
DVQ: A DTD-DRIVEN VISUAL QUERY
INTERFACE FOR XML DATABASE SYSTEMS

Long Zhang, Shihui Zheng, Aoying Zhou
Computer Science & Engineering Department
Fudan University, Shanghai, China
{lzhangO, shzhengO, ayzhou}@fudan.edu.cn

HongjunLu
Computer Science Department
Hong Kong University of Science & Technology, Hong Kong, China
luhj@cs.ust.hk

Abstract XML has been recognized as a promising language for data exchange over the
Internet. A number of query languages have been proposed for querying XML
data. Most of those languages are path-expression based. One difficulty in form­
ing path-expression based queries is that users have to know the structure of
XML data against which the queries are issued. In this paper, we describe a
DTD-driven visual query interface for XML database systems. With such inter­
face, a user can easily form path-expression based queries by clicking elements
in the DID tree displayed on the screen and supplying conditions if necessary.
The interface and the query generation process are described in detail.

Keywords: XML, DID, visual query, path expressions

1. INTRODUCTION
The Extensible Markup Language (XML) is an emerging standard for data

representation and exchange on the Internet. There is a consensus among the
researchers that XML is as an easy-to-write, easy-to-parse language to ex­
change data in a variety of applications on the Internet. Currently, most busi­
ness data is stored in relational or object-relational systems. It will continue to
be so since the matured relational technology provides excellent queriability,
scalability and availability. It becomes a natural choice to store XML doc­
uments in relational systems to make use of such advantages and hopefully

X. Zhou et al. (eds.), Visual and Multimedia Information Management
© Springer Science+Business Media New York 2002

386

ease the difficulties in integrating XML documents into other applications.
Large amount of research work has been conducted to study issues related
to storing XML documents using relational database management systems (
Shanmugasundaram et aI., 1999; Deutsch et al., 1999; Shanmugasundaram et
aI., 2000; Manolescu et aI., 2001). Storing an XML document into a rela­
tional database system requires to map the document into relational tables.
In other words, a relational schema must be defined. Yoshikawa and Am­
agasa categorize such XML-Relation mapping into two categories: structure­
mapping-based approach and model-map ping-based approach (Yoshikawa and
Amagasa, 2001). The structure-mapping-based approach generates a relational
schema from an XML document based on its logical structure described by its
DID (Document Type Descriptor). The model-mapping-based approach gen­
erates a relational schema for an XML document based on its representation
model (e.g. trees) without understanding its logical structure.

To query XML data, several XML query languages were proposed including
LOREL (Abiteboul et aI., 1997), XML-QL (Deutsch et aI., 1998), XPath (
Clark and DeRose, 1999) and XQuery (Chamberlin et al., 2001). Although
those query languages differ from each other in ways of expressing queries, one
of the common features of XML queries is that they are mainly path expression
based, which is rather different from set-oriented relational query languages,
such as SQL.

Compared to querying relational database using SQL, querying XML data is
more difficult from the users' viewpoint since users need to know the structure
of the data. When XML data is stored in relational systems, this becomes much
more difficult, especially when structure-mapping based approach is used for
schema mapping as the original structure may not be well reflected by the rela­
tional schema. While storage of XML and related query processing techniques
received well attention, the efforts in providing users with facilities to ease the
difficulty of writing path-expression based XML query are very limited. The
DataGuide (Goldman and Widom, 1997; Goldman and Widom, 1998) interface
in Lore system can generate simple LOREL (Abiteboul et aI., 1997) queries by
exploring the DataGuide of semi-structured data. But it can only specify sim­
ple path expressions, and set conjunctive conditions on only a unique path.
Both the BBQ (Munro et al., 2000) visual interface of MIX and EquiX (Cohen
et aI., 1999) interface display the DTD structure of XML data to facilitate user
to browse and formulate query. But they cannot construct arbitrary regular path
expressions and complex constraint conditions too.

