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Abstract This paper presents the metric histogram, a new and efficient technique to 
capture the brightness feature of images, allowing faster retrieval of images 
based on their content. Histograms provide a fast way to chop down large 
subsets of images, but are difficult to be indexed in existing data access 
methods. The proposed metric histograms reduce the dimensionality of the 
feature vectors leading to faster and more flexible indexing and retrieval 
processes. A new metric distance function DM( ) to measure the dissimilarity 
between images through their metric histograms is also presented. This paper 
shows the improvements obtained using the metric histograms over the 
traditional ones, through experiments for answering similarity queries over two 
databases containing respectively 500 and 4,247 magnetic resonance medical 
images. The experiments performed showed that metric histograms are more 
than 10 times faster than the traditional approach of using histograms and keep 
the same recovering capacity. 

Keywords: content-based image retrieval, feature-based indexing techniques, histograms. 

1. INTRODUCTION 

The main practice used to accelerate the data retrieval in database 
management systems is indexing the data through an access method tailored 
to the domain of the data. The data domains stored in traditional databases -
such as numbers and small character strings - have the total ordering 
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property. This property leaded to the development of the current 

Database Management Systems - DBMS. However, when the data do not 
have this property, the traditional access methods cannot be used. Data 
embedded in multi-dimensional domains are examples of information that 
cannot be directly sorted. Spatial access methods have been developed for 
such data domains, e.g., the R-tree [1] and its derivatives, and the methods 
derived from the k-d-tree [2]. 

Complex data, such images, video, sound, time series and DNA strings, 
among others do not have implicit order property. That is, these data cannot 
be sorted using only their raw information, and there is no direct way to 
create an access method to improve their retrieval over sequentially scanning 
all of them. In this paper we focus on images. Sequential scanning over a 
large set of images is impractical due to the high computational cost of 
comparing two images. There are two usual approaches to search for images 
in an image database. The first one attaches textual description to each 
image, and the search process finds the required images through these texts. 
This is not a good solution, as besides it cannot be automatized, the retrieval 
depends on the objective of the operator when he or she was describing the 
image, not on the objective of the query. The second approach uses image 
processing algorithms to automatically extract characteristics from the 
images, which are then indexed. This approach is independent of human 
subjectivity, and is the one adopted in this paper. 

Indexing the extracted characteristics is usually done through spatial 
access methods, where each extracted feature is a dimension. Regarding 
image histograms, each bin is indexed as a dimension. However, the spatial 
access methods are efficient up to a limited number of dimensions, in 
general not larger than 10 or 20. Indexing images through their histograms 
(usually with 256 bins or more) is highly inefficient. It has been shown [3] 
that the main factor affecting the efficiency of a multi-dimensional access 
method is the intrinsic dimensionality of the data set, that is, the number of 
uncorrelated dimensions. However, this indexing could be done more 
efficiently if the correlations between close bins were used. Many attempts 
have been done to find more concise representations of histograms using 
dimensionality reduction techniques [4] [5]. All these attempts leads to 
histograms representations with a reduced number of dimensions, but with a 
pre-defined number of dimensions. 

In this paper we consider that histograms of two images can have 
different numbers of correlations between its bins, so reduced histograms 
from those images could have distinct number of dimensions. This points 
out that reduced histograms are in a not spatial domain - this domain does 
not have a defined number of dimensions, as each reduced histogram has a 
different number of "reduced bins". However, as we show in this paper, it is 
possible to define a metric dissimilarity function between any pair of 
reduced histograms, so this domain turns out to be a metric one. A new 
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class of access methods, applicable to metric domains, has been recently 
developed. So, our proposed method of histogram reduction leads to a 
metric representation of the histogram, that can be indexed through a metric 
access method [6]. As we will show, this approach leads to a very precise 
retrieval of data, whereas it can be up to 10 times faster than using traditional 
histograms, even when using the same access method. 

The main motivation of this paper is to develop an efficient technique for 
image retrieval aiming medical applications. The work shown herein is part 
of the development of a picture archiving and communication systems 
(PACS) [7], used to integrate the information regarding patients in a 
hospital. A PACS is a valuable tool helping the physicians when 
diagnosing. The images of medical exams are stored together with 
conventional data (text and numbers). Therefore, it is possible to ask both 
queries regarding the content of images and the usual queries based on 
textual information. 

