
AURAL INTERFACES TO DATABASES
BASED ON VOICEXML

Beat Signer, Moira C. Norrie, Peter Geissbuehler, Daniel Heiniger
Institute for Information Systems
Swiss Federal Institute of Technology (ETH)
CH-B092 Zurich, Switzerland
signer@inf.ethz.ch, norrie@inf.ethz.ch

Abstract As part of a general framework for the development of global informa­
tion systems, we include support for the development of aural interfaces.
The framework uses an object-oriented database for the management of
application, document content and presentation data. The access layer
is based around an XML server and XSLT for document generation from
default and customised templates. Specifically, aural interfaces are sup­
ported through a VoiceXML server that provides the speech recognition
and synthesis mechanisms, together with XSLT templates for the gen­
eration of VoiceXML. In this paper, we describe the implementation of
a generic voice browser for application databases as well as the develop­
ment of a customised aural interface for a community diary managing
appointments and events.

Keywords: web databases, aural interfaces, voice browser, VoiceXML

1. INTRODUCTION
We are rapidly moving towards an information society in which com­

munities of users demand access to all forms of both personal and shared
information from their work places, homes and on the move. The result­
ing application systems can be classified as global information systems
that enable ubiquitous access to shared information.

To support the development of such global information systems, we
require modern data management frameworks with a general and flexible
interaction layer that allows access from various forms of client devices
including not only desktop workstations, but also mobile phones, Tablet
PCs and PDAs. We have therefore extended our OMS Java data man­
agement framework [Kobler and Norrie, 1999] with a generic database
access layer to support universal client access. The resulting eXtensible

X. Zhou et al. (eds.), Visual and Multimedia Information Management
© Springer Science+Business Media New York 2002

236

Information Management Architecture (XIMA) framework [Signer et al.,
2001; Kobler et al., 2001] uses XML as an intermediate representation
format and the Extensible Stylesheet Language Transformation (XSLT)
for document generation from default and customised templates. The
XIMA framework is very flexible and it is easy to support new forms of
client devices since only the final rendering step to the client's desired
output format, based on the XSLT, has to be adapted.

Recent innovations, such as the Voice Extensible Markup Language
(VoiceXML), encouraged us to extend the XIMA framework with a
user interface based on speech recognition and synthesised voice out­
put [VXML, 2002]. Using voice as a potential input and output medium
opens up many new possibilities in terms of, not only mobile access to
information, but also access for the disabled. Aural interfaces just re­
quire the use of a regular telephone to access information stored in our
databases. Today one can find telephones almost everywhere and mobile
phones are far more portable and accessible than computers. Therefore
the support of voice browsers was just a logical step towards realising
our vision of ubiquitous information - information for everyone, every­
where.

Even in the case of WAP-enabled mobile phones, the use of a voice
interface may be a much more convenient means of accessing informa­
tion. Navigation by voice is by far more pleasant and faster than the
use of touch-tone input or entering information using the small keypads
of mobile WAP phones. Also, in some situations, voice output may
be preferred over visual output. For example, a person may perform
a manual task, while simultaneously receiving information via a voice
interface. Just think of an employee driving to his office by car: He can
listen to the news on the company's web portal site while his eyes are
concentrating on the traffic.

With respect to the disabled, voice-enabled applications are valuable
to users who can either not use their hands for keyboard input or their
eyes to process visual output. Further, voice interfaces require no special
instruction or experience. They also allow new forms of human-computer
interaction based on a combination of visual and voice interfaces. We
can build applications which are either fully based on voice or use speech
technology to augment existing graphical user interfaces.

