at the validation and performance evaluation of heterogeneous 
systems, the co-simulation approach has been the target of an increasing 
number of research groups. Its fundamental principle is the cooperative 
execution of different simulators [1]. Each simulator is responsible for a 
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different system part. The simulators may be executed in a single machine 
or in multiple machines (in LANs or W ANs) [4]. Research is lately 
emphasizing co-simulation in wide area networks, due to potential benefits 
such as the management of intellectual property and cooperative design. In 
this scenario, each simulator may send and receive data through a co­
simulation interface that must handle communication, synchronization, and 
data format conversions. The literature presents the construction of this 
bridge between heterogeneous simulators as one of the main challenges of 
co-simulation [5]. 

3. RELATED WORK 

WESE (Web-based Environment for Systems Engineering) [6] is a 
collaborative and distributed environment for systems engineering. It 
supports distributed simulation with the cooperative execution of remotely 
located components. Components are stored in repositories called factories 
and are specified by the SSL language, which is specialized for web-based 
design. The environment is also suited for handling IP components. 

IPCHINOOK [7] is a component-based design tool for distributed, 
embedded systems. Its main feature is a set of design abstractions to raise 
the level at which the designer interacts with the design environment. 
Communication and synchronization details are synthesized by the tool. The 
designer, however, must follow some modeling and synthesis rules. 

The JavaCAD [8] tool supports the web-based reuse of IP components, 
guaranteeing the confidentiality of information for suppliers and clients. 
JavaCAD is implemented as a simulation backplane that supports the 
evaluation of IPs during the design process. For this, the user may instantiate 
IP components from multiple remote suppliers and simulate them 
transparently with proprietary blocks. For performing a simulation, the user 
must initially specify his/her design through a JavaCAD client, thus 
somehow restricting reuse flexibility. 

Multilanguage approaches are used for the design of systems consisting 
of heterogeneous components, by offering environments that support 
multiple (but limited) languages. An example is the MCI tool [1]. Starting 
from an abstract description of a communication interface among 
subsystems, it automatically generates a specialized co-simulation 
environment MCI allows a geographically distributed co-simulation of 
subsystems. 

The Pia co-simulation tools [4] supply a specification mechanism that 
allows the interconnection of nodes through a geographically distributed 
network. Nodes are connected by sockets to the tool, so that other 
simulators, compilers, or even physical devices may be linked together. 
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A co-simulation approach based on the Ptolemy project [9] is presented 
in [10]. Following this approach, software and hardware simulators 
communicate through a master process (a backplane, in fact). This process 
manages communication between simulators, offering a standard interface 
that is based on a set of rules. 

In general, existing approaches and tools are adequate for solving a set of 
predefined problems. Frequently, however, unexpected problems must be 
handled, regarding the integration of new tools. In this case, solutions that 
are proprietary or that are based on a given set of restrictions may impose an 
excessive burden, in terms of redesign of tools. Examples of restrictive 
conditions may be found in all approaches: particular techniques for model 
specification and synthesis, as in IPCHINOOK; use of predefined functions or 
structures, as in JavaCAD [8] and Pia sockets; limitations on the number or 
types of languages, as in multilanguage tools; and proprietary 
communication interfaces, as in some solutions based on backplanes. 

The fundamental idea behind the architecture of DCB - Distributed Co­
simulation Backbone is to remove the restrictions that are imposed upon 
independent simulators, considering aspects of interface, cooperation, and 
synchronization, thus adding great flexibility to co-simulation environments. 
Preserving the integrity of each simulator, DCB more easily handles 
unexpected situations, without loosing fidelity and precision. Besides that, 
the explicit use of non-proprietary, distributed solutions has not been 
addressed as a fundamental issue of other co-simulation approaches. 

4. HLA AND CO-SIMULATION 

4.1 Introducing HLA 

HLA - High Level Architecture was initially conceived within the 
community of "distributed interactive simulation", considering special needs 
that were observed in military training [11]. Its development process 
involved government, academia, and industry, and its main concepts have 
been defined in 1995. 