In this paper we present DVQ, a DID-driven visual query interface for
an XML-Relational database system VXMLR (Zhou et al., 2001). VXMLR
adopts a structure-mapping based approach to map XML data into relational
tables managed by a commercial RDBMS. Its query interface, DVQ, displays
the structure of the stored XML data on the screen. By simple clicking the

387

nodes in the DTD structure and entering related conditions, a user can easily
fonn path expressions. DVQ then generates the path expression based queries
automatically. The query results are represented by XSLT and delivered to
users through DVQ. With DVQ, VXMLR users navigate the nested structure
of the stored XML data, fonn query and browse the result documents through
DVQ seamlessly. The unique features of DVQ include the following.

• It provides users with a graphical interface so that complex queries can
be fonned by users' simple GUI actions. Not only XML experts, but
also ordinary users can specify query without the knowledge of the XML
query languages.

• It is powerful enough to specify regular path expressions with wildcards
and any complicate conditions with conjunction, disjunction and nega­
tion. At the same time, the WYSWYG (What You See is What You Get)
feature of DVQ makes query fonnulation rather straightforward.

• In addition to enter queries, DVQ also provides facilities for users to
navigate through the XML structure and to view the intennediate results
of the major steps in query processing.

• It is a separate module running at the client side and driven by DTD of
original XML data. That is, it is independent on the underlying XML­
relational mapping schema. So, it is a portable module that can be used
in any XML database system.

The remainder of this paper is organized as follows. In Section 2, we intro­
duce·some background infonnation. In Section 3, we describe the architecture
of DVQ. Section 4 describes how DVQ forms path expressions with set con­
straint conditions using examples. In Section 5, we present DVQ's function
of monitoring XML query execution and displaying the query results. Finally,
conclusions are presented in Section 6.

2. BACKGROUND INFORMATION
In this section, we introduce some background infonnation about XML data

and XML queries.

2.1. A DTD Sample

Unlike HTML documents where their structures are usually unknown, the
data type definition (DTD) of an XML document describes the nested relation­
ships between data elements in the document. A DTD example is shown in
Figure 1, and we will use it as running example in the following discussion.

The DTD in Figure 1 describes XML documents about the infonnation of
laboratories. There are two basic constructs in XML documents, element and

388

attributes, indicated by ! ELEMENT and! ATTLIST, respectively. Elements in
XML documents can be nested. Each document has a unique root element,
which is labinformation in our example. It contains three sub-elements,
labname, project, and member. Character * after project indicates that
a laboratory element instance can have zero or more projects. + indicates
that a laboratory element instance may have one or more members. Each
member element has a unique ID attribute, and sub-elements name, email,
URL, publication and project. The sign? after URL indicates that this ele­
ment is optional, that is, a member instance may not have a URL. The contents
of an element is denoted by #PCDATA. The other portion of the DTD can be
interpreted in a similar way. Note that member and project are defined recur­
sively. That is, a member element can have project as sub-element, and vice
versa.
<!ELEMENT labinformation (labname. project*.member+»
<!ELEMENT member (name.email.URL? publication*.project*»
<!ELEMENT project (projtitle.introduction?member*»
<!ATTLIST member ID ID #IMPLIED>
<!ELEMENT publication (title.author*.year»
<!ELEMENT labname (#peDATA»
<!ELEMENT projtitle (#peDATA»
<!ELEMENT name (lastname?firstname»
<!ELEMENT lastname (#peDATA»
<!ELEMENT firstname (#peDATA»
<!ELEMENT email (#peDATA»
<!ELEMENT URL (#peDATA»
<!ELEMENT introduction (#peDATA»
<!ELEMENT author (name»
<!ELEMENT year (#peDATA»

Figure 1. A Sample DID.

2.2. Path Expressions
We can see from the DTD example that data elements in an XML document

are nested to form a tree structure (a graph with IDREF). Figure 2 depicts an
example document and its graphical representation, data graph. With such a
structure. we can represent an element by the path from the root of the tree to
the element. If we adopt the dot notation to denote the parent-child relation­
ship. the path for a members name can be expressed as project. member. name,
for example. In general. the path expressions can be more complex. If r, rl.
and r2 are elements or attributes, a path expression has the form the root of
r = (r) * I (r) + I (r)? I rl·r2 I (rllr2) I # I name

Where *, +. ? mean 0 or more, 1 or more, and 0 or 1, occurrences. respec­
tively. Concatenation rl.r2 is used to form a path from rl to r2.