In this paper, we present an overview of the XIMA framework and
describe how it has been extended with an aural interface based on
VoiceXML. The enhanced framework strongly supports the database
driven development of voice-enabled applications, which finally can be
deployed using one of the numerously available voice server platforms [Be­
Vocal, 2002; VoiceGenie, 2002]. We begin in section 2 by presenting our

237

overall vision and the main advantages of aural user interfaces. After
discussing existing applications which already make use of aural input
and output, we outline how VoiceXML can be used to simplify the devel­
opment process of voice based applications. We describe the eXtensible
Information Management Architecture (XIMA), which already supports
different types of client formats (HTML for regular web browsers, WML
for mobile WAP phones, and CHTML for PDAs and NTT DoCoMo's
imode devices) in section 3. In section 4, we then point out how the
XIMA framework has been enhanced with a generic voice browser inter­
face that allows voice access to all our OMS Java databases. Section 5
explains how a customised voice interface can be developed by adapting
the generic voice browser for a specific application and we describe how
this was done for a community diary. Concluding remarks are given in
section 6.

2. AURAL INTERFACES
There are several good reasons for investigating aural interfaces as a

new access form for database management systems. As discussed in the
introduction, such interfaces may provide benefits in terms of mobility
and universality, extending potential user communities to those with­
out access to computers or special devices and also to the physically
handicapped, unable to use conventional input or output devices.

Aural interfaces are most frequently used for retrieving information
from a database or invoking operations on the database. However, there
are also applications and circumstances where voice input may be ap­
propriate for the entry of new data or the editing of existing data. For
example, entering a new person in an electronic address book could be
done by spelling out the name and the phone number. This enables entry
to be done quickly and conveniently "on the spot" rather than having
to later enter the data when a computer plus keyboard or business card
scanner are available. Also an aural interface enables a "hands-free" and
"eyes-free" mode of interaction which may be useful in many practical
work situations or for the augmentation of other visual applications.

For various technical reasons, it is only in recent years that it has be­
come possible to create useful human-computer voice interaction. Due
to advances in digital speech processing technologies, it is now possible
to support the application and deployment of a variety of speech tech­
nologies for aural interfaces. Figure 2 shows how voice input is processed
and an aural response is generated by a computer using a speech recog­
nition component, a language analyser, an application server connected
to a database and a speech synthesiser (text-to-speech or TTS).

238

• q Speech Langu_ Appllc:.Uon Speeeh -- RecOin"', rUl Anolysor Servor TOX! Synthesi --ConvoN voice ExtnocIs ""'''''ing Gels dala ('''') Ge""",(es

11>",,'''''0 text from lext from d.""'
speech ""''''''

u' t t t t Voice lop Voice Output

Speech mod" GnimmO(Application _ndalion
dalaba .. rules

Figure 1. Voice Processing Components

The speech recognition is performed by a speech recogniser engine
that processes incoming audio signals and tries to determine the most
likely combination of basic spoken sound patterns (phonemes) that rep­
resent the audio input (word recognition). The language analyser then
compares the resulting output to the active grammar containing all po­
tential words and phrases which can be detected. Based on the extracted
meaning, information can be fetched from an application database and
a reply is built in textual form. Finally, based on prosody analysis and
text-to-phoneme conversion, the output speech waveform is generated
by the speech synthesiser. Today's synthesised voice output still sounds
artificial, but it should continue to improve in the near future with the
use of new voice modelling techniques and computing performance im­
provements.

The task of the application developer was further simplified when
major vendors of speech technologies and tools (e.g. IBM Speech ML
and Motorola VoxML) formed the VoiceXML Forum in 1999 and agreed
to develop a common standard. This resulted in the specification of the
VoiceXML standard which was published in March 2000.

The task of designing an aural interface to an application is not a
trivial undertaking. Good speech user interfaces are significantly dif­
ferent from their visual counterparts. A lot of tasks that are visually
possible - such as scrolling through a long list of elements - cannot
be directly mapped to an aural user interface. Several projects try to
adapt existing graphical user interfaces and make them accessible using
voice browsers [Anderson et al., 2001; Freire et al., 2001]. The problem
of such an approach is that the navigational concepts used by graphical
applications are not suitable for access by voice recognition. Another
problem is the audible output of large amounts of information. Since
speech is transient (you hear it once and then it is gone), users tend
to forget important information provided at the beginning of long dia­
logues. Books are available giving general guidelines for the design of
aural interfaces [Balentine and Morgan, 1999].