HLA offers a common architecture for the cooperative and distributed 
execution of individual simulations, also on W ANs, as well as a structure 
for reusing simulations in existing or new applications. In order to enhance 
reuse and interoperability, HLA proposes the reduction of design restrictions 
and the implementation of fairly independent simulations, by using the 
object-oriented paradigm and introducing the idea of a simulation federation 
[3]. This concept introduces a high flexibility in the modeling process and 
eases the definition of interfaces, functionality, and cooperation [11]. HLA 
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is not a standard with a fixed set of rules or restrictions. Instead, it may be 
considered as a meta-standard, which defines meta-rules for building 
particular distributed simulation environments. HLA is specified by three 
main parts: 
- the interface specification; 
- the Object Model Template (OMT) [3], which defines a common and 

structured format for federates (the individual simulators) and 
federations (environments built from cooperating federates); and 

- a set of rules for the definition and management of the behavior of 
federation and federates. 
The interface specification defines the communication mechanism 

between the federates and includes the RTI - Run Time Infrastructure. The 
task of RTI is to offer services for communication and cooperation between 
federates, since they cannot communicate directly with each other. For 
establishing communication between federates, both RTI and the federates 
must offer communication methods, and the ambassador's paradigm may be 
used [12], as will be explained later on. A federate may represent a 
simulation model in a computer, a dedicated physical simulator, or an 
interface to a physical object or human. 

The union of the federates with RTI is defined by a Federation Object 
Model (FOM). In tum, for each federate a Simulation Object Model (SOM) 
is defined. The FOM specifies a contract between federates, regarding the 
types of objects that will be visible among them and the interactions they 
will perform. 

Although there is an expressive, inherent flexibility in HLA, it still 
imposes some restrictions: 
- federates must implement methods for communication with RTI; 
- federates and federation must follow a given set of rules (which may be, 

however, specialized for each federation); 
- RTI may not accept a given communication protocol. 

These restrictions apply mainly when new models or simulators have to 
be added to a certain federation and they have not been developed 
considering this federation. This problem is also found in co-simulation, 
where the heterogeneity of simulators must be handled in order that 
interoperability is achieved. These restrictive aspects in the construction of 
co-simulation environments have motivated research looking for more 
flexible approaches [12]. Nevertheless, the HLA standard has three definite 
advantages as a basis for co-simulation environments: 
- it is a standard, so that we may see in near future commercial simulators 

that follow its guidelines and have an intrinsic interoperability; 
- it is far more flexible than current approaches, allowing an easier 

definition of particular federations; and 
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- it allows the integration of existing simulators without imposing severe 
modifications on their internal structures, provided that they support 
some basic features. 

4.2 Supporting co-simulation with the RTI 

RTI specifies services to be offered to the federates, as well as services to be 
offered by the federates. These services can be grouped into three 
categories: federation management, data management, and time 
management. The federation management services control the dynamic 
inclusion and removal of federates and implement other global operations 
for the federation that are similar to those found in distributed co-simulation 
environments. 

The main goals of the data management services are: control the data to 
be communicated between the federates, establishing origin - destination 
relationships; assign ownership of simulation objects to federates; offer 
support for the creation, removal and identification of data; and implement 
data routing between federates. Time management services control the time 
progression in the federates. These services must be also offered by 
mechanisms supporting distributed co-simulation environments, even if 
specified or implemented with alternative (usually proprietary) approaches. 

The specification of RTI includes APIs that define how these services 
are accessed. The use of APIs, however, suggests adapting the code of a new 
simulator to be integrated into a federation. As an alternative to maintain 
transparency and to avoid the need of severe modifications in the simulator 
implementation, gateways between the federates and RTI may be introduced 
[12], as explained later on. 

5. DISTRIBUTED CO-SIMULATION BACKBONE 

DeB may be seen as a simulation-specific coordination layer for supporting 
distributed co-simulation. Its main goal is to offer a generic mechanism 
supporting communication and cooperation services between heterogeneous 
federates. The word "federate" refers to any computational sub-model, 
simulation sub-model, physical device, or even human actor. 

DeB has been defined in the scope of the SIMOO project. SIMOO is a 
general-purpose, object-oriented simulator for discrete systems, which is 
being applied to the design of electronic embedded systems [13,14]. A non­
distributed co-simulation tool, integrating SIMOO and VHDL, has been 
already implemented [15]. An adaption of SIMOO to the HLA standard is 
now underway [16]. The DeB implementation must support a transparent 
cooperation between models generated by SIMOO. 
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As strongly based on the lll..A standard, DeB considers its definitions, 
especially those related to RTI, for building a co-simulation backbone. DeB 
has three main functions that are closely related to the RTI functionality: 
interface specification, synchronization management, and management of 
data exchanges between federates. In order to give a better support to co­
simulation, however, DeB implements special strategies in these three parts, 
extending the RTI functionality and also removing some of its features that 
would inhibit flexibility. 