389

Alternation" I " stands for disjunction. Wildcard "#" denotes arbitrary oc­
currences of any regular expressions. We distinguish two types of path ex­
pressions: simple path expression (SPE) and regular path expression (RPE).
Simple path expressions are path expressions that consist of only element or
attribute names such as labinformation.project . member . name. Regular
path expressions are path expressions that contain regular operators. For ex­
ample, #. (project. member) * . name is a RPE.

<project>
<projname>XML</projname>
<member ID="1;3">

<name>Zhou Aoying</name>
<email>ayzhouCfudan.edu.cn</email>
<publication author="Zhou">

<title>A Algorithm ... </title>
<year>Journalof ... </year>

</publication>

</member>
<member ID="1;24">

<name>Zengping Tian</name>
<project>

<projname>clustering</projname>
</project>

</member>
</project>

project

Figure 2. An XML document and its data graph.

2.3. VXMLR: A Visual XML-Relational Database System
The detailed description of VXMLR is out of the scope of this paper. To il­

lustrate the context where DVQ works, we depict the architecture of VXMLR
as shown in Figure 3. In VXMLR, XML documents are stored in a relational
database system, managed by a relational DBMS. An input XML document
is first parsed into a DOM tree. At the same time, the DTD for the docu­
ment is extracted. The document tree is then mapped to relational tables and
stored in the database. User issue queries through DVQ, the visual interface.
Those queries are then transformed into SQL statements ready to submit to
the underlying relational DBMS. To generate efficient SQL statements from
path expression based queries, VXMLR maintains some statistics of data and
a path directory. Both the statistics and the path directory are used in the query
rewriting process to reduce the number of SQL statements and simplify join
conditions. The query results returned from DBMS are constructed and ex­
pressed using XSL, which are then delivered to the user through DVQ.

390

3. DVQ: THE VISUAL QUERY INTERFACE
VXMLR system was im­

plemented on the top of Mi­
crosoft SQL Server. The server
side program is implemented in
C++. The client side program,
i.e., the visual query interface,
which runs on a browser, is
written in Java. Figure 4 shows
the reference architecture of
DVQ.

The portion upper the dashed
line is the client side of VXMLR, Figure 3. Reference architecture of VXMLR.
while the below portion is the
server side. The system works as following: at first, once a DTD de­
scriptor is selected by user, the DTD Sender transfers the encoded DTD
information to DVQ by way of CGI. Next, the DTD Receiver at the
client side receives the decoded DTD and the DTD Tree Generator parses
it into hierarchical structure, which then is displayed in Query Inter­
face. Once user has constructed the query and clicked the Submit but­
ton, The Query Generator module generates path expression query automat­
ically. The Query Sender module then sends the generated query to server.
At the server side, the Query Receiver decodes the query and submits it to the
Query Engine of VXMLR. The Query Engine translates the query into efficient
SQL statements, which is then executed by the underlying RDBMS. VXMLR
Query Engine constructs the result document using the result relational tables
returned by RDBMS. Finally, the result document is represented by the XSL
Processor and transferred to the browser for displaying.

Figure 5 is the screen dump
(main window) of DVQ inter­
face. It consists of two pan­
els and some buttons. The left
panel displays the DTD struc­
ture of XML data to be queried.
What shown is the sample DTD
in Figure 1 as a hierarchical di­
rectory, where elements and at­
tributes are represented by their
names, preceded with a dia­
mond or a dot, respectively.
Sub-elements or attributes are

Server
SKJe

Fi~ure 4. The reference architecture of DVQ.

391

expressed as the children of their parent node. User can click the icon be­
fore an element to explore or collapse its subtree. Recall that project and
member are defined recursively, which is represented by "project-member"
and "member-project" in the DTD panel. The DTD panel provides an easy
way for user to navigate the nested structure of the stored XML data conform­
ing to the DTD. To the right of the DTD panel is two tabbed panels, Selection

.................. ..,.. ...
. .-­. .-
•• It -..:eo .. -.-. .-­. .-.. ~-­.­. -.. --­. 11'1\.1 .­. --..

