
High Performance Java Hardware Engine and
Software Kernel for Embedded Systems

Morgan Hirosuke Miki, Motoki Kimura, Takao Onoye*, Isao Shirakawa
Department of Information Systems Engineering,
Graduate School of Engineering, Osaka University
2-1 Yamada-Oka, Suita, Osaka, 565-0871 Japan
*Department of Communications and Computer Engineering,
Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
e-mail: miki@ise.eng.osaka-u.ac.jp.motoki@ise.eng.osaka-u.ac.jp.
onoye@kuee.kyoto-u.ac.jp, sirakawa@ise.eng.osaka-u.ac.jp

Abstract: This paper describes an effective approach to Java execution through the use
of embedded processors. A pair of hardware engine and software kernel are
devised for existing embedded systems in order to execute Java applications
efficiently, in such a way that 39 instructions are added to the original JVM
dedicatedly for the software kernel implementation. The whole embedded
system including the hardware engine of 6-stage pipeline with 30K gates can
be integrated in a single chip. The proposed approach improves the execution
speed by a factor of 5.7 in comparison with J2ME software implementation.

Key words: Java, embedded system, hardware engine, software kernel

1. INTRODUCTION

Since the introduction of Java [1] in 1995, it has been widely used in
innumerous applications, from small systems such as electronic cards to high
performance data base servers. Java also receives special interest as the
network language not only for personal computers and work stations but also
for the growing embedded system applications, due to the main features of
(i) platform independence provided by Java Virtual Machine (JVM) [2], (ii)
instruction level network security, and (iii) object oriented language.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
M. Robert et al. (eds.), SOC Design Methodologies

10.1007/978-0-387-35597-9_40

http://dx.doi.org/10.1007/978-0-387-35597-9_40

110 M. H. Miki, M. Kimura, T. Onoye,l. Shirakawa

In general, NM is implemented by software with the so called
interpreter or just-in-time (JIT) compiler, where it should be pointed out that
the software implementation can not suit embedded systems in terms of large
memory usage, slow speed, and large power consumption. On the other hand
Java specific processors[3-S] intended for efficient execution suffer from
enormous overhead and cost of reconstructing operating system as well as
intricate interfaces to existing embedded systems.

In order to solve the technical issues stated above, this paper investigates
a unified approach to construct an efficient Java execution scheme added to
existing embedded systems. This scheme consists mainly of hardware engine,
software kernel, and configurable interface to host embedded processor. A
part of those Java methods, which are defined in the non-liD API library, can
be invoked from the host embedded processor to execute Java applications.

The proposed architecture employs a 6-stage pipeline including a stack
stage customized for the stack-based semantics of JVM. In order to enhance
the execution speed of Java applications, the instruction folding and 39
additional instructions to NM are provided. The architecture has been
verified with the use of Altera APEX EP20KE 400 and Tensilica XTlOOO
emulation system.

As for ASIC implementation, the proposed system has been synthesized
with 30K gates and 30K memory bits by using Virtual Silicon O.lS,um
library, which can operate at 96MHz of clock rate. This result admits a
single chip implementation of the whole Java execution system, including
the proposed engine, host processor, and 110 modules.

As a result, Java execution performance has been improved up to a factor
of 5.7 on an average, as compared with J2ME[9] for embedded systems.

Section 2 details the proposed Java System, Section 3 describes the
implementation results, and Section 4 discusses the performance evaluation.
Finally, Section 5 addresses concluding remarks.

2. PROPOSED JAVA SYSTEM

Figure 1 outlines a possible implementation of the overall system of our
Java execution scheme. The 'Java System' is constructed of the 32-bit 'Java
Engine', 'Java Memory', and 'Host Interface', while the 'Original System' is
composed of the embedded 'Host Processor', 'System Memory', and '110
Interface' .

JVM defines 32- and 64-bit operation instructions. However, the usage of
64-bit instructions is much less than that of 32-bit ones in embedded systems,
and hence in order to reduce the die size, Java Engine is designed for a 32-

Java Hardware Engine and Software Kernel for Embedded Systems III

bit machine. In addition, Java System can be easily customized for different
embedded systems by modifying only Host Interface. For example, Java
Memory and System Memory can be either integrated in one memory or
separated into two.

Java :' Host ... keyboard I i
Engine Processor _ display I i

t communication I
Host IfF """I""oZ..r- Bus i

110 i
• ! ;..-- +-_._ __!-. .. ; ...•..• --._ - .. -, ----_. __ .. __ .--: ... :

: : !
Java
Memory i i ,.1 . .