The remaining of this paper is structured as follows. In the next section, 
we first give a brief history of spatial and metric access methods, including a 
concise description of the main techniques for extracting image features 
aiming their comparison by content. Section 3 introduces metric histograms 
as well as the DM distance function to be used for comparing the new 
proposed metric histograms. Section 4 presents the experiments performed 
in order to evaluate the proposed method, regarding precision/recall and time 
measurements. Section 5 presents the conclusion of this paper. 

2. BACKGROUND 

Image database management systems rely on efficient access methods to 
deal with both traditional data (texts, numbers and dates) and image data. 
The design of efficient access methods has attracted researchers for more 
than three decades. There are many consolidated access methods for 
traditional data, such as the B-tree and hash-based indexing access methods. 
Spatial data have been addressed through the so called Spatial Access 
Methods - SAMs, which include treelike structures, such as the R-tree [1], 
R+-tree [8], R*-tree [9], k-d-B-Tree[lO], space- filling curves [11], spatial 
hash files [12], etc. An excellent survey on SAMs is given in [13]. Spatial 
domains have been widely used to store feature sets from images and other 
complex data. 

The majority of features extracted from images can be seen as 
multidimensional points in a n-dimensional space. This is the case of 
histograms, moment invariants, Fourier features, and principal component 
analysis among others. The well-known spatial access methods downgrade 
the retrieval of objects when the dimension of the objects increases and a 
sequential scan processing would outperform such methods. Therefore, 
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other access methods which can deal with high-dimensional data sets 

could be used in order to answer questions on such objects. The X-tree [14] 
and TV-tree [15] were developed to manage high dimensional data. 
However, it is necessary to highlight that in some occasions it is not possible 
to have all the obtained feature vectors with the same number of components 
(dimensions). Thus, it is not possible to use any SAM. For such situations 
the Metric Access Methods - MAMs - were developed. In metric domains 
the only information available is the objects and the distances between them. 
The distance function is usually provided by a domain expert, who gathers 
the particularities of the target domain in order to compare objects. 

Formally, given three objects, x, y and z pertaining to the domain of 

objects S, a distance function d( ) is said to be metric if it satisfies the 
following three properties: 

i. symmetry: d(x,y) = d(y,x), 
ii. non-negativity: 0 < d(x,y) < 4, x y and d(x,x) = 0, 
iii. triangle inequality: d(x,y) #d(x,z) + d(z.,y) 

A metric distance function is the foundation to build MAMs, which were 
developed since the pioneering work of Burkhard and Keller [16]. They are 
now achieving an efficiency level good enough to be used in practical 
situations, as is the case of the M-tree [17], the Slim-tree [18] and the Omni­
family members [19]. 

Data in metric domains are retrieved using similarity queries. The two 
most frequently used similarity queries are defined following. 

• k-nearest neighbor or k-NN query: kNN=<Sq, k>, which asks for the k 
objects that are the closest to a given query object center Sq' with Sq 

OS (the object domain). For example, in an image database domain, 
a typical query could be: ''jind the 5 nearest images to image 1 ". 

• range query: Rq=<Sq, rq>, which searches for all the objects 
whose distance to the query object center Sq is less or equal to the 
query radius rq• Using the example previously given, a query could 
be: ''jind all the images that are within 1 0 units of distance from 
image/,. 

Calculating distances between complex objects are usually expensive 
operations. Hence, minimizing these calculations is one of the most 
important aspects to obtain an efficient answer for the queries. MAMs 
minimize the number of distance calculations taking advantage of the 
triangular inequality property of metric distance functions, which allows to 
prune parts of the tree during the answering process. Metric access methods 
built on the image features have been successfully used to index images and 
are suited to answer similarity queries [20]. 