The advantage of using the XIMA framework for the development
of speech-enabled applications is that we adopt an "information-based"

239

approach. This means that we start by developing a general informa­
tion model for the application in question using OM, an object-oriented
data model [Norrie et aI., 1996]. The OM model supports object and
association constructs and encourages the application information to be
represented in terms of fine-grained "information units" which are linked
together by associations. Representing information objects as small, ex­
ternally linked objects allows for a greater flexibility when it comes to
generating document content and access patterns for a specific interface.
Through the clear separation of content and visualisation, it is possible
to use completely different navigational patterns for voice and visual
user interfaces. In addition, the representation of application informa­
tion in terms of small units of information provides a good basis for the
development of aural interfaces.

3. EXTENSIBLE INFORMATION
MANAGEMENT ARCHITECTURE

XIMA uses the OMS Java system for the management of applica­
tion, document content and presentation data. OMS Java is an applica­
tion framework for the Java programming environment that implements
the abstractions and operations defined in the OM object-oriented data
model. For the purposes of this paper, it is not necessary to describe
OM or OMS Java in detail. However, it is important to appreciate the
main constructs of the OM model and we therefore begin this section
with a description of these.

Each OM object is an instance of one or more types. A type is a set of
attribute and method properties. If a type t2 is declared to be a subtype
of type tI, then the set of properties of t2 is composed from the set of
properties defined for t2 and those inherited from ti' The composition is
in line with usual inheritance mechanisms in object-oriented languages.
We refer to the set of properties defined for t2, and not inherited, as the
type unit of t2'

If an object is an instance of type tI, then it will have a corresponding
information unit that gives the values of all attribute properties defined
in the type unit of ti' Access to an object is always associated with a type
context that specifies one of its types. The corresponding type instance
for that object will be constructed dynamically from the appropriate
information units, i.e. from the information unit for the context type
together with those inherited from supertypes.

A collection is an object that represents a semantic grouping of ob­
jects. It has a name, a member type and an extent which is the set of
ids of all member objects. Only those objects which are instances of

240

the collection's member type can belong to the collection. The member
type also specifies the type context for objects accessed through that
collection.

For a given collection G, we can define one or more subcollections G1,

G2 , ... This specifies a containment relation between the collections -
every object that is a member of G1 must also be a member of G.

An association is a binary collection together with constraints that
specify a source collection, a target collection and cardinality constraints
over the source and target. A binary collection B is a special form of
collection in which the members are pairs of object ids, e.g. (01 , O2).

Correspondingly, the member type of B must be a binary type of the
form (tb t2). Assume that collections G1 and C2 are specified as the
source and target collections, respectively, of B. Then for every pair
(01, O2) that belongs to B, 01 must be a member of G1 and O2 a
member of G2•

Although association constructs are present in a number of descriptive
models such as Entity-Relationship models [Batini et aL, 1992] and UML
[Booch et aL, 1998], they are rarely supported as a separate abstraction
construct in models of operational systems. Our experience in working
with object-oriented databases has shown the benefits of having a dedi­
cated construct in order to be able to associate objects directly instead
of via attributes and to perform operations over these associations.

The OMS Java framework was designed and developed to support
application development through the provision of a high-level applica­
tion programming interface based on the abstractions of the OM modeL
Further it was defined with openness and extensibility in mind which
allowed us to extend and re-engineer the framework to provide univer­
sal client access and web content management facilities based on XML
technologies.

In Figure 2, we present the architecture of the resulting eXtensible
Information Management Architecture (XIMA). For a specific applica­
tion, all client access is via a single Java servlet - the Entry Servlet.
This means that all requests can be sent to the same URL, rather than
having different URLs for different types of client devices. The Entry
Servlet detects the user agent type from the HTTP request header and
delegates the handling of the request to the appropriate servlet. For
example, in Figure 2, we show servlets to handle requests from HTML
browsers, WML browsers running on WAP-enabled mobile phones and
voice browsers based on VoiceXML.