L._ .. _ ; ... 1

...... 1 :1
Figure I. Overall system

Figure 2 outlines a Java application flow, which is achieved
cooperatively by Host Processor and Java System. The execution starts with
Host Processor invoking a Java method. Then, Java System executes Java
bytecode for the method until the termination of execution. Meanwhile, if an
110 method is executed, Java System transfers the process to Host Processor
which returns the process to Java Systems after the execution. While Java
System executes bytecodes, Host Processor is free to execute any other non
Java process in parallel.

invocation

t
End of

D Host

• Java system

Figure 2. Java application flow

112 M. H. Miki, M. Kimura, T. Onoye,/. Shirakawa

2.1 Design flow

Figure 3 shows a design flow of our implementation.
The design flow starts with dynamic analysis of JVM98 [1 0] and

CaffeineMark[11] benchmarks in order to determine the system specification
features such as hardware/software instructions, additional instructions for
software kernel implementation, cache configuration, pipeline, and
instruction folding for optimized instruction execution.

System specification

• Dynamic benchmark • Hardware/software
analysis instructions

• Cache, Pipeline • Additional instructions

Hardware/

Java Enl!ine Instruction accurate simulato

• RTUverilol!)

• Simulation •
• SYnthesis Software Kernel

test • Initialization
hP.nch • Non-IOAPI

• Macro instructions

J.
I Java svstem + Host orocessor I ,
l FPGA emulation and performance evaluation I

Figure 3. Design flow

Then, the design flow is split into software and hardware developments.
For the efficient software kernel design, an instruction accurate simulator
which models both hardware instructions and cache configuration is newly
constructed. The software kernel is composed of codes for initialization
sequence, non-II0 API library, and software macro instructions.

On the other hand, the hardware design is performed in the register­
transfer-level (RTL) through the use of the verilog-HDL language with
configurable options for cache size, number of stack registers, and bus width.

Test benches for software kernel implementations are also used for
hardware design simulation.

Details of each step of design flow are described in the following.

Java Hardware Engine and Software Kernel for Embedded Systems 113

2.2 Instruction set

JVM specifies totally 203 instructions. Most of the instructions, such as
those for 32-bit data transfer (iload, iconst_O, fload), 32-bit integer
operation (iadd, ior, ishl), and 32-bit branch (ifeq, goto) ,are easily
implemented in one-cycle hardware pipeline.

However, highly complex instructions, such as those for method
invocation (invokevirtual, return) and object allocation (new,
newarray), are achieved by software macro.

On the other hand, the implementation of such instructions as swap, dup,
64-bit instructions, and floating point operations must be performed through
the careful investigation into the instruction distribution of benchmarks and
the complexity of hardware synthesis. As a result, all of 64-bit instructions
for data transfer (lload, dload) and 64-bit integer operation (ladd, lor)
are implemented by multicycle hardware pipeline; while those for swap,
dup, and floating point operation (fadd, dadd) by software macro.

In order to implement macro software instructions in our Java Engine, 39
instructions are newly added to the JVM instruction set. These are mainly for
(i) direct memory address 8/16/32-bit data transfer between the
instruction/data memory and the operand stack, (ii) data transfer between
special registers and the operand stack, and (iii) replacing/rewriting time­
consuming instructions such as new, invokevirtual, and getfield.

2.3 Instruction folding

The instruction folding consists in the execution of a set of two or more
instructions in one cycle, enhancing the execution performance of Java
bytecode. Since it is not suitable to implement all possible patterns, a
dynamic analysis is attempted for the benchmarks. Table 1 shows the result
of most frequently used patterns, and Table 2 summarizes the performance
improvement of equation (1) with the use of these patterns. It can be seen
from this table that 15% improvement is achieved on an average.

Folding performance improvement=
Number of executed and folded instructions (1)

Number of executed instructions

114

pattern
LCLVOP

LVLCOP

LCLCOP

LVOP

LCOP

LCMEM

M. H. Miki, M. Kimura, T. Onoye,l. Shirakawa

Table 1. Instruction folding patterns

comment
compute memory address for data read and performs the
operation, reducing 2 data write in top of stack.
compute memory address for data read and performs the
operation, reducing 2 data write in top of stack.
performs an operation with 2 constants, reducing 2 data
write in top of stack.
get one data from top of stack, compute memory address
for data read, and performs the operation reducing one
data write in top of stack.
get one data from top of stack, and performs the
operation reducing one data write in top of stack.
compute memory address for constant data write,
reducing one data write in top of stack.