5.1 Overall architecture 

In order to handle the complexity of communication interfaces between 
heterogeneous federates and maintain flexibility, DeB uses the concept of 
gateway [12]. Gateways translate data formats, according to the destination 
of the data sent through DeB. Gateways are not implemented directly within 
the simulators or DeB, but as part of ambassadors [3]. Figure 1 shows the 
DeB architecture. 

According to the DeB architecture, the simulators don't need to invoke 
communication primitives of DeB, as needed when using the RTI, for 
sending data. The simulator transfers output data to its ambassador. This, in 
turn, makes these data available at its interface, and the DeB ambassador 
will check for the data. In the opposite direction, the same tasks are 
performed by the two ambassadors. 
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t t • • 
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Figure 1, Architecture of the DeB 

Because of this architecture, two ambassadors (the simulator and the 
DeB ones) must be developed when a new simulator is integrated into a co­
simulation environment. They are specific for a particular application 
model, because they depend on the particular data to be exchanged through 
the sub-model interfaces. It is thus much more appropriate to talk about the 
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integration of a new federate (or sub-model) into an environment, and not of 
a new simulator. 

If a federation includes N federates, even if they are implemented by the 
same simulator type (e.g. a VHDL simulator), 2N different ambassadors will 
need to be developed. These 2N ambassadors, however, are very similar, 
following the same control patterns, and differing only by the attributes they 
must control. 

Although there may be some implementation effort in the development 
of ambassadors, they avoid modifications both in the communication and 
synchronization infrastructure (the DeB kernel) and in the simulator. These 
modifications would be also very costly, if compared to the construction of 
ambassadors. 

The DeB infrastructure is general-purpose and is not affected by 
particular federates to be integrated into a federation. Furthermore, a 
simulator can be easily integrated into a DeB co-simulation environment 
because its code doesn't need to be reprogrammed at all. There are, 
however, certain requirements that must be met by federates, as discussed in 
the following sub-sections, in order to integrate them. 

5.2 Interface specification 

When a new federate is integrated into the co-simulation environment, the 
environment designer must explicitly declare the attributes that will be used 
for data exchanging and for synchronization at the sub-model interface. 
These attributes are used by DeB and the federate (in fact through their 
ambassadors) as structures for sending and receiving data. 

In the attribute specification (a process called interface configuration), 
the designer must include the following attributes: 
- the simulator execution mode (synchronous or asynchronous - a constant 

value); 
- TLS - time of the last state saved by the federate; 
- L VT -local virtual time of the federate; 
- set of output variables of the federate; and 
- set of input variables of the federate. 

The execution mode and the L VT are standard attributes for all 
federates. The TLS is also mandatory for asynchronous simulators. The 
remaining attributes may vary in quantity and purpose and depend on the 
particular application model. 

Therefore, according to the DeB approach, a simulator may be 
integrated into a co-simulation environment only if it can make both TLS 
and L VT available at its interface. When a federate is included in the 
environment, the designer must also indicate the other federates with which 
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the new one must interact and through which attributes the cooperation will 
take place. With this information, DeB implements the data exchanges, 
guaranteeing consistency regarding synchronization and interfaces. 

Attributes are handled by the ambassadors, which are responsible for 
their management. Ambassadors must keep track of attribute values, by 
monitoring their changes, translating them to other data formats, and 
sending their contents to the respective destinations. 

A new federate that is added to a co-simulation environment receives a 
unique identifier from DeB. This feature doesn't allow the recognition of 
two identical (replicated) federates in the same federation. In DeB, each 
federate (or simulator instance) is unique. 

5.3 Data management 

Data management in DeB reflects the basic principles prescribed by the 
HLA standard but is adapted to the purposes of generality and heterogeneity 
that are fundamental to DeB. 

RTI offers six different classes of services [3], and four of them are 
related to data management: Declaration Management; Data Distribution 
Management; Object Management; and Ownership Management. Since 
some of these services define requirements that affect the implementation of 
the federates, their use in DeB would be restrictive, considering that code 
modifications in the simulators to be included in a federation are not 
desirable. Therefore, these particular services are not implemented by DeB. 

The ownership management service, in tum, is very important. As RTI, 
DeB defines and manages through this service a responsibility over the 
attributes that it shares with all federates. Only a federate that owns a given 
attribute may update its vale, and the ownership of the attribute may vary 
along the time. It is thus possible for DeB to implement a mutual exclusion 
policy regarding the use of attributes by the federates, so avoiding undue 
attribute value updates, performed either by the local or by a remote 
federate. Ownership management is essential also for synchronization 
purposes, as explained next. 