- 0 .. "-" '"
.~
. MOm'n.I. .. _---<:, .. -. .--.--­..... . ~ .. --­. '"'" • . -­_ 10

-
Figure 5. The DVQ interface.

and Condition. The Selection panel is used to form the target items (i.e. a list
of path expression) to be retrieved. The Condition panel is for user entering
the conditions that the retrieved items must satisfy. The basic components of
both panels are path expression.

At the bottom of the main window are four buttons and a check box. The
leftmost is the Reset button, which lets user to clear up the constructed items in
the Selection and Condition panels. The Preview button brings up a dialog that
displays the generated query for user to preview. To the right of the Preview
button is a XSLT check box, which indicates the query result will be returned
as plain XML file or XML page expressed by XSL. To the right of the XSLT
check box is the Submit button, which triggers the query to be submitted to the
VXMLR server for executing. When the right most Monitor button is pushed,
an XML page will displayed that shows the elapsed time and query statements
in each step of query processing.

392

4. VISUAL QUERY FORMATION

A user query session in VXMLR consists of four steps: First, browses the
DID structure and fonns the output items by clicking nodes in the DID struc­
ture and set constraints through the Condition panel. Second, after a user com­
pletes the specifications of the output items and constraints, a query in the fonn
of path expressions is generated. Third, the generated query is submitted to the
VXMLR server for executing. Finally, the result is returned from VXMLR
server to the interface for user to browse.

4.1. Form Path Expressions
We first introduce the Selection panel and then show how to fonnulate path

expressions in the select part of a query. Figure 6 shows the DID panel and

.. IN~OR_Tl

> • 1J\llNI\Mt.
" • 1041:10401:11 .PnO.JCCl

... NAWF

I I • LASTNAIoII!
• ~IRIlTNIIM"

I-- +IIRI
" • PRO.IECT -MEM'lER

• INTRODUOTlON

• PROJTI'Tl.E + eMAIL

" • PUaUCATlON
+T1TLE
. ''''-''R
+PU9USHER

" F

I L :~"
.URL

r • .e.-......--~

" -OO:-~~"-""~

-II)

Figure 6. Specifying simple path expression by SELECT panel.

,.
•

Selection panel. The Selection panel consists of three text boxes, Candidate
Item, Output Items, and Ready Path Expression, and some buttons. The first
text box on the top of Selection panel, Candidate Item, is used for showing the
path expression being constructed. There are four buttons under the Candidate
Item text box. The first three buttons are regular operator buttons labelled
with "?", "*", and "+" respectively, which trigger those regular operators been
added to the current path expression shown in the select text box. To the right
of the regular operator buttons is the Add Item button, which brings up the path

393

expression in the Candidate Item text box added into the Output Items text box
under those buttons .

• : PI1IIUHR -<D
'.PR()JEe~
.~~ ~

,:=~.~---"" -~._... \::J

.~

.~
• URI.
.EIIM.

, • PUlllJCA110N
I

(1) (2)

Figure 7. Example for specifying regular path expressions by DTD panel (1) and SELEC-
TION panel (2).

Now, we show by example how to form simple path expressions. A simple
path expression is constructed in a natural way by clicking the nodes in the
DTD panel following top-down links. Clicking a node and its children starting
from the root triggers the name of the clicked nodes appended into the Can­
didate Item text box consecutively. Figure 6 shows that user clicks the nodes
labinformation,project, member and publication consecutively. The
generated path expression is SPE,

labinformation.project.member.publication

which is displayed in the Condition Item text box.
If the first clicked element is not the root element, or not the child of the ele­

ment in the tail of the current path expression, then there is at least one element
between the tail of the current path and the clicked element. A "#" operator is
inserted before it automatically. For example, as shown in Figure 7(1) step one,
user clicks the project element first followed by element member and name
element. The first clicked element, project, is not the root. Those actions
form a regular path expression #. pro j ect . member. name.

User can also insert the regular operators manually by first highlighting a
segment in the path expression followed by clicking the corresponding operator
button. The operator is then added on the path segment automatically. In
Figure 7(2), highlighting path segment project.member followed by clicking
"+" button forms a regular path expression #. (project . member) + . name.

