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Abstract: This paper describes an effective approach to Java execution through the use 
of embedded processors. A pair of hardware engine and software kernel are 
devised for existing embedded systems in order to execute Java applications 
efficiently, in such a way that 39 instructions are added to the original JVM 
dedicatedly for the software kernel implementation. The whole embedded 
system including the hardware engine of 6-stage pipeline with 30K gates can 
be integrated in a single chip. The proposed approach improves the execution 
speed by a factor of 5.7 in comparison with J2ME software implementation. 

Key words: Java, embedded system, hardware engine, software kernel 

1. INTRODUCTION 

Since the introduction of Java [1] in 1995, it has been widely used in 
innumerous applications, from small systems such as electronic cards to high 
performance data base servers. Java also receives special interest as the 
network language not only for personal computers and work stations but also 
for the growing embedded system applications, due to the main features of 
(i) platform independence provided by Java Virtual Machine (JVM) [2], (ii) 
instruction level network security, and (iii) object oriented language. 
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In general, NM is implemented by software with the so called 
interpreter or just-in-time (JIT) compiler, where it should be pointed out that 
the software implementation can not suit embedded systems in terms of large 
memory usage, slow speed, and large power consumption. On the other hand 
Java specific processors[3-S] intended for efficient execution suffer from 
enormous overhead and cost of reconstructing operating system as well as 
intricate interfaces to existing embedded systems. 

In order to solve the technical issues stated above, this paper investigates 
a unified approach to construct an efficient Java execution scheme added to 
existing embedded systems. This scheme consists mainly of hardware engine, 
software kernel, and configurable interface to host embedded processor. A 
part of those Java methods, which are defined in the non-liD API library, can 
be invoked from the host embedded processor to execute Java applications. 

The proposed architecture employs a 6-stage pipeline including a stack 
stage customized for the stack-based semantics of JVM. In order to enhance 
the execution speed of Java applications, the instruction folding and 39 
additional instructions to NM are provided. The architecture has been 
verified with the use of Altera APEX EP20KE 400 and Tensilica XTlOOO 
emulation system. 

As for ASIC implementation, the proposed system has been synthesized 
with 30K gates and 30K memory bits by using Virtual Silicon O.lS,um 
library, which can operate at 96MHz of clock rate. This result admits a 
single chip implementation of the whole Java execution system, including 
the proposed engine, host processor, and 110 modules. 

As a result, Java execution performance has been improved up to a factor 
of 5.7 on an average, as compared with J2ME[9] for embedded systems. 

Section 2 details the proposed Java System, Section 3 describes the 
implementation results, and Section 4 discusses the performance evaluation. 
Finally, Section 5 addresses concluding remarks. 

2. PROPOSED JAVA SYSTEM 

Figure 1 outlines a possible implementation of the overall system of our 
Java execution scheme. The 'Java System' is constructed of the 32-bit 'Java 
Engine', 'Java Memory', and 'Host Interface', while the 'Original System' is 
composed of the embedded 'Host Processor', 'System Memory', and '110 
Interface' . 

JVM defines 32- and 64-bit operation instructions. However, the usage of 
64-bit instructions is much less than that of 32-bit ones in embedded systems, 
and hence in order to reduce the die size, Java Engine is designed for a 32-



Java Hardware Engine and Software Kernel for Embedded Systems III 

bit machine. In addition, Java System can be easily customized for different 
embedded systems by modifying only Host Interface. For example, Java 
Memory and System Memory can be either integrated in one memory or 
separated into two. 

Java :' Host ... keyboard I i 
Engine Processor _ display I i 

t communication I 
Host IfF """I""oZ..r- Bus i 

110 i 
• ! ;..-- +-_._ .... __ .......... ...!-. .. ; ...•..• --._ ................... - .. -, ----_. __ .. __ .--: ....................................................... : 

: : ! 
Java 
Memory i i ,.1 . . 