Direct comparison between images can be very costly. Thus, a common 
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approach is to extract features from the images. The main features used 
to compare images are: color, shape and texture, as well as the spatial 
relationship between the image objects [21] [22] [23]. Many work has been 
done in the field of content-based image retrieval aiming to speed up such 
comparisons [24] [21], as well as proposing new techniques for image 
comparison, using color histograms [25], shape [26} and texture [27]. The 
algorithms to extract shapes and textures are very expensive and dependent 
on the application domain, so it is better to leave them as the last step for 
separating the images, when the candidate response set was already reduced 
using the other features. The importance of color or brightness histograms is 
due to the simplicity of getting and comparing them, operations that are 
performed in linear time. 

3. THE PROPOSED IDEA - METRIC HISTOGRAMS 

Images are commonly represented as a set of elements (pixels) which are 
placed on a regular grid. The pixel values are obtained from a quantization 
process and correspond to the brightness level. Thus, formally an image can 
be represented by the following notation: 

Definition 1: An image A is a function defined over a two-dimensional 
range G= [O,Xo] x [O,yo] taking values on the set of possible brightness 

values V=[O,vo]. That is, A= {(x,y, v(x,y»! (x,y) ° Gand v ° V}. 

Definition 2: The histogram HA(z) of an image A provides the frequency of 
each brightness value z in the image. The histogram of an image with t 
brightness levels is represented by an array with t elements, called bins. 

Definition 3: The normalized histogram NHA(z) of an image A provides 
the frequency of each brightness value z in the image, given in 
percentage. The normalized histogram of an image with t brightness 
levels is also represented by an array with t elements. 

Obtaining the normalized histogram of images is not a costly operation. 
The normalized histogram is invariant to geometrical transformations as well 
as to linear contrast transformations. Normalized histograms allow 
comparisons of images of any size, so geometric transformations performed 
on the source images will give the same histogram. 

Figure 1 shows an image obtained from magnetic resonance and its 
associated normalized histogram. This image has a spatial resolution of 
512x512 pixels displayed in 256 brightness levels, thus its histogram has 256 
bins. Indexing histograms like this one requires indexing arrays with 256 
elements or, in terms of indexing structures, dimensions. The distance (or 
dissimilarity) between two histograms can be measured as the summation of 
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difference between each bin, which is know as the Manhattan distance 

function or L1 norm. 
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Figure 1 - An MR image and its nonnalized histogram. 

In this work, we assume that the brightness levels are similar to its close 
levels, so the shape of the histogram can be kept using an approximation of 
it. Therefore, we propose to represent an approximation of a normalized 
histogram through a set of line segments. Histograms of different images 
can be approximated using different number of lines, so the approximation 
can be optimized to describe each histogram. Thus, these approximations 
are defined in a metric domain - this domain does not have a number of 
dimensions defined, as each approximation needs a different number of 
lines. This leads to the following definition. 

Defmition 4: A Metric histogram MHA(z) of an image A is defined as 
MIAA)={NA, <bh hk> I Qg<NA}, which is a set of NA buckets bh each one 
with the normalized height h/c.. 

A normalized histogram is composed by a number of bins. This number 
depends on the brightness resolution of the image, so it is a fixed number. In 
a metric histogram, the equivalent to the histogram bin is called a bucket. 
Each bucket corresponds to a line in the approximation. Buckets do not need 
to be regularly spaced. The number NA of buckets in a metric histogram 
depends on the acceptable error in the approximation process and on the 
image itself. Each bucket k is a pair <hb hk>, where bl; is the index of the 
rightmost bin of the original histogram represented in bucket k, and hI; is the 
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normalized value of the rightmost bin represented in bucket k. Notice 
that bo is always zero. To simplify the notation, we indicate the bucket bk of 
the metric histogram of image A as Abb and the normalized value hk of the 
metric histogram of image A as AhA;. Figure 3(a) presents the metric 
histogram of two images A and B, and the components of their metric 
histograms. 

The algorithm used to generate the metric histogram finds the control 
points, which are the inflection, minimum and maximum local points on the 
histogram, in order to create the approximation curve on the normalized 
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Figure 2 - Deriving a metric histogram through the approximation curve over the 
normalized histogram. 

histogram. Thus, the histograms are seen as functions in a 2-D space. Figure 
2 shows the metric histogram obtained from the histogram in figure 1. 