The request handling servlets then access the database by connecting
to an OMS Java workspace via the OMS Java API. The connection may
either be direct or via the OMS Java XML server. Direct connections

241

OMS Java Wor1cspace

Figure 2. eXtensible Information Management Architecture

deal with requests that do not involve data retrieval such as checking
the membership of an object in a collection or performing updates. Any
requests that involve the retrieval of data go through the XML server.
The XML server forwards requests to the OMS Java workspace and
generates XML representations for any data objects. For all database
constructs such as objects, instances, attributes, etc. there exist JDOM
wrapper components, which generate a document object model (DOM)
for the corresponding database object. Every wrapper object itself may
use other wrapper components during its transformation process. For
example, the JDOM wrapper of an instance database entry uses the type,
attribute, method and link wrappers to add types, attributes, methods
and links to the instance's document object model. The resulting DOM
tree is returned to the requesting servlets (in Figure 4 of section 4 we
present an XML instance representation). Finally, the servlets use the
appropriate XSLT templates to transform the XML results to the desired
client format.

There are a few points to note in this general architecture. First,
we are not storing any XML documents, but rather generating them
dynamically from the application data which is stored according to the
information model. Since the information model is a loosely-coupled
graph model based on object collections and associations, this gives much
more flexibility than the rather restrictive hierarchical-based models im­
posed by XML structures. At access time, a particular hierarchical view
on data is derived and the appropriate XML content generated. Sec­
ond, since what we are interested in is the XML structure rather than

242

the document per se, what we generate as an intermediate form for
the XSLT processor is actually the associated DOM (document object
model) structure rather than the XML document.

The generated DOM tree conforms to an OMSjXML document type
definition (DTD} which defines a representation of all database objects
at a fairly high level, so that the resulting XML documents provide a
good basis for the succeeding XSLT transformations. There exists a sec­
ond "low level" OMSjXML DTD which is only used to transfer database
content from one OMS database to another OMS database. Neverthe­
less, it is sufficient to implement only a wrapping mechanism for the
"high level" document object model representation. The resulting DOM
structure can easily be transformed to an XML document conforming
to the "low level" DTD by applying a simple XSLT transformation.

Using generic XSLT templates for the various client devices, we are
able to provide generic browsers and editors for the current set of client
types. Adding a new client type involves implementing the correspond­
ing servlet and writing the appropriate XSLT templates.

Specific application interfaces are supported through the customisa­
tion of XSLT templates. As an example, we have developed an appli­
cation for a community diary that manages appointments and address
book entries for a user community.

Many existing tools for web site engineering either rely on a specific
form of client such as an HTML browser, or they require that different
forms of clients be handled separately meaning that it requires signifi­
cant development time to port an application to another form of client
device. The goal of XIMA was to develop a universal client framework
that requires minimal development effort to access an application via
another form of client device. The effort required to support a partic­
ular client device goes into optionally customising the presentation to
suit the device in question. Such general frameworks are particularly
important when one considers how dynamic the world of mobile devices
currently is. There are many questions as to whether technologies such
as WAP will really become established or whether they will be replaced
by either new technologies or new devices better capable of handling
existing technologies.

4. GENERIC VOICEXML USER INTERFACE
The Voice Extensible Markup Language (VoiceXML) is an application

of the Extensible Markup Language (XML) which enables interactive
access to the web through standalone voice browsers or regular phones.
Its major goal is to bring the advantages of well established web-based

243

content delivery techniques to Interactive Voice Response (IVR) appli­
cations. Application navigation works by voice recognition or the use of
Dual Tone Multi Frequency (DTMF) keypad input. The resulting aural
responses feature digitised audio or synthesised speech output.

During the design phase of the aural user interface, we used the IBM
Voice Server Development Kit [IBM Voice Server, 2002] which fully sup­
ports the VoiceXML standard. It further allowed us to test the appli­
cation on a personal computer using a standard microphone prior to
installing it on a commercial voice server platform.

In this section, we focus on the design of the generic voice browser
which enables any OMS Java application database to be accessed using
speech input and output [Geissbuehler and Heiniger, 2001]. We therefore
had to design general interactive sequences for navigating through a
database and accessing the constructs of the OM model i.e. objects,
collections and associations.