394

Now user clicks the Add Item button. It triggers the current path expression
in the Candidate Item text box appended to the Output text box. User can
specifies target items and add them into the output items continuously.

Alternatively, user can also use the Remove Item button under the Output
text box to remove one or more path expressions from the Output Item text
box. At last, the path expressions in the Output Item text box will be used to
construct the select part of the query.

4.2. Set Constraints on Output Items
Constraints can be placed on the paths

in output items by Condition panel. Fig­
ure 8 shows the Condition panel, it con­
sists of three text boxes, three pop-menus
and several buttons. Same as the Selection
panel, the Path Expression text box on the
top of the Condition panel and the three reg­
ular operator buttons under it are for user
to form path expressions, on which con­
straints are then replaced. The below part
of the Condition panel is two text boxes
labelled with "Conditions" and "Condition
List", which let the user to combine multi­
ple constraints to form complex conditions.

To the left of the "?" operator button is
the comparator popup menu, which consists
of a set of basic comparators ("=", ">",
">=", "<", "<=", "LIKE", "IN"). Be­
low the comparator popup menu is the Type
popup menu, which indicates the type of

.... ~I
~_&IIr

APE "I!: (PRO.lttT.IIIIIIID., •• lIIIIuc.anOll. ·
· [!]c::JGJ - .. pooo ·
· ,

a.I II - I
lr.

I"l> C-.(PROJECUIEIlSER)+PUSUCATIOH.1TTI.E lJI<E ~

t---",NOO
'.CPROJECT.MEIlBER)+.PII9UCATION.~ ... 2000)

lIIC

".'.(pROJECT.IIIEMBER)+.P\JIIIJCA11ON.lTII..E I.I<E ~
-2> ' .(PROJECT .MBI8ER)+.PVIIUCA11ON.YEAR ." 1
.~NcIq;f ,-

::
1- .. II a- II !! I

the expression. The type of an expression Figure 8. Fonning constraints with
can be a num~ric, a string, a Boolean, or CONDmON panel.
a path expressIon. In VXMLR, each ele-
ment is stored as an attribute with string type in relational database. The
comparator and type popup menus enable user to flexibly treat an element
as other types. For example, user can specify a comparison between target
element "year" with an integer "2000". In VXMLR, the comparison is im­
plemented by casting the attribute in the relation as a numeric type. To the
right of the Type popup menu is the Expression text box. User can use it
to input an expression, which forms a condition comparing the path expres­
sion in the Path Expression text box with an expression, or input another
path expression by clicking the nodes in the DID panel, which form a con­
dition that joins two paths. In Figure 8 , user first forms this path expression
"#. (project.member)+.publication.year" in the Path Expression text
box by clicking the corresponding elements and "+" button. Next, user selects

395

the comparator ">=" and "NUMERIC" type, and inputs an integer values
"2000" in the Expression text box. Finally, the following constraint condition

#.(project.member)+.publication.year>=2000

is formed. At this point, user can click the "ADD" button under the Expression
text box to add the above condition into the Condition List text box or withdraw
the formed condition by clicking the Clear button under the expression text
box. In the Condition List text box in Figure 8, the condition has been added
into the Condition text box.

DVQ is powerful enough to construct arbitrary complex conditions with
''AND'', "OR" and "NOT" predicates. Figure 8 also shows how to form com­
plex conditions using the Predicate popup menu at the bottom of the Condition
panel. User first highlights the two conditions have been added to the Con­
dition text box, then selects the "AND" predicate from the Predicate popup
menu. Those actions bring up the two conditions in the Condition text box are
connected by "AND" predicate and the following conjunctive condition,

#.(project.member)+.publication.title LIKE '%XML%'
AND #.(project.member)+.publication.year>=2000

is formed. Continuing to add expressions and predicates, arbitrary nested com­
plex condition composed of conjunction, disjunction and negation can be com­
posed also. The generated conditions are simultaneously displayed in the Con­
ditions text box above the Condition List text box. To the right of the predicate
popup menu of the two buttons are labelled with "Clear" and "Add", which
bring up the conditions in the Condition text box are cleared or added into the
where part of the formed query.