LC: load constant in top of stack
LV: load data from local variable in top of stack
OP: operation instruction
MEM: memory write

Table 2. Instruction folding performance improvement

benchmark execution improvement
JVM98.check 25.4%
JVM98.compress 20.1 %
JVM98.jess 5.8%
JVM98.db 12.0%
JVM98.javac
JVM98.mpegaudio
JVM98.mtrt
CaffeineMark
average

2.4 Java engine architecture

6.2%
26.2%

4.4%
16.3%
14.6%

Figure 4 details an architecture overview of Java Engine which is based
on Harvard Architecture and 6-stage instruction execution pipeline. Since
JVM is a stack-based machine, an operand stack (STK) stage is included in
the pipeline. A memory read (MR) stage precedes the execution (EX) stage
in order to execute efficiently specific patterns of instruction folding.

Java Hardware Engine and Software Kernel for Embedded Systems 115

Java hardware engine

6 stage nim·line

IF ID STK MR EX
buffer

13 bytes
- ALU

-I multi - ;-- & r-
oper 1"-

I
cycle 1 f- logic I inst stack
ctrl I" + f-

fold
: .. 0 0 + ,.

7*32 - g shift
g

1-
cmd bits i &

i -

D gen 1- c c
acc

- - '-- '--.. • I

I
T

bypass I instruction II data
control cache cache

t t
host processor interface

• ..
• ..

host processor Java memory

Figure 4. Architecture overview

The following are the details of each module of the architecture.

Instruction Fetch (IF)
IF is to fetche an instruction code from instruction memory and updates

the program counter register. Since Java bytecode length is variable, a 13-
byte shift register is used to buffer instructions from the instruction memory.
Up to the leading 7 bytes of the shift register can be read by the instruction
decoder (ID), which returns the number of decoded bytes to update the
instruction shift register.

Instruction Decoder (lD)
ID is constructed by tree units; instruction folding, multicycle control,

and command generator.

116 M. H. Miki, M. Kimura, T. Onoye,J. Shirakawa

The input of the instruction folding unit are the 7 bytes from IF, which
are interpreted as a single instruction or a pattern of 2 or 3 instructions of
instruction folding.

The multicycle control unit is a state machine which generates control
signals for the command generator unit for multicycle instructions. The
number of cycles is set to 2 for long instructions, 16 for imul, and 32 for
idiv.

The command generator unit gets the output of instruction folding and
multicycle control units, and generates the command and data for the
following 4 stages.

Stack (STK)
STK consists of an operand stack unit, an adder, and most of special

registers of Java Engine.
Top 7x32 bits of the Java operand stack are loaded to the operand stack

unit of STK, while the rest is in a segment of data memory. When the
operand stack unit underflows or overflows, it transfers data to or from,
respectively, the data memory.

The adder is to add the data from ID, operand stack unit, or local variable
register, for the memory address calculation or for the comparison of
conditional branch instructions, which are used in the next stages of the
pipeline.

Memory Read (MR)
MR is to read SI16/32-bit data from the instruction memory or the data

memory.

Execution (EX)
EX is to execute arithmetic/logic and shift operations, where the shift unit

is provided with an accumulator which holds the values of multicycle
instructions such as multiplication and division.

Write Back (WB)
WB is to write a 8/16/32-bit data into the instruction memory, data

memory, operand stack, and program counter.

Bypass
To reduce the number of data hazards of the Java stack engine, the

bypass mechanism is indispensable. Whenever possible, one or two 32-bit
data output from EX and/or MR are bypassed to the input of EX, MR, or
STK, reducing the stalls of pipeline.

Java Hardware Engine and Software Kernel for Embedded Systems 117

Cache
Instruction Cache is for the direct mapped cache write back, with 16

bytes in each block.
Data Cache is for the 2-way set associative write back with 16 bytes in

each block. Least Recently Used (LRU) method is used in each set for the
cache miss control.

The cache sizes of both Instruction and Data Cache are configurable to
lK, 2K, 4K, 8K, and 16K bytes.

2.5 Software kernel

Since the JVM specification does not deal with the implementation
details of JVM and its instructions, an optimized software kernel should be
constructed to maximize the performance of bytecode execution. The kernel
includes the codes for initialization sequences, macro instructions, API
library, and all necessary data structures.

During the initialization, the memory is initialized and some classes of
API library are loaded.

Macro instructions are the software implemented instructions such as
floating operations, method calls, and instructions to deal with objects.

3. IMPLEMENTATION RESULTS

The proposed Java System composed of a hardware engine and software
kernel implements the total of 203 Java bytecodes plus 39 additional
instructions. Table 3 details the implemented instructions.

The proposed hardware architecture described in the Verilog-HDL has
been verified on Altera APEX EP20KE400 FPGA with the use of Xtensa
XTl000 processor emulation module (Figure 5). The architecture has also
been synthesized by Virtual Silicon 0.18,um library through the use of
Synopsis Design Compiler. Table 4 shows the implementation results. In
addition, the cost of instruction folding unit, which improves the
performance by 15%, is only 700 of 30K gates.