Most of the general voice interface's output is generated dynamically
based on XIMA's XML server results. To avoid a discordant mixture
of digitised audio and synthesised speech, we decided to use synthesised
speech for all outputs. For a specific application, as described in the
next section, it still makes sense to use digitised audio output for the
representation of static content (e.g. help information) to improve the
user experience.

To define valid navigation commands, we use rather simple grammars
consisting of only basic words and phrases. In our generic voice browser,
almost all grammars are built dynamically based on the returned XML
content and therefore do not contain complex sentences. The main ad­
vantage of a simple grammar is better voice recognition performance.
On the other hand, we had to spend additional effort in designing the
system prompts so that they guide the user to only choose one of the
valid responses specified by the corresponding grammar. Keeping an
end-user within "bounds" is an important aspect of overcoming fragility
in the interface and may have strong effects on user satisfaction [Roe
and Wilpon, 1994]. Since speech is slow, only essential data should be
spoken. The prompts in our general aural interface are rather terse and
normally not longer than a few seconds. This leads to compact dialogue
structures, which is relevant if simple grammars are used as is the case
here.

A problem of the generic voice browser is that collections of objects
can become quite large and therefore an aural representation of such
a collection's content may take some time. As stated in [Schmandt,
1994], voice response systems must strive to minimise the amount oftime
required to retrieve information: They must be brief, selective about

244

content, and they should almost always be interruptible. For this reason,
we decided to use a full-duplex (barge-in) implementation which lets a
user interrupt the voice output if he hears the desired object or if he
already knows his next step before the aural output is finished.

We further improved the navigational component by introducing spe­
cial commands which are always active and therefore accessible in any
situation. The user can get information about these always-active com­
mand by using the commands keyword. Nevertheless we did not use any
of the built-in commands of the IBM Voice Server Development Kit to
remain independent of a specific voice server framework.

I
The __

L
I ,~ ,- I

T + T
WcU:t)'OU.'lOgoto"'coIecfions,lOlhe~

~"";_"'bod!"""_""""

~ ~ ~

.I The:=-Iho II n:.: """7:- II Thedlrllllltanan I
I NIme~cdIedionI I I NameollllClC:iltiln J 1 ,~ I

+ + T +
-< 1JIooIe.e:c:fec:fiM ::::::=-' -< a.oose.,~ ::::::=- a.oo.lllobjecttllll'(bck

+ l
.I ~-- II --- I
I ,- I I ,- I

l1 l -< Wouid)'OUIIc'loisl
""_",gobod!?

WcUI)'OCIllceloist >-
Ihe_",gobd?

+1 +
I CoIection '.ne' corDinI "" ,- II AAociIIion'....-CIIId8iM

"'''''''*'!I'- I
I Nomeolmembotl II ~-.....0- I

+1 -+ -< OJooNooe oIthem«nbetl a.:.:.. ~'Df >-
.llwloOYPf.",..ybod!

II l
.I Object·oIIl'it_ ... Iype'tyf#andit........,_.type'tyf#.a_ I
'I ,- ,un.. .- I

Q l1 ~ Woutd)IOU.' to"" file""'" "" W:$ IX
"""""".dwlgelherype",gobd?

+ + + ~ I TheGbject_the J
~,- I Y"'a.":::V I I You eM dIooM MIOng I the __ I Y:=:I

I _and"""", I I NomeolUrb I I Nome 01_ I I Nome 01 types I
+ ~ ~ < 0I00N.1ink0f

"",bod!
<{)JooA'meIhodor

"",bod! <.=:"""0I1he ",,,,,,bod!

~
I Thel88Ul:oIlhe I moIhodio

I - I

Figure 3. Generic Information Flow

An information flow chart of the generic voice interface is shown in
Figure 3. The introductory prompt reads the number of collections and
associations that the OMS Java database contains. A user can choose

oC""'" ~' I 0' _~'ISO-""o-,· ,>
I("",,"~.. - """'_~"·~·~IIP :II~JN.M"'I.ch/ltl"".//II"U""'~_I'IIIaC .VI1fIr#'
- l(.t'rttolt'C. . 10"'01"1-)'1,:- ~""1ftHo' po;K.·I· r"P4" ·jNof'I.DfI~ '_-''''A'"~