4.3. Executing Query and Browsing Result
After a user specifies the path ex­

pression and the related conditions as
r~~QU~YPtevle-w- -- -- -- -.~ "E:.J!J

shown in Figure 7 (2) and Figure 8, SElECT 5:l1.NAME

DVQ will form the query automati-
FROM • .(PROJECT .MEMBER» 5:l1. 5:l1 .PUIlt.JCATIOH bl

cally. User can preview the gener-
ated query by clicking the Preview WHERE ($X2.mtEl.lI<E'9.XNL"'~($X2.YEAR·:2OIIO)

button in the right part of the main
window. ~

Figure 9 shows the dialog trig- t.,.r.=::::::AIdoI7:=::-;:,_=-:::---=--==--"':"='="='::"---=---l
gered by the click action, which dis-
plays the generated query. Note that

Figure 9. The preview dialog box displaying
variables are added into the queries. the generated query.
DVQ converts the query into the
forms of Figure 9 automatically. We
just sketch out the main idea for conversion and do not go into the details for
query conversion here: the query generator first finds all of the path prefixes

396

of those path expression appearing in the output items and constraint condi­
tions, next, assigns each common path prefix a variable and place those com­
mon prefixes in the FROM clause. Then replaces all common prefixes with
variable in all of those path expressions. Finally, states the constraints in the
WHERE clause and puts the retrieved items in the SELECT clause. For our ex­
ample, #. (project . member) + and publication are two common prefixes,
which are assigned variables $xl and $x2 respectively. The SELECT clause
consists of the target item $xl.member.name and WHERE clause consists of
"$x2. title LIKE ' %XML%' and $x2. year>=2000".

The generated query can be submitted to the VXMLR sever by click the
Submit button. Then the query session enters into the third step: VXMLR
server translates the query into SQL statements and submits it to RDBMS,
then transforms the results into XML documents. If the XSLT check box is
selected, then the XSLT sheet of the document is also returned. Finally, the
result document is displayed in the browser and delivered to user. For example,
the following query,

Select $xl
From sigmod.issue.articale.article $xl
Where $xl.initialpage>=100 and $xl.initialpage<=200

retrieves the articles with initial page above 100 in SIGMOn RECORD, and
the result document represented by XSLT is shown in Figure 10.

SIGMOD
RECORD

,,, .. , v

Query Result Returned by VXMLR System

• JI c-.,/or~JITrayoqf1lt.~ __ DUb(RAJD). 109· 116
O .. id A P, • Garth A (Job,..s Ilaady H X ...

• JI ~"Q'_.I./or~_Mmtqo_Jtl.l64. 164
Nat< O .. col\<oQaH

• J1p_a.-raJ·~~l\)oIc_Mic_122.130
I_T.~

• A P_..orJ:./or T &ifo/J! -/Ufoc c:-.p..t<obIIiIJfo/ IhWrdod Dr:oUJIo. (llxulttUd
Aborr«(). 154- 163
R..; ~. RqbuR_okri....., ood Oded SbmueIi

• JI P"""""",J:,/ortlw ParrUJ.1 Procu.v.llo/Dau.Ioa ~M" 143- 152

Figure 10. The result document represented by XSL_

397

5. MONITORING FACILITY
Querying XML data stored in relational systems is a relatively complex pro­

cess. The user formed path expression queries have to be translated into SQL
statements first. When the user query is a regular expression query, it needs
to be transformed to simple path expression queries first. With the monitor­
ing facility of DVQ, user can view the results of those intermediate results, in
addition to time used for each step.

... ... -p- , .. - ~
...... MO.-.q/1O.ll.d.l .-"..., l~JJCIN,JIIlIIIOJ,"'IoCA&ICA - -,-

.cl

VXMLR System - Monitoring Query Processing

~ IQuerv Proc:eSSlna sUlae: lellDSe time:
n. eI ,...o,.. .. .sn. Ia·," iii
n. et~a..SPt .. tI¥: 1.'57_ ~ ".,. •. S-.,.

