
A Standardized Co-simulation Backbone

Braulio Adriano de Mellol,2 and Fhivio Rech Wagnerl
IInstituto de Informatica - UFRGS - Porto Alegre - Brazil: 2 URI - Brazil

Abstract: In the field of co-simulation, the construction of a bridge between different
simulators and the solution of problems like synchronization and data
translation are some of the main challenges, This paper discusses the
advantages of the HLA (High Level Architecture) standard to solve these
problems and presents a generic architecture to support environments for
geographically distributed co-simulation, called Distributed Co-simulation
Backbone (DCB), which is based on the HLA. This architecture is very
flexible and does not enforce code modifications to the simulators to be
integrated into the environment.

Key words: distributed co-simulation, simulation backbone, cooperation, HLA

1. INTRODUCTION

Co-simulation is used to make experiments and get information on the
behavior of heterogeneous systems aiming at the validation of their design
or at the evaluation of performance, Heterogeneous systems are
characterized by a combination of hardware and software parts or by
descriptions in different languages and/or at different abstraction levels [1].
In order to validate the design of embedded electronic systems, research in
co-simulation mainly emphasizes the cooperative simulation of hardware
and software parts,

Therefore, one of the major challenges in co-simulation is the
construction of a mechanism for a consistent cooperative simulation
involving those parts, This challenge has been increased by the evolution of
technologies for communication and distributed processing [2].

Current techniques, environments, and tools for co-simulation have
shown that one of the main bottlenecks is the communication interface, The
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
M. Robert et al. (eds.), SOC Design Methodologies

10.1007/978-0-387-35597-9_40

http://dx.doi.org/10.1007/978-0-387-35597-9_40

182 B. A. de Mello, F. R. Wagner

large variety of technologies and their continuous evolution make it difficult
to conceive an adaptive (or generic) mechanism, which promotes the
cooperation between heterogeneous simulators without imposing restrictions
regarding their data formats or behavior.

This paper presents an architecture for a distributed co-simulation
backbone, called DCB, which is based on the High Level Architecture
(lILA) [3]. lILA has its roots on defense programs and has been recognized
as a standard by the IEEE in 2000. It proposes rules and mechanisms for the
interoperability of distributed, heterogeneous simulators. In particular, the
Run Time Infrastructure, which is part of the standard, offers facilities that
give an important contribution for the construction of a generic mechanism
supporting distributed co-simulation environments.

The DCB architecture presents three definite advantages over other co­
simulation environments: it is based on a public standard; it is far more
flexible than current approaches, allowing an easier definition of particular
environments; and it allows the integration of existing simulators without
imposing modifications on their internal structures.

This paper is organized as follows. An overview of co-simulation is
presented in Section 2. Section 3 discusses related work and introduces the
contribution of DCB. The lILA standard, and its Run Time Infrastructure in
particular, are introduced in Section 4. Section 5 thus presents DCB, which
is a generic architecture to support the cooperation between heterogeneous
simulators in distributed environments. Finally, Section 6 gives final
remarks and discusses future work.

2. AN OVERVIEW OF CO-SIMULATION

The complexity of current embedded systems have raised so much that their
design cannot be performed with a single design language nor at a single
abstraction level. These systems usually aggregate hardware and software
cooperating parts. Their designs ask for models combining descriptions at
different abstraction levels, and multiple specification languages are needed
for representing those parts and/or abstraction levels. Moreover, these parts
are usually developed and validated by means of separate design processes.
For this, the validation of the whole system must take communication and
cooperation aspects into account, becoming extremely complex because of
the system heterogeneity.

Aimed at the validation and performance evaluation of heterogeneous
systems, the co-simulation approach has been the target of an increasing
number of research groups. Its fundamental principle is the cooperative
execution of different simulators [1]. Each simulator is responsible for a

A Standardized Co-simulation Backbone 183

different system part. The simulators may be executed in a single machine
or in multiple machines (in LANs or W ANs) [4]. Research is lately
emphasizing co-simulation in wide area networks, due to potential benefits
such as the management of intellectual property and cooperative design. In
this scenario, each simulator may send and receive data through a co­
simulation interface that must handle communication, synchronization, and
data format conversions. The literature presents the construction of this
bridge between heterogeneous simulators as one of the main challenges of
co-simulation [5].