.. ao'uf.fd'".· ... ,,, · ~·r,.. ·'p~"""'· ,....·IEl==---=C:z:z:..,~-1 diX~ ""'In:lllMKlllll_~rv')
<-.n:ftI' lot ... ~ • .,It; ') ...1af..!:.l - <.~h

<J.!-.;I> """of-C/r'''''''''P' a ottJ-~ 0fIL:l7:102is "lied t¥Rh ' ... 11. 111_ aMI II ~Iy v4.'IH"II
.... 11 ~ot:. OW , 7 J r •• lV1M' ~.".

_ <nu~'.1'1 • ., .. 0_.-·" ,,1# oC~t,tt eefttaolrll. M:l1'Ibut $ 11M •• &II1II I "",U'IIIoiII <IJIl'O'ftC!t)o

• <~lt1W::ul.I'I'IJNo. ·"'_·,........ oC~IO ".,.·.·.lftn~I .. "
• <:.l'nt.." •• I'I.fi'"<II" '1II1ttIlod.a.',,',) </tIIet:b
'<:llt/ICUIII'I~~·pIeI ... ·') ~
_ <~l'n!: I.I'I_ ... ·_~V·:) d.- 44',",u_~",'"

• <.Jl:IW>.II"" '~"·WIIoaF'). .o(1'o.lt~ ,....._~.:)
_ <.l·ftt.oJ ... I'I_ ... ·~~·> oc~ttWouMVDl.tIlli.,.M..,.II'I 'rtIIut .. I.I,GI"Uw

<1r,'1,.:xII\.,.,..·~· 1> rneotPMllh_p""'l<fplOlll9')
<Lr. lP'.f .. ·~:t..,..· "'~I"~: oC~W""" •• I.., .-ho-.tr Mt.ttMA ... ,. "'-_ the eU~ ••• LInks ,.
<1<"111 ~t'!.·~I..,· """.·IIY ~11W "" he4'1.1w_1 ,.".. ' ' ... 1I.10ct>.~
<IN .".·OM_I~\O' "' ~ ~ "1'" ,he vt.wt."...11f 'Iw oII,Iea _ ... V ' 1rII1Idl ,.tMl CDlHidlarl

:::. ::~::=== ::~~; . oC!~l::-~~
oC/II'Ua"!C".:Io - oC4f_IftOt:".~. l.,}Ot·'-"n'

q--.u, ~~" .. ~~/".-n. ') .•. ---
.:J

H Clt~

oCIO'emoAnrtbwll •• <!teC.".,)o

",,-
oCIIQJ'- ttUAn,..,. .. .,... ... oc/tolofl'>
<M~

<I_. -Db

Figure 4. XML, HTML and VoiceXML Instance Representation

245

to go to the collections, the associations or directly to an object if he
already knows the object of interest. One problem is to decide how
individual objects can be referenced since it is not reasonable to expect
the user to know the object ids. We have handled this by specifying an
attribute within the OMS Java database, which acts as a label for each
object type. For example, one might choose the name attribute of a
type person to be the label attribute. Then a person instance could be
accessed directly by giving the name of the person as the input.

An object instance contains attributes, methods and links to other
objects. The links are generated dynamically based on the association
information and allow easy browsing between related objects. An ex­
ample of an object instance is shown in Figure 4. On the left hand side
we show the XML representation of a database instance. The HTML
transformation of this XML document is presented in the centre. A
VoiceXML representation of the same XML content, which can be in­
terpreted by a voice browser, is shown on the right hand side.

A first prototype of the general voice browser has been tested by
several users. The test persons were given error recovery sheets on which
they could mark errors or ambiguities in the application control flow. A
first problem detected during this initial test phase was that the voice
recognition did not always work correctly. The most common reason for
voice recognition errors was the occurrence of multiple similar sounding
words in our grammar. By refining the static part of the grammar
and using synonyms for the "problematic" words, we could significantly
improve the voice recognition performance. It was not possible to solve
this problem for dynamically generated grammars. To support users in

246

the case of voice recognition errors, we provide the always-active back
command allowing them to browse back step by step.