Regarding metric histograms, a question that arises is how to compare 
them, as the number of buckets and the spawning of the buckets from 
different histograms are variable. That is, the usual distances for histograms, 
such as Euclidean, Chi-square, Manhattan, Kolmogorov-Smimov, Kuiper, 
between others [4] cannot be used. Therefore, we developed a new metric 
distance function in order to quantify the dissimilarity between metric 
histograms. 

Definition 5: The distance function MHD( ) between two metric histograms 
is given by the non-overlapping area among the two curves representing 
the metric histograms, i.e. 

end _longest _M H 

MHD(M H (A),M H (B» = JIM H (A, x) - M H (B,x)ldx 
o 
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Figure 3 gives an example of how to calculate the distance between two 
metric histograms and figure 4 depicts the algorithm developed to calculate 
this distance function. In figure 3(a) the two histograms are overlapped, and 
the intersecting points and the ones which limit the buckets are shown. 
Figures 3(b) to 3(d) show how such points are used to calculate the area 
inside each region (in the steps of the algorithm in figure 3). Note that the 
number of steps is greater than or equal to the number of buckets of the 
histogram with more buckets. This is due to the fact that as the width of the 
buckets is variable, in some occasions they must be divided in order to 

N OmLlJiz eel HistogrlJ:ll H ei If\1 

N""".liudHiologrUfl H.ig,l (c) (d) 

S~p. 

Figure 3 - Distance between two metric histograms through calculating the area between 
them. (a) Two metric histograms A and B, and the points used to specify the steps of the 
algorithm. (b) First step of the algorithm, exemplifying when the two MH intersects each 
other. (c) Second step of the algorithm. (d) Third step of the algorithm. 

obtain the area between the two metric histograms. This is exemplified in 
figure 3 (b). Figures 3(c) and 3(d) shows the next two steps performed to 
calculate the MHDO function, helping to understand how the algorithm 
works. When one of the metric histograms finishes before the other one, that 
is, when NA < NB, the calculation of the distance also stops. It is 
straightforward to demonstrate that the distance MHD( ) is metric. 

Ours experiments show that the number of buckets in the metric 
histogram is much smaller than the number of bins of normalized 
histograms, coming from 256 bins to 20 - 32 buckets in the metric 
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histogram. It is important to recall that the metric histograms are 
obtained from normalized histograms. Thus, the following properties hold: 
Property 1 - An original image and the same one scaled, translated or 

rotated will have the same metric histogram. 

Property 2 - The metric histograms are curves in the space, thus the metric 
histograms can be adjusted at its beginning and ending. Therefore, 
metric histograms are also invariant to the image contrast. 

The MHD distance ftmction: calculating the distance between two metric histograms 
Input: the two metric histograms MII..A) and MII..B) 
Output: the distance between MII..A) and MH(B). 

set dist=O, s=O, a=O, h,;=AbO, hb=BbO, i=1 andj=l 
while there is more steps to compare 

if bucket Abi < Bbj, then 

else 

calculate the value of B at position Abi as y=(Am, Y2) 
set bm=Abi, base=bm-s, and YI=AJtj 
increment i 

calculate the value of A at position Bbj as y=(Bbj, YI) 
set bm=Bbj, base=bm-s, and Y2= Bhj 
incrementj 

if line «a, h,), (a, hb» intersects line «bm, YI), (bm, Y2», then 
calculate the intersection W=(Wb' Wh) 

else 

calcu1ateareal= I(Wb -a)* ha ;hbl and 

I y -y I areaF (bm -wb )* I 2 2 

add area] + area2 to dist 

ha + YI 
calculate areal=base* --- and 

2 
hb + Y2 

areaFbase*~--'-'::" 
2 

add larelZt - areaz I to dist 

set ha=yl and hti=Y2 
set a=ba.se + a 

retumdist 

Figure 4 - Algorithm for calculating the MHD distance function. 