5.4 Synchronization 

According to the HLA definition, while each federate has its own local 
virtual time, RTI manages the global simulation time. RTI offers pre-defined 
control functions that must be used by the federates in order to receive a 
grant for advancing their local times. This approach, however, makes the 
integration of new heterogeneous simulators into a federation a more 
complex task, since each simulator must be coded so that it calls those 
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control functions. Therefore, although using the lILA global mechanism for 
time advancement, DeB does not follow RTI's approach of control 
functions. 

As prescribed by the lILA standard, DeB supports an hybrid 
synchronization (synchronous or asynchronous time advancement) [11]. In 
distributed environments, the asynchronous approach usually presents less 
overhead. In order to implement an asynchronous mode, however, a 
simulator must support rollback to a previous safe state [17], because of 
events it receives with past time stamps. The simulation performance may 
be degraded if federates must execute rollbacks very often, but this is highly 
dependent on the application. 

In the synchronous mode, DeB uses the ownership management service 
together with the L VT of the federates in order to guarantee that only safe 
events are executed. Suppose two federates A and B, and A sends a message 
that modifies a value of an attribute X of B. DeB will grant the ownership 
of X to A, thus allowing A to modify the value of B. Besides that, each 
federate may only increment its L VT if the ownership of the L VT is granted 
to it by DeB. From this strategy, it becomes clear that a synchronous 
simulator may be integrated into a DeB federation only if it may declare the 
L VT at its interface and wait for a grant signal from the ambassador to 
advance the L VT's value. 

In order to optimize performance in a synchronous operation, DeB 
supports the look-ahead mechanism [18], both static and dynamic. IfL is the 
look-ahead value, then the update of an attribute X of a federate B, by 
another federate A, is safe if (LVT(A)+L);;:::(LVT(B)). 

The same ownership management mechanism is used for time 
advancement in the asynchronous mode. The only difference is that, in this 
case, DeB supports unsafe events and implements a rollback mechanism. 
For this, federates need to store safe states. DeB, on the other side, must 
store messages sent by the federates with future time stamps, if compared to 
the global time, and send anti-messages [17] in case of causality errors. 

6. CONCLUSIONS AND FUTURE WORK 

One of the most relevant challenges in co-simulation is the construction of 
an adequate mechanism for the cooperation between heterogeneous 
simulators. This paper presented a generic architecture, called DeB, which 
is based on the lILA standard and supports distributed environments 
consisting of heterogeneous simulators. DeB presents flexible strategies for 
the management of data interactions and synchronization between the 
simulators. 
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Generality and flexibility have been the main requirements in the 
development of the DCB. New simulators may be easily introduced into an 
heterogeneous and cooperative environment, without regard to their 
implementation technologies or languages and without needing any 
modification of their internal code. 

The simulators, however, must show a few fundamental features, which 
have been discussed in the paper, in order to be able to participate in a 
federation. Nevertheless, these features are very simple and may be 
considered as unavoidable, if one wants to integrate a simulator into a 
cooperative environment. 

Because of its generality regarding the management of the integration of 
heterogeneous simulators, DCB may be used as a basis for the 
implementation of distributed simulation environments in a wide range of 
application domains. 

Different domains, however, may have distinct performance 
requirements, and synchronization requirements and temporal restrictions 
may vary heavily. Consider for instance the distinctions between a pure 
software co-simulation of electronic designs, a co-simulation environment 
with physical mechatronic components-in-the-loop, a co-simulation 
environment with physical electronic components-in-the-loop, and a training 
simulation environment with human-in-the-loop. These very distinct 
situations considering real-time requirements may enforce different 
implementations of the DCB architecture. 

Using DCB, the tool designers must interact just with the ambassadors, 
because DCB's main goal is to provide and support cooperation among any 
existent simulators. On the other side, with commercial tools, such as from 
Cadence, Coware, Cossap, and Synthesia, the tool designers must interact 
with a more complex design environment and are usually restricted to a 
given number of description languages, such as C++, VHDL, or Verilog. 

For the validation of the DCB architecture, a particular federation for the 
co-simulation of electronic embedded systems is being implemented. In 
parallel, a supporting environment for the DCB development methodology is 
being built. It will offer services and resources for the configuration of 
interfaces of federates and for the semi-automatic generation of the 
ambassadors. The object-oriented features of the SIMOO modeling and 
simulation framework [13] will be basic for this supporting environment. 
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