3. RELATED WORK

WESE (Web-based Environment for Systems Engineering) [6] is a
collaborative and distributed environment for systems engineering. It
supports distributed simulation with the cooperative execution of remotely
located components. Components are stored in repositories called factories
and are specified by the SSL language, which is specialized for web-based
design. The environment is also suited for handling IP components.

IPCHINOOK [7] is a component-based design tool for distributed,
embedded systems. Its main feature is a set of design abstractions to raise
the level at which the designer interacts with the design environment.
Communication and synchronization details are synthesized by the tool. The
designer, however, must follow some modeling and synthesis rules.

The JavaCAD [8] tool supports the web-based reuse of IP components,
guaranteeing the confidentiality of information for suppliers and clients.
JavaCAD is implemented as a simulation backplane that supports the
evaluation of IPs during the design process. For this, the user may instantiate
IP components from multiple remote suppliers and simulate them
transparently with proprietary blocks. For performing a simulation, the user
must initially specify his/her design through a JavaCAD client, thus
somehow restricting reuse flexibility.

Multilanguage approaches are used for the design of systems consisting
of heterogeneous components, by offering environments that support
multiple (but limited) languages. An example is the MCI tool [1]. Starting
from an abstract description of a communication interface among
subsystems, it automatically generates a specialized co-simulation
environment MCI allows a geographically distributed co-simulation of
subsystems.

The Pia co-simulation tools [4] supply a specification mechanism that
allows the interconnection of nodes through a geographically distributed
network. Nodes are connected by sockets to the tool, so that other
simulators, compilers, or even physical devices may be linked together.

184 B. A. de Mello, F. R. Wagner

A co-simulation approach based on the Ptolemy project [9] is presented
in [10]. Following this approach, software and hardware simulators
communicate through a master process (a backplane, in fact). This process
manages communication between simulators, offering a standard interface
that is based on a set of rules.

In general, existing approaches and tools are adequate for solving a set of
predefined problems. Frequently, however, unexpected problems must be
handled, regarding the integration of new tools. In this case, solutions that
are proprietary or that are based on a given set of restrictions may impose an
excessive burden, in terms of redesign of tools. Examples of restrictive
conditions may be found in all approaches: particular techniques for model
specification and synthesis, as in IPCHINOOK; use of predefined functions or
structures, as in JavaCAD [8] and Pia sockets; limitations on the number or
types of languages, as in multilanguage tools; and proprietary
communication interfaces, as in some solutions based on backplanes.

The fundamental idea behind the architecture of DCB - Distributed Co­
simulation Backbone is to remove the restrictions that are imposed upon
independent simulators, considering aspects of interface, cooperation, and
synchronization, thus adding great flexibility to co-simulation environments.
Preserving the integrity of each simulator, DCB more easily handles
unexpected situations, without loosing fidelity and precision. Besides that,
the explicit use of non-proprietary, distributed solutions has not been
addressed as a fundamental issue of other co-simulation approaches.

4. HLA AND CO-SIMULATION

4.1 Introducing HLA

HLA - High Level Architecture was initially conceived within the
community of "distributed interactive simulation", considering special needs
that were observed in military training [11]. Its development process
involved government, academia, and industry, and its main concepts have
been defined in 1995.

HLA offers a common architecture for the cooperative and distributed
execution of individual simulations, also on W ANs, as well as a structure
for reusing simulations in existing or new applications. In order to enhance
reuse and interoperability, HLA proposes the reduction of design restrictions
and the implementation of fairly independent simulations, by using the
object-oriented paradigm and introducing the idea of a simulation federation
[3]. This concept introduces a high flexibility in the modeling process and
eases the definition of interfaces, functionality, and cooperation [11]. HLA

A Standardized Co-simulation Backbone 185

is not a standard with a fixed set of rules or restrictions. Instead, it may be
considered as a meta-standard, which defines meta-rules for building
particular distributed simulation environments. HLA is specified by three
main parts:
- the interface specification;
- the Object Model Template (OMT) [3], which defines a common and

structured format for federates (the individual simulators) and
federations (environments built from cooperating federates); and

- a set of rules for the definition and management of the behavior of
federation and federates.
The interface specification defines the communication mechanism

between the federates and includes the RTI - Run Time Infrastructure. The
task of RTI is to offer services for communication and cooperation between
federates, since they cannot communicate directly with each other. For
establishing communication between federates, both RTI and the federates
must offer communication methods, and the ambassador's paradigm may be
used [12], as will be explained later on. A federate may represent a
simulation model in a computer, a dedicated physical simulator, or an
interface to a physical object or human.