L._ .. _ .................................................. ..... ; ........................................................................................... 1 

...... ......... 1 : ........... ........................................ .1 
Figure I. Overall system 

Figure 2 outlines a Java application flow, which is achieved 
cooperatively by Host Processor and Java System. The execution starts with 
Host Processor invoking a Java method. Then, Java System executes Java 
bytecode for the method until the termination of execution. Meanwhile, if an 
110 method is executed, Java System transfers the process to Host Processor 
which returns the process to Java Systems after the execution. While Java 
System executes bytecodes, Host Processor is free to execute any other non 
Java process in parallel. 

invocation 

t 
End of 

D Host 

• Java system 

Figure 2. Java application flow 
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2.1 Design flow 

Figure 3 shows a design flow of our implementation. 
The design flow starts with dynamic analysis of JVM98 [1 0] and 

CaffeineMark[ 11] benchmarks in order to determine the system specification 
features such as hardware/software instructions, additional instructions for 
software kernel implementation, cache configuration, pipeline, and 
instruction folding for optimized instruction execution. 

System specification 

• Dynamic benchmark • Hardware/software 
analysis instructions 

• Cache, Pipeline • Additional instructions 

Hardware/ 

Java Enl!ine Instruction accurate simulato 

• RTUverilol!) 

• Simulation • 
• SYnthesis ..... Software Kernel 

test • Initialization 
hP.nch • Non-IOAPI 

• Macro instructions 

J. 
I Java svstem + Host orocessor I , 
l FPGA emulation and performance evaluation I 

Figure 3. Design flow 

Then, the design flow is split into software and hardware developments. 
For the efficient software kernel design, an instruction accurate simulator 
which models both hardware instructions and cache configuration is newly 
constructed. The software kernel is composed of codes for initialization 
sequence, non-II0 API library, and software macro instructions. 

On the other hand, the hardware design is performed in the register­
transfer-level (RTL) through the use of the verilog-HDL language with 
configurable options for cache size, number of stack registers, and bus width. 

Test benches for software kernel implementations are also used for 
hardware design simulation. 

Details of each step of design flow are described in the following. 
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2.2 Instruction set 

JVM specifies totally 203 instructions. Most of the instructions, such as 
those for 32-bit data transfer (iload, iconst_O, fload), 32-bit integer 
operation (iadd, ior, ishl), and 32-bit branch (ifeq, goto) ,are easily 
implemented in one-cycle hardware pipeline. 

However, highly complex instructions, such as those for method 
invocation (invokevirtual, return) and object allocation (new, 
newarray), are achieved by software macro. 

On the other hand, the implementation of such instructions as swap, dup, 
64-bit instructions, and floating point operations must be performed through 
the careful investigation into the instruction distribution of benchmarks and 
the complexity of hardware synthesis. As a result, all of 64-bit instructions 
for data transfer (lload, dload) and 64-bit integer operation (ladd, lor) 
are implemented by multicycle hardware pipeline; while those for swap, 
dup, and floating point operation (fadd, dadd) by software macro. 

In order to implement macro software instructions in our Java Engine, 39 
instructions are newly added to the JVM instruction set. These are mainly for 
(i) direct memory address 8/16/32-bit data transfer between the 
instruction/data memory and the operand stack, (ii) data transfer between 
special registers and the operand stack, and (iii) replacing/rewriting time­
consuming instructions such as new, invokevirtual, and getfield. 

2.3 Instruction folding 

The instruction folding consists in the execution of a set of two or more 
instructions in one cycle, enhancing the execution performance of Java 
bytecode. Since it is not suitable to implement all possible patterns, a 
dynamic analysis is attempted for the benchmarks. Table 1 shows the result 
of most frequently used patterns, and Table 2 summarizes the performance 
improvement of equation (1) with the use of these patterns. It can be seen 
from this table that 15% improvement is achieved on an average. 