118 M. H. Miki, M. Kimura, T. Onoye,/. Shirakawa

Table 3. Implemented instructions

instructions implementation (num) detail
JVM instructions hardware(140) 32 bit data transfer,

integer operation, branch
software(63) method call, object, float

additional instructions hardware(24)

software(15)

operation
direct memory access,
register data transfer
fast instructions

Table 4. Implementation results

technology
number of gates
max. clock rate
cache

0.18,um
30kgates
96MHz
30k bits (lkbyte for each set)

FigureS. Verification board: Xtensa XTlOOO (left) and proposed hardware (right)

4. PERFORMANCE EVALUATION

Expected performance of the proposed system has been evaluated with
the use of the CaffeineMark[11] benchmark. Table 5 shows the performance
of the proposed hardware engine and J2ME run on Sun Ultra Sparc (450
MHz). The proposed architecture is 5.7 times faster than J2ME on an
average.

Java Hardware Engine and Software Kernel for Embedded Systems 119

Since J2MB is originally devised for PDAs, we have also tested
CaffeineMark with the use of Palm III, working on MC68EZ328[12] of
20MHz. However, due to the old CISC architecture, the performance is so
slow as to be less than 0.05 cmIMHz.

Table 5. Performance Evaluation on CaffeineMark

Benchmark

CaffeineMark.Sieve
CaffeineMark.Loop
CaffeineMark.Logic
CaffeineMark.String
CaffeineMark.Float
CaffeineMark.Method
Overall

5. CONCLUSION

J2MB on Ultra
Sparc(cmIMHz)

0.52
0.50
0.49
1.45
0.46
0.53
0.60

ProposedHardware
(cmIMHz)

9.65
14.65
8.35
2.9

1.05
0.45

3.4

This paper has described a hardware and software codesign approach to
high performance Java execution for embedded systems. The system
implements totally 203 JVM bytecode instructions plus 39 additional
instructions for software kernel optimization. Among these, 78 instructions
are implemented by the software kernel, and 164 instructions by the 6-stage
pipeline engine. The proposed system executes all non-IO Java methods
allowing the parallel operation of both Java System and Host Processor of
the embedded system.

The proposed hardware Java Engine has been coded in the verilog-HDL
to be synthesized by Virtual Silicon 0.18,um library, and has been integrated
with the use of 30K gates, allowing a single chip implementation of the
whole system including Host Processor and 110 modules.

Future work is continuing on the hardware implementation of floating
point instructions and the optimization of method invoke/return instructions
in order to enhance the performance of String, Float, and Method
CaffeineMark tests.

120 M. H. Miki, M. Kimura, T. Onoye,J. Shirakawa

6. REFERENCES

[1] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification Second
Edition, Addison Wesley, Los Altos, California, April, 2000.

[2] T. Lindholm and F. Yellin, The Java Virtual Machine Specification Second Edition,
Addison Wesley, Palo Alto, California, April, 1999.

[3] lM. O'Connor and M. Tremblay, ''picoJava-I: The Vitrual Machine in Hardware", IEEE
MICRO, Vol. 17, No.2, Mar.lApr. 1997, pp. 45-53.

[4] Sun Microsystems Inc., picoJava-ll Microarchitecture Guide, Mar. 1999.

[5] Advancel Logic Corporation Inc., TinyJ Processor Core Datasheet, May 1999.

[6] aJile Systems Inc., Real-time Low-power Java Processor aI-lOO Datasheet, Sept. 2000.

[7] Patriot Scientific Corporation Inc., PSCIOOO Microprocessor, July 1997.

[8] S. Kimura, H. Kida, K. Takagi, T. Abematsu, and K. Watanabe, "An application specific
Java processor with reconfigurablities", Proc. Asia and South Pacific Design Automation
Conference 2000 (ASP-DAC 2000), Jan. 2000.

[9] Sun Microsystems Inc., Java 2 Platform, Micro Edition, June 1999.

[10] The Standard Performance Evaluation Corporation, SpecJVM98 VERSION 1.03, 1998.

[11] Pentagon Software Evaluation Corporation, Java CaffeineMark 3.0, 1999.

[12] Motorola Inc., MC68EZ328 - DragonBali EZ Product Brief

	High Performance Java Hardware Engine andSoftware Kernel for Embedded Systems
	1. INTRODUCTION
	2. PROPOSED JAVA SYSTEM
	2.1 Design flow
	2.2 Instruction set
	2.3 Instruction folding
	2.4 Java engine architecture
	2.5 Software kernel

	3. IMPLEMENTATION RESULTS
	4. PERFORMANCE EVALUATION
	5. CONCLUSION
	6. REFERENCES