IGPE Query: I PQ&JldIN~ ' =f~....:ua:T~nOH

~
UT\I1Uf 4U8LJCAl"JOM'»'bs ~~

SPE uery:
i':l fOl.WIN~~"TIC»UWl1!CT~notI

aauRM ~~td ~11OK'"

~ IOI.blIH-.....c -'~T1CItQ"IOIICTIPUIY..EATIOH
UTUU-PUlDCA~1liI ~A1'1C:ItP

~ ::-..:.~~$d~~JIOaMATIOtWIOIET~I"U.ucAT1OH
iJ

[SOL uerv:

.a...n DGrIHCT..auc.Al"IOH :nn.a. P'UIl.JC.\~_P'\.mlDHD. "'aJCAT1OIt_~ PUaI..JCIo.T1OH. PUaU:::AT'IOMlD. ru:au:::ATlIOt41ATKID :j
ntaM 'ATHtCI'. rcJIUC,ATIOIi"
WHna'Ana:::cT 'AtH-'.,.uc .. ~:n: .. ~~11CIN' Alm'ATJIlET""pA11G:D- f'tJ'KlCATIOHIATHJD

I lG.a:'f DtS1"IJ'fCT PUBUCATIOK_'rI't'U. rvAi.JCA11OH.)"IJ'IUSKD. ~'DDl't_n.u. I'VBI.JCATJOtf, P'UlJ..JCATXlrtUI). PUBI.lCATK»IIA 11tID
noM.AYHE*:f.~T'IIOIM
WHD:&PATiIDET ..PAnt - .&..A!IOaIt.TORY~...uBUCATIOH'" AND Plio ~ 'p1\.'THID" P\lItUCATlCNIA'rHU)

~ OISTlttCT J'UBUC'A TICN_~ Jll"'I.I8&JCAT'IOtf.J'UBUStfIl'.I'UBI...ICIlTlOK_nAlIt" ruauc,.,l1Otf. P1.I.uc"TIONID. PUllil..JCATIDN.PA THID R
noM 'AntDICt. ruatJCA1'1C»4 I WKDSPATHDICJ"ATH-"Il.A.IIOIlA1'ORY'I'ROJ'w:T~~TJON'.um PATHDICT ..PATHID -PUBUClt.'IIOI4'/AnaD

~ , -
Figure 11. Browing query translation

Figure 11 shows a screen dump of execution of a query that selects all of the
publications reachable from the project node via zero or more edges. That is,

select labinformation.project.#.publication

It can be seen that DVQ displays the following information: the elapsed time
of each main query processing stage and their results, the original regular path
expression query, the corresponding simple path expression queries, and the
SQL statements executed by the underlying DBMS.

For the example shown in Figure 11, the original RPE query is expanded to
three simple path expressions.

select labinformation.project.member.publication
union select labinformation.project.publication
union select labinformation.project.member.project.publication.

A simple path expression can be straightforwardly translated into joins be­
tween parent element and child element in SQL statement. With the path di­
rectory that materializes the paths from the root to elements existing in the data,

398

a simple path expression can be translated into a rather simple SQL query. For
example, SPE query

select labinformation.project.member.publication

is translated into the following SQL statement.

select labinformation.project.member.publication
from PathDirectory, publication
where PathDirectory.path="abinformation.project.member.publication"
and PathDirectory.pathid=publication.pathid

6. CONCLUSIONS
In this paper, we presented DVQ, a DTD-driven visual query interface of

a prototype XML databases system, VXMLR. DVQ provides users a graphi­
cal interface for navigating XML structure, forming complex path expression
queries, submitting queries for execution, browsing query results and monitor­
ing the main steps of a query session.

The current version ofDVQ only displays one DTD, and user can only query
single document. We are extending this version so that users can query across
related documents with different DTDs.

REFERENCES
S. Abiteboul, D. Quass, J. Mchugh, and et al. The Lore Query Language for Semistructured

Data, International Journal on Digital Libraries, 1 (1): 68-88, April 1997.
J. Clark and S. DeRose. XML path language (XPath), W3C Recommendation 16 Nov. 1999,

http://www.w3.orgflRlxpath, 1999.
D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and et. al. XQuery: A query Language for

XML, Technical report, World Wide Web Consortium, Feb. 2001.
Available from http://www.w3.orgflRlxquery.