Folding performance improvement= 
Number of executed and folded instructions (1) 

Number of executed instructions 
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pattern 
LCLVOP 

LVLCOP 

LCLCOP 

LVOP 

LCOP 

LCMEM 
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Table 1. Instruction folding patterns 

comment 
compute memory address for data read and performs the 
operation, reducing 2 data write in top of stack. 
compute memory address for data read and performs the 
operation, reducing 2 data write in top of stack. 
performs an operation with 2 constants, reducing 2 data 
write in top of stack. 
get one data from top of stack, compute memory address 
for data read, and performs the operation reducing one 
data write in top of stack. 
get one data from top of stack, and performs the 
operation reducing one data write in top of stack. 
compute memory address for constant data write, 
reducing one data write in top of stack. 

LC: load constant in top of stack 
LV: load data from local variable in top of stack 
OP: operation instruction 
MEM: memory write 

Table 2. Instruction folding performance improvement 

benchmark execution improvement 
JVM98.check 25.4% 
JVM98.compress 20.1 % 
JVM98.jess 5.8% 
JVM98.db 12.0% 
JVM98.javac 
JVM98.mpegaudio 
JVM98.mtrt 
CaffeineMark 
average 

2.4 Java engine architecture 

6.2% 
26.2% 

4.4% 
16.3% 
14.6% 

Figure 4 details an architecture overview of Java Engine which is based 
on Harvard Architecture and 6-stage instruction execution pipeline. Since 
JVM is a stack-based machine, an operand stack (STK) stage is included in 
the pipeline. A memory read (MR) stage precedes the execution (EX) stage 
in order to execute efficiently specific patterns of instruction folding. 



Java Hardware Engine and Software Kernel for Embedded Systems 115 
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Figure 4. Architecture overview 

The following are the details of each module of the architecture. 

Instruction Fetch (IF) 
IF is to fetche an instruction code from instruction memory and updates 

the program counter register. Since Java bytecode length is variable, a 13-
byte shift register is used to buffer instructions from the instruction memory. 
Up to the leading 7 bytes of the shift register can be read by the instruction 
decoder (ID), which returns the number of decoded bytes to update the 
instruction shift register. 

Instruction Decoder (lD) 
ID is constructed by tree units; instruction folding, multicycle control, 

and command generator. 
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The input of the instruction folding unit are the 7 bytes from IF, which 
are interpreted as a single instruction or a pattern of 2 or 3 instructions of 
instruction folding. 

The multicycle control unit is a state machine which generates control 
signals for the command generator unit for multicycle instructions. The 
number of cycles is set to 2 for long instructions, 16 for imul, and 32 for 
idiv. 

The command generator unit gets the output of instruction folding and 
multicycle control units, and generates the command and data for the 
following 4 stages. 

Stack (STK) 
STK consists of an operand stack unit, an adder, and most of special 

registers of Java Engine. 
Top 7x32 bits of the Java operand stack are loaded to the operand stack 

unit of STK, while the rest is in a segment of data memory. When the 
operand stack unit underflows or overflows, it transfers data to or from, 
respectively, the data memory. 

The adder is to add the data from ID, operand stack unit, or local variable 
register, for the memory address calculation or for the comparison of 
conditional branch instructions, which are used in the next stages of the 
pipeline. 

Memory Read (MR) 
MR is to read SI16/32-bit data from the instruction memory or the data 

memory. 

Execution (EX) 
EX is to execute arithmetic/logic and shift operations, where the shift unit 

is provided with an accumulator which holds the values of multicycle 
instructions such as multiplication and division. 

Write Back (WB) 
WB is to write a 8/16/32-bit data into the instruction memory, data 

memory, operand stack, and program counter. 

Bypass 
To reduce the number of data hazards of the Java stack engine, the 

bypass mechanism is indispensable. Whenever possible, one or two 32-bit 
data output from EX and/or MR are bypassed to the input of EX, MR, or 
STK, reducing the stalls of pipeline. 
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Cache 
Instruction Cache is for the direct mapped cache write back, with 16 

bytes in each block. 
Data Cache is for the 2-way set associative write back with 16 bytes in 

each block. Least Recently Used (LRU) method is used in each set for the 
cache miss control. 