These two properties highlight that some restrictions of using histograms 
for image retrieval are overpassed using metric histograms. That is, it 
becomes invariant to geometric transformations (scale included) and 
contrast. 
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4. EXPERIMENTS 

We implemented our proposed metric histogram and the distance MHDO 
using the Slim-tree as the metric access method to answer similarity queries. 
The Slim-tree has been used because it allows the minimization of the 
overlap between nodes in the structure as well to measure this overlap. So 
far, only the Slim-tree has these capabilities, which have been shown to be 
useful when dealing with multi-dimensional and non-dimensional datasets 
[28], as is our two classes of histograms. 

We have used two image databases in the experiments. The first one, 
named"MRHead500", has 500 human brain images obtained by magnetic 
resonance tomography (MRT), and the second one, named 
"MRVarious4247", has 4,247 images from various human body parts also 
obtained by MRT. Each image has 256 brightness levels and different 
spatial resolution. We extracted the normalized histogram and generated the 
metric histogram of each image, creating two sets of features for each 
database. Each set of features was indexed using the Slim-tree structure 
(four Slim-trees in the total). The normalized histograms were compared 
using the Manhattan distance function over the 256-element arrays, and the 
metric histograms where compared using the MHD distance function with 

the number of buckets varying from 11 to 32. 
The main objective of this paper was to define a faster way to pre-select 

images in a database, which is performed based on the image histograms, to 
reduce the need of image comparisons when answering similarity queries. 
To evaluate our proposed method, the experiments compared the set of 
images resulting from answering nearest-neighbor queries using normalized 
histograms and metric histograms as well. To this intent, we assumed that 
the results obtained from the normalized histograms, which is the traditional 
approach, are the correct ones. The objective was to compare the images 
retrieved using their metric histogram with the images retrieved using their 
normalized histogram. We calculated the precision and recall measurements 
on the results for each set of images obtained. Precision and recall are 
parameters commonly used to evaluate information retrieval systems as well 
as image retrieval systems [4] [29]. Recall indicates the proportion of 
relevant images in the database which has been retrieved when answering a 
query. Precision, by the other hand, is the proportion of the retrieved images 
that are relevant for the query. Formally, let X be the set of relevant images 
for a given query, Y be the set of retrieved images and x, y and z be the 

- -
number of images in the sets X nY, X n Y and X nY, respectively. 



Thus, precision and recall can be expressed through the following 
conditional probabilities: 

precision = p(X I Y) = P(Xt() = _x_ 
PY x+y 

( ) P(YnX) x 
recall = P Y I X = =--

p(X) x+ z 

4.1 Precision and recall measurements 
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Figures 5 and 6 present the precision and recall curves obtained when 
asking nearest-neighbor queries for six different numbers of neighbors over 
the MRHead500 and MRVarious4247 databases respectively. The numbers 
of neighbors refer to portions of the database, varying from 0.5% to 15% of 
each image database. That is, to ask k-NN queries requiring 1% of the 
database, means to ask NN queries with k=5 for the MRHead500 database, 
and with k=43 for the MRVarious4247. The curves present the average 
value from asking 50 queries for each number of neighbors, with the center 
image randomly chosen from images in the database. In these experiments, 
each query is submitted to both Slim-trees, the one indexing the normalized 

o~ .t 
0... ! 

.) 15% 01 database 

Figure 6 - MRVarious4247 database: Precision vs. Recall plots when answering kNN­
queries where the number k is taken as a percentage of the database size, (a) 15%, (b) 
10%, (c) 5%, (d) 2%, (e) 1%, (f) 0.5%. 
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histogram, and that indexing the metric histogram. Each answer set is 

sorted by the similarity of each histogram to that of the center of the query. 
The plots are calculated verifying that increasing numbers of histograms in 
the answer set of the tree indexed by the metric histogram is present in the 
answer set of the tree indexed by the normalized histogram. As it can be 
seen, the retrieval precision is high, always over 60% even for the 
MRVarious4247 heterogeneous data set. With respect to the more 
homogeneous MRHead500 data set, thy results are always better than 70% 
of precision, even for queries retrieving 0.5% of the database with 100% of 
recall. 

4.2 Timing comparison 

Two questions tackled in this section are: (a) How much is the time 
difference for indexing the image databases through conventional and metric 
histograms? (b) Is the difference in time relevant when answering queries 
over the normalized and the metric histograms? 