The union of the federates with RTI is defined by a Federation Object
Model (FOM). In tum, for each federate a Simulation Object Model (SOM)
is defined. The FOM specifies a contract between federates, regarding the
types of objects that will be visible among them and the interactions they
will perform.

Although there is an expressive, inherent flexibility in HLA, it still
imposes some restrictions:
- federates must implement methods for communication with RTI;
- federates and federation must follow a given set of rules (which may be,

however, specialized for each federation);
- RTI may not accept a given communication protocol.

These restrictions apply mainly when new models or simulators have to
be added to a certain federation and they have not been developed
considering this federation. This problem is also found in co-simulation,
where the heterogeneity of simulators must be handled in order that
interoperability is achieved. These restrictive aspects in the construction of
co-simulation environments have motivated research looking for more
flexible approaches [12]. Nevertheless, the HLA standard has three definite
advantages as a basis for co-simulation environments:
- it is a standard, so that we may see in near future commercial simulators

that follow its guidelines and have an intrinsic interoperability;
- it is far more flexible than current approaches, allowing an easier

definition of particular federations; and

186 B. A. de Mello, F. R. Wagner

- it allows the integration of existing simulators without imposing severe
modifications on their internal structures, provided that they support
some basic features.

4.2 Supporting co-simulation with the RTI

RTI specifies services to be offered to the federates, as well as services to be
offered by the federates. These services can be grouped into three
categories: federation management, data management, and time
management. The federation management services control the dynamic
inclusion and removal of federates and implement other global operations
for the federation that are similar to those found in distributed co-simulation
environments.

The main goals of the data management services are: control the data to
be communicated between the federates, establishing origin - destination
relationships; assign ownership of simulation objects to federates; offer
support for the creation, removal and identification of data; and implement
data routing between federates. Time management services control the time
progression in the federates. These services must be also offered by
mechanisms supporting distributed co-simulation environments, even if
specified or implemented with alternative (usually proprietary) approaches.

The specification of RTI includes APIs that define how these services
are accessed. The use of APIs, however, suggests adapting the code of a new
simulator to be integrated into a federation. As an alternative to maintain
transparency and to avoid the need of severe modifications in the simulator
implementation, gateways between the federates and RTI may be introduced
[12], as explained later on.

5. DISTRIBUTED CO-SIMULATION BACKBONE

DeB may be seen as a simulation-specific coordination layer for supporting
distributed co-simulation. Its main goal is to offer a generic mechanism
supporting communication and cooperation services between heterogeneous
federates. The word "federate" refers to any computational sub-model,
simulation sub-model, physical device, or even human actor.

DeB has been defined in the scope of the SIMOO project. SIMOO is a
general-purpose, object-oriented simulator for discrete systems, which is
being applied to the design of electronic embedded systems [13,14]. A non­
distributed co-simulation tool, integrating SIMOO and VHDL, has been
already implemented [15]. An adaption of SIMOO to the HLA standard is
now underway [16]. The DeB implementation must support a transparent
cooperation between models generated by SIMOO.

A Standardized Co-simulation Backbone 187

As strongly based on the lll..A standard, DeB considers its definitions,
especially those related to RTI, for building a co-simulation backbone. DeB
has three main functions that are closely related to the RTI functionality:
interface specification, synchronization management, and management of
data exchanges between federates. In order to give a better support to co­
simulation, however, DeB implements special strategies in these three parts,
extending the RTI functionality and also removing some of its features that
would inhibit flexibility.

5.1 Overall architecture

In order to handle the complexity of communication interfaces between
heterogeneous federates and maintain flexibility, DeB uses the concept of
gateway [12]. Gateways translate data formats, according to the destination
of the data sent through DeB. Gateways are not implemented directly within
the simulators or DeB, but as part of ambassadors [3]. Figure 1 shows the
DeB architecture.

According to the DeB architecture, the simulators don't need to invoke
communication primitives of DeB, as needed when using the RTI, for
sending data. The simulator transfers output data to its ambassador. This, in
turn, makes these data available at its interface, and the DeB ambassador
will check for the data. In the opposite direction, the same tasks are
performed by the two ambassadors.