The cache sizes of both Instruction and Data Cache are configurable to 
lK, 2K, 4K, 8K, and 16K bytes. 

2.5 Software kernel 

Since the JVM specification does not deal with the implementation 
details of JVM and its instructions, an optimized software kernel should be 
constructed to maximize the performance of bytecode execution. The kernel 
includes the codes for initialization sequences, macro instructions, API 
library, and all necessary data structures. 

During the initialization, the memory is initialized and some classes of 
API library are loaded. 

Macro instructions are the software implemented instructions such as 
floating operations, method calls, and instructions to deal with objects. 

3. IMPLEMENTATION RESULTS 

The proposed Java System composed of a hardware engine and software 
kernel implements the total of 203 Java bytecodes plus 39 additional 
instructions. Table 3 details the implemented instructions. 

The proposed hardware architecture described in the Verilog-HDL has 
been verified on Altera APEX EP20KE400 FPGA with the use of Xtensa 
XTl000 processor emulation module (Figure 5). The architecture has also 
been synthesized by Virtual Silicon 0.18,um library through the use of 
Synopsis Design Compiler. Table 4 shows the implementation results. In 
addition, the cost of instruction folding unit, which improves the 
performance by 15%, is only 700 of 30K gates. 
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Table 3. Implemented instructions 

instructions implementation (num) detail 
JVM instructions hardware(140) 32 bit data transfer, 

integer operation, branch 
software(63) method call, object, float 

additional instructions hardware(24) 

software( 15) 

operation 
direct memory access, 
register data transfer 
fast instructions 

Table 4. Implementation results 

technology 
number of gates 
max. clock rate 
cache 

0.18,um 
30kgates 
96MHz 
30k bits (lkbyte for each set) 

FigureS. Verification board: Xtensa XTlOOO (left) and proposed hardware (right) 

4. PERFORMANCE EVALUATION 

Expected performance of the proposed system has been evaluated with 
the use of the CaffeineMark[ 11] benchmark. Table 5 shows the performance 
of the proposed hardware engine and J2ME run on Sun Ultra Sparc (450 
MHz). The proposed architecture is 5.7 times faster than J2ME on an 
average. 
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Since J2MB is originally devised for PDAs, we have also tested 
CaffeineMark with the use of Palm III, working on MC68EZ328[12] of 
20MHz. However, due to the old CISC architecture, the performance is so 
slow as to be less than 0.05 cmIMHz. 

Table 5. Performance Evaluation on CaffeineMark 

Benchmark 

CaffeineMark.Sieve 
CaffeineMark.Loop 
CaffeineMark.Logic 
CaffeineMark.String 
CaffeineMark.Float 
CaffeineMark.Method 
Overall 

5. CONCLUSION 

J2MB on Ultra 
Sparc(cmIMHz) 

0.52 
0.50 
0.49 
1.45 
0.46 
0.53 
0.60 

ProposedHardware 
(cmIMHz) 

9.65 
14.65 
8.35 
2.9 

1.05 
0.45 

3.4 

This paper has described a hardware and software codesign approach to 
high performance Java execution for embedded systems. The system 
implements totally 203 JVM bytecode instructions plus 39 additional 
instructions for software kernel optimization. Among these, 78 instructions 
are implemented by the software kernel, and 164 instructions by the 6-stage 
pipeline engine. The proposed system executes all non-IO Java methods 
allowing the parallel operation of both Java System and Host Processor of 
the embedded system. 

The proposed hardware Java Engine has been coded in the verilog-HDL 
to be synthesized by Virtual Silicon 0.18,um library, and has been integrated 
with the use of 30K gates, allowing a single chip implementation of the 
whole system including Host Processor and 110 modules. 

Future work is continuing on the hardware implementation of floating 
point instructions and the optimization of method invoke/return instructions 
in order to enhance the performance of String, Float, and Method 
CaffeineMark tests. 
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