Table 1 reports the wall-clock times for building the Slim-tree in order to 
index the normalized (conventional) and the metric histograms. It can be 
seen that it is much faster to build the index over metric histograms (58% 
faster in the small data set, and 690% faster in the larger data set). The extra 
time needed to get the approximation over the conventional histograms in 
order to obtain the metric histograms pays off during the queries. The time 
needed to create the metric histograms is equivalent to the time to build the 
index tree using the metric histogram, but this is done only once and is small 
when comparing to the time to answer queries. 

Database Histogram Time (in seconds) 

MRHead500 Metric 4.62 
Conventional 7.31 

MRVarious4247 Metric 33.76 
Conventional 266.79 

Table 1 - Wall-clock time to build the Slim-tree using metric or normalized histograms from 
the MRIHead500 and the MRVdrious4247 image data sets. 

We also measured the number of distance calculations performed per 
second, and found 1,289,400 MHD distances per second and 269,430 
Manhattan distances per second. That is, the calculation of one MHD 
distance is in average 4,7 times faster than one Manhattan distance over a 
pair of 256-element arrays. 

The largest gain in time when using metric histograms is to answer 
queries. Figures 7(a) and 7(b) show the total times needed to answer 50 k­
NN queries, when the value of k is specified corresponding to percentage of 
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the database. Thus, the numbers are proportional to the database size 
and the results can be compared to different database sizes. Figure 7(a) 
shows the times to answer queries on the MRHead500 database, and figure 
7(b) shows the times to answer queries on the MRVarious4247 database. As 
it can be seen, the gain ranges from 4 times faster for small k (0,5% of the 
database) to more than 10 times faster for larger portions of the database 
(15% of the database). All measurements were taken using an Intel Pentium 
IT 450 MHz computer running Windows NT. The software was 

Total time to aswer 50 queries: MRHead500 

4~----------~--~----~ ~ 13.5 =ntiooai =: 1 :: 
ell 3 I/) 350 

2.5 300 

2 250 
200 

150 
100 

TOOII time to aswer 50 queries: MRVarious4247 

Conventiooal ....... Metric __ 

50 ___ 

8 10 12 14 16 0 OJ.-==:2~::4~=6~~8:=~10~=12;::=14=:....,J16 2 4 6 
1<--Percentile 01 database k=Percentile of database 

Figure 7 - Total time to answer 50 nearest-neighbor queries for each portion of the data 
set: 0.5, 1,2,5, 10 and 15%, using the conventional and the metric histograms. (a) 
MRHead500 data set; (b) MRVarious4247 data set. 

implemented in Borland C++ language. 

5. CONCLUSIONS 

Comparing two images is a very time consuming process. When queries 
are issued over an image database to retrieve information based on the image 
content, a filtering process takes place trying to reduce the number of images 
to be compared. This filtering operation uses features extracted from the 
images through relatively inexpensive algorithms. One of the features most 
frequently used in the early filtering stages is based on the image histograms. 

The main objective of this paper is to define a faster way to execute the 
filtering process over an image database based on its histograms. To achieve 
this target we proposed a new technique, called the "metric histogram". We 
showed that using this technique the filtering step can be improved, 
achieving up to 10 times faster image selection for similarity queries. 
Moreover, the creation of index structures using metric histograms are at 
least 58% and up to 700% times faster as compared to structures created 
using the conventional histograms. 

Metric histograms are defined in a metric domain, so the parameters that 
best describes one histogram can be used without compromising the whole 
set of images. To allow using metric access structures to answer similarity 
queries, we defined the MHD( ) distance function, which complies with the 
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properties of a metric distance function. This function is also a faster 

way to compare histograms, as it can be executed in average 4,7 times faster 
than using the Manhattan distance function over 256-element vectors. 

Metric histograms also have some very desirable side effects: it allows 
the retrieval of images in a way that is invariant to scale, rotation and 
translation of the objects in the image, and is also invariant to the contrast of 
the image. These effects enable that images similar to the target one, but 
with different contrast, scale, rotation, etc. can also be obtained without 
further computational effort. 
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