I Fede I Fede ... " I
t t • •

I 1jii"woy I I (lOiwoy I
Fede ... ,,'s Fodo ... ,,'s

Amlasodll'

; ;
I rx::B Ambossodor Irx::B.w.-lor1 ...

Nltwortc - -- ------------------- --------------t -----
IlisIIbIIedCo-tilnulatilll BocItJOllt -DCB

Figure 1, Architecture of the DeB

Because of this architecture, two ambassadors (the simulator and the
DeB ones) must be developed when a new simulator is integrated into a co­
simulation environment. They are specific for a particular application
model, because they depend on the particular data to be exchanged through
the sub-model interfaces. It is thus much more appropriate to talk about the

188 B. A. de Mello, F. R. Wagner

integration of a new federate (or sub-model) into an environment, and not of
a new simulator.

If a federation includes N federates, even if they are implemented by the
same simulator type (e.g. a VHDL simulator), 2N different ambassadors will
need to be developed. These 2N ambassadors, however, are very similar,
following the same control patterns, and differing only by the attributes they
must control.

Although there may be some implementation effort in the development
of ambassadors, they avoid modifications both in the communication and
synchronization infrastructure (the DeB kernel) and in the simulator. These
modifications would be also very costly, if compared to the construction of
ambassadors.

The DeB infrastructure is general-purpose and is not affected by
particular federates to be integrated into a federation. Furthermore, a
simulator can be easily integrated into a DeB co-simulation environment
because its code doesn't need to be reprogrammed at all. There are,
however, certain requirements that must be met by federates, as discussed in
the following sub-sections, in order to integrate them.

5.2 Interface specification

When a new federate is integrated into the co-simulation environment, the
environment designer must explicitly declare the attributes that will be used
for data exchanging and for synchronization at the sub-model interface.
These attributes are used by DeB and the federate (in fact through their
ambassadors) as structures for sending and receiving data.

In the attribute specification (a process called interface configuration),
the designer must include the following attributes:
- the simulator execution mode (synchronous or asynchronous - a constant

value);
- TLS - time of the last state saved by the federate;
- L VT -local virtual time of the federate;
- set of output variables of the federate; and
- set of input variables of the federate.

The execution mode and the L VT are standard attributes for all
federates. The TLS is also mandatory for asynchronous simulators. The
remaining attributes may vary in quantity and purpose and depend on the
particular application model.

Therefore, according to the DeB approach, a simulator may be
integrated into a co-simulation environment only if it can make both TLS
and L VT available at its interface. When a federate is included in the
environment, the designer must also indicate the other federates with which

A Standardized Co-simulation Backbone 189

the new one must interact and through which attributes the cooperation will
take place. With this information, DeB implements the data exchanges,
guaranteeing consistency regarding synchronization and interfaces.

Attributes are handled by the ambassadors, which are responsible for
their management. Ambassadors must keep track of attribute values, by
monitoring their changes, translating them to other data formats, and
sending their contents to the respective destinations.

A new federate that is added to a co-simulation environment receives a
unique identifier from DeB. This feature doesn't allow the recognition of
two identical (replicated) federates in the same federation. In DeB, each
federate (or simulator instance) is unique.

5.3 Data management

Data management in DeB reflects the basic principles prescribed by the
HLA standard but is adapted to the purposes of generality and heterogeneity
that are fundamental to DeB.

RTI offers six different classes of services [3], and four of them are
related to data management: Declaration Management; Data Distribution
Management; Object Management; and Ownership Management. Since
some of these services define requirements that affect the implementation of
the federates, their use in DeB would be restrictive, considering that code
modifications in the simulators to be included in a federation are not
desirable. Therefore, these particular services are not implemented by DeB.

The ownership management service, in tum, is very important. As RTI,
DeB defines and manages through this service a responsibility over the
attributes that it shares with all federates. Only a federate that owns a given
attribute may update its vale, and the ownership of the attribute may vary
along the time. It is thus possible for DeB to implement a mutual exclusion
policy regarding the use of attributes by the federates, so avoiding undue
attribute value updates, performed either by the local or by a remote
federate. Ownership management is essential also for synchronization
purposes, as explained next.