Michael J. Carey, Laura M. Haas, Vivekananda Maganty, John H. Williams: PESTO : An In­
tegrated Query/Browser for Object Databases, Proceedings of the Twenty-Second Interna­
tional Conference on Very Large Data Bases, 1996, 203-214.

S. Cohen, Y. Kanza, Y. Kogan, W. Nutt, Y. Sagiv, A. Serebrenik. EquiX Easy Querying in XML
Databases, WebDB 1999: 43-48.

A. Deutsch, M. Fernandez, D. Florescu, and et al. XML-QL: A Query Language for XML, W3C
Note, 1998. Available: http://www.w3.orgflRl19981NafE-xml-ql-199808191

A. Deutsch, M. Fernandez, D. Suciu. Storing Semistructured Data with STORED, Proceedings
of the 28th S1GMOD International Conference on Management of Data, May 1999.

Mary F. Fernandez, A. Morishima, D. Suciu. Efficient Evaluation of XML Middle-ware Queries,
Proceedings of the International Conference on Management of Data, Santa Barbara, Cali­
fornia. Jun. 2001.

R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases, Proceedings of the 23rd International Conference on Very Large
Data Bases, Athens, Greece, August 1997, 436-445.

R. Goldman and J. Widom. Interactive Query and Search in Semistructured Databases, Interna­
tional Workshop on the Web and Databases, Valencia, Spain, Mar. 1998.

399

I. Manolescu, D. Aorescu, D. Kossmann. Answering XML queries on heterogeneous data
sources, Proceedings of the International Conference on Very Large Data Bases, Roma,
Italy, Sept. 2001.

A. Marian, S. Abiteboul, G. Cobena, L. Mignet. Change-Centric Management of Versions in
an XML Warehouse, Proceedings of the 23rd International Conference on Very Large Data
Bases, Roma, Italy, Sept. 2001.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database Management
System for Semistructured Data, SIGMOD Record, 26(3): 54-66, Sept. 1997.

A. Mendelzon, G. Mihaila, T. Milo. Querying the World Wide Web, Int. J. on Digital Libraries,
1(1): 54-67. 1997.

K. Munroe, Y. Papakonstantinou. BBQ: A Visual Interface for Browsing and Querying XML,
Proceedings of the Fifth IFIP Working Conference on Visual Database Systems, 2000.

B. Nguyen, S. Abiteboul, G. Cobena, M. Preda. Monitoring XML Data on the Web, Proceedings
of the International Conference on Management of Data, Santa Barbara, California. June
2001.

J. Robie, 1. Lapp, and D. Schach. XML Query Language (XQL), Available from
http://www.w3.orgITandSlQUQL981pplxql.html, Dec. 1998.

J. Shanmugasundaram, J. Kiernan, E. J. Shekita, and et.al. Querying XML views of relational
data, Proceedings of the International Conference on Very Large Data Bases, Roma, Italy,
Sept. 2001.

J. Shanmugasundaram, E. J. Shekita, R. Barr, and et.a!. Efficiently Publishing Relational Data as
XML Documents, Proceedings of the International Conference on Very Large Data Bases,
Cairo, Egypt, September 2000, 65-76.

J. Shanmugasundaram, K. Tufte, C. Zhang, and et. al. Relational Databases for Querying XML
Documents: Limitations and Opportunities, Proceedings of the International Conference on
Very Large Data Bases Edinburgh, Scotland, 1999.

M. YoshiKawa and T. Amagasa. XRel: A path-based approach to storage and retrieval of XML
documents using relational databases, ACM Transactions on Internet Technology, Volume I,
Number 1, 2001. .

P. Veltri, S. Cluet, D. Vodislav. Views in a large scale XML repository, Proceedings of the
International Conference on Very Large Data Bases, Romo, Italy, Sept. 2001.

A. Zhou, H. Lu, S. Zheng. and et. al. VXMLR: A Visual XML-Relational Database System,
Proceedings of the International Conference on Very Large Data Bases, (Demonstration),
Roma, Italy, Sept. 2001.