5.4 Synchronization

According to the HLA definition, while each federate has its own local
virtual time, RTI manages the global simulation time. RTI offers pre-defined
control functions that must be used by the federates in order to receive a
grant for advancing their local times. This approach, however, makes the
integration of new heterogeneous simulators into a federation a more
complex task, since each simulator must be coded so that it calls those

190 B. A. de Mello, F. R. Wagner

control functions. Therefore, although using the lILA global mechanism for
time advancement, DeB does not follow RTI's approach of control
functions.

As prescribed by the lILA standard, DeB supports an hybrid
synchronization (synchronous or asynchronous time advancement) [11]. In
distributed environments, the asynchronous approach usually presents less
overhead. In order to implement an asynchronous mode, however, a
simulator must support rollback to a previous safe state [17], because of
events it receives with past time stamps. The simulation performance may
be degraded if federates must execute rollbacks very often, but this is highly
dependent on the application.

In the synchronous mode, DeB uses the ownership management service
together with the L VT of the federates in order to guarantee that only safe
events are executed. Suppose two federates A and B, and A sends a message
that modifies a value of an attribute X of B. DeB will grant the ownership
of X to A, thus allowing A to modify the value of B. Besides that, each
federate may only increment its L VT if the ownership of the L VT is granted
to it by DeB. From this strategy, it becomes clear that a synchronous
simulator may be integrated into a DeB federation only if it may declare the
L VT at its interface and wait for a grant signal from the ambassador to
advance the L VT's value.

In order to optimize performance in a synchronous operation, DeB
supports the look-ahead mechanism [18], both static and dynamic. IfL is the
look-ahead value, then the update of an attribute X of a federate B, by
another federate A, is safe if (LVT(A)+L);;:::(LVT(B)).

The same ownership management mechanism is used for time
advancement in the asynchronous mode. The only difference is that, in this
case, DeB supports unsafe events and implements a rollback mechanism.
For this, federates need to store safe states. DeB, on the other side, must
store messages sent by the federates with future time stamps, if compared to
the global time, and send anti-messages [17] in case of causality errors.

6. CONCLUSIONS AND FUTURE WORK

One of the most relevant challenges in co-simulation is the construction of
an adequate mechanism for the cooperation between heterogeneous
simulators. This paper presented a generic architecture, called DeB, which
is based on the lILA standard and supports distributed environments
consisting of heterogeneous simulators. DeB presents flexible strategies for
the management of data interactions and synchronization between the
simulators.

A Standardized Co-simulation Backbone 191

Generality and flexibility have been the main requirements in the
development of the DCB. New simulators may be easily introduced into an
heterogeneous and cooperative environment, without regard to their
implementation technologies or languages and without needing any
modification of their internal code.

The simulators, however, must show a few fundamental features, which
have been discussed in the paper, in order to be able to participate in a
federation. Nevertheless, these features are very simple and may be
considered as unavoidable, if one wants to integrate a simulator into a
cooperative environment.

Because of its generality regarding the management of the integration of
heterogeneous simulators, DCB may be used as a basis for the
implementation of distributed simulation environments in a wide range of
application domains.

Different domains, however, may have distinct performance
requirements, and synchronization requirements and temporal restrictions
may vary heavily. Consider for instance the distinctions between a pure
software co-simulation of electronic designs, a co-simulation environment
with physical mechatronic components-in-the-loop, a co-simulation
environment with physical electronic components-in-the-loop, and a training
simulation environment with human-in-the-loop. These very distinct
situations considering real-time requirements may enforce different
implementations of the DCB architecture.

Using DCB, the tool designers must interact just with the ambassadors,
because DCB's main goal is to provide and support cooperation among any
existent simulators. On the other side, with commercial tools, such as from
Cadence, Coware, Cossap, and Synthesia, the tool designers must interact
with a more complex design environment and are usually restricted to a
given number of description languages, such as C++, VHDL, or Verilog.

For the validation of the DCB architecture, a particular federation for the
co-simulation of electronic embedded systems is being implemented. In
parallel, a supporting environment for the DCB development methodology is
being built. It will offer services and resources for the configuration of
interfaces of federates and for the semi-automatic generation of the
ambassadors. The object-oriented features of the SIMOO modeling and
simulation framework [13] will be basic for this supporting environment.

7. REFERENCES

[1] F.Hessel, P.L.Marrec, C.Valderrama, M.Romdhani, and A.A.Jerraya, "MCI:
Multilanguage Distributed Cosimulation Tool". In: FJ.Rammig (ed.), Distributed and

192 B. A. de Mello, F. R. Wagner

Parallel Embedded Systems. Kluwer Academic Publishers, 1999. (Proceedings of
DIPES'98)

[2] G.Borriello and R.Want. "Embedded Computation Meets the World Wide Web",
Communications of the ACM, Volume 43, n. 5, May 2000.

[3] F.Kuhl, R.Weatherly, and lDahmann. Creating Computer Simulation Systems: An
Introduction to the High Level Architecture. Prentice Hall, MITRE Corporation, 2000.

[4] K.Hines and G.Borriello. "A Geographically Distributed Framework for Embedded
System Design and Validation". In: Proceedings of the 35th Design Automation
Conference, June 1998.

[5] K.Kim, Y.Kim, Y.Shin, and K.Choi. "An Integrated Hardware-Software Cosimulation
Environment with Automated Interface Generation". In: 1h International Workshop on
Rapid Systems Prototyping, June 1996.

[6] R. Dhananjai, V.Chernyakhovsky, and P. A.Wilsey, "WESE: A Web-based Environment
for Systems Engineering". In: Proceedings of the 2000 International Conference On Web­
Based Modelling & Simulation (WEBSIM 2000). January 2000.

[7] P.Chou, R.Ortega, K.Hines, K.Partridge, and G.Borriello. "IPChinook: An Integrated IP­
based Design Framework for Distributed Embedded Systems". In: Proceedings of the 36th

Design Automation Conference, New Orleans, June 1999.
[8] M.Dalpasso, A.Bogliolo, and L.Benini. "Virtual Simulation of Distributed IP-based

Designs", Proceedings of the 36th Design Automation Conference, New Orleans, June
1999.

[9] E.A.Lee et al. "Overview of the Ptolemy Project". Technical Memorandum UCBIERL
MOllll. University of California, Berkeley, 2001.

[10] W.Sung and S.Ha. "Hardware Software Co simulation Backplane with Automatic
Interface Generation". Proceedings of the ASPDAC'98, 1998.

[11] lS.Dahmann. "High Level Architecture for Simulation". Proc ... of the 1st International
Workshop on Distributed Interactive Simulation and Real-Time Applications, 1997.

[12] S.Strassburger, T.Schulze, U.Klein, and lHenriksen. "Internet-based Simulation Using
Off-the-shelf Simulation Tools and HLA ". Proceedings of the Winter Simulation
Conference. Washington, USA, December, 1998.

[13] F.R.Wagner, M.Oyarnada, L.Carro, and M.Kreutz. "Object-Oriented Modeling and Co­
simulation of Embedded Electronic Systems". In: L.M.Silveira, S.Devadas, and R.Reis
(eds.), VLSI: Systems on a Chip. Kluwer Academic Publishers, 2000.

[14] L.Carro, M.Kreutz, F.R.Wagner, and M.Oyamada. "A Design Methodology for
Embedded Systems based on Multiple Processors". In: B.Kleinjohann (ed.), Architecture
and Design of Distributed Embedded Systems. Kluwer Academic Publishers, 2001.
(Proceedings ofDIPES'2000)

[15] M.Oyarnada and F.R.Wagner. "Co-simulation of Embedded Electronic Systems". In:
of 12th European Simulation Symposium. Hamburg, Germany, October 2000.

[16] D.Wildt and F.R.Wagner. "Adapting Simulation Environments to HLA: Discussion and
Case Study". In: Proceedings of the European Simulation Multiconference, Prague, Czech
Republic, June 2001.

[17] M.Elnozahy et al. "A Survey of Rollback-Recovery Protocols in Message-Passing
Systems". Technical Report CMUCS99148, Department of Computer Science. Carnegie
Mellon University, September 1999.

[18] "Parallel Discrete Event Simulation". In: Communications of the ACM,
Vol. 33, n. 10, October 1990.

	A Standardized Co-simulation Backbone
	1. INTRODUCTION
	2. AN OVERVIEW OF CO-SIMULATION
	3. RELATED WORK
	4. HLA AND CO-SIMULATION
	4.1 Introducing HLA
	4.2 Supporting co-simulation with the RTI

	5. DISTRIBUTED CO-SIMULATION BACKBONE
	5.1 Overall architecture
	5.2 Interface specification
	5.3 Data management
	5.4 Synchronization

	6. CONCLUSIONS AND FUTURE WORK
	7. REFERENCES