Another common problem was that some users were not understood
because they added additional filler words such as please to their com­
mands. By extending our grammar with optional parts handling such
filling constructs, we could further improve the voice recognition relia­
bility.

In our first prototype, the help command always led to an aural pre­
sentation of the always-active commands. For most of the inexperienced
test persons, this was not sufficient because they expected context depen­
dent help for any potential input they had to provide. In the redesigned
version, the application therefore does not switch into a separate help di­
alogue (help mode) when the user demands help, but uses self-revealing
help. This means that suitable help information is integrated within
each application dialogue and provides a specific output for the current
situation. With this approach, no mode management and no audio for­
matting is necessary. The provided help is more specific and is closer to
the dialogue style than in a help mode.

Users were often unsure as to whether the application had understood
a command or if they had to repeat it. We therefore introduced an aural
feedback after most of the user inputs. The application confirms every
input with an OK prompt.

The current generic voice browser functions quite well and after a
short amount of time, users are able to locate desired information within
a database. However, the interaction can have a tendency to rapidly
become tedious and, if little is known about the database content in
advance, it is difficult for a user to keep track of their navigation within
the database. In any case, it is important to remember that this generic
voice browser is mainly intended as a first step in the rapid development
of application specific interfaces as described in the next section.

5. APPLICATION SPECIFIC INTERFACES
To build a new application, the developer first prototypes the informa­

tion model using OMS Pro [Wiirgler, 2000], a prototyping system for the
OM model. During this early development stage, the model can already
be tested by entering concrete data. In the next step, the prototype is
ported to the OMS Java database management system which requires
the implementation of a simple Java class for each type defined in the
information model. The model and data can be exported from OMS Pro
and imported in OMS Java using the Data Definition Language (DDL)
and the Data Manipulation Language (DML), respectively. The OMS

247

Java application database is then already accessible by XIMA's generic
voice browser. A final step is to customise the dialogues to improve the
user experience as described in the following paragraphs.

The generic voice browser has been customised for a specific commu­
nity diary which manages appointments and events for a user community
and further offers some basic email functionality. The initial develop­
ment phases of this application involved the steps described above and
it was then the task of the developer to customise the XSLT stylesheets
to refine the voice user interface. Note that this involved no changes to
the results returned from XIMA's XML server component.

Figure 5. Diary Information Flow

248

By importing the generic XSLT stylesheets, we could inherit the base
functionality from the existing stylesheets and only had to override spe­
cific parts. The final diary application allows a user to receive contacts
information and to get a schedule of a day or the whole week. An in­
formation flow of the diary application with the customised dialogues is
shown in Figure 5.

It is no longer possible to get access to all collections and associations
defined in the diary's information model as explained in the description
of the generic voice browser. Rather a few collections such as meetings
or contacts can be accessed. We further had to add a component which
allows access to the schedule of a day or a week as generated by op­
erations defined within the database. While some parts of the generic
voice browser interface have been refined, one can see that the lower part
of the information flow diagram is exactly the same as the one shown
before and therefore could be inherited from the generic voice browser
interface.

In another project, we developed a special voice application service
based on the XIMA framework for the Swiss Federal Institute for Snow
and Avalanche Research (SLF) in Davos [Geissbuehler and Heiniger,
2002]. SLF gathers information from automatic weather stations and
manual observers throughout the Swiss Alps and generates both national
and regional avalanche forecasts. These reports are made available to
members of the public, mountain guides and resorts in various ways
including publication in newspapers and on the web. There is also a
limited telephone service for national forecasts based on audio reports
generated by someone reading prepared texts. Our application based on
XIMA and VoiceXML will enable them to offer a more flexible telephone
service at lower costs and with faster dissemination of information.

6. CONCLUSIONS
We have presented an approach for developing aural interfaces to

applications using a general framework for universal client access to
databases. The framework is based on an approach to application devel­
opment that relies heavily on the central notion of an information model
and the extensive use of prototyping and generic templates.

Our initial experiences have been very positive. We were surprised at
the quality of speech-based applications that could be developed within
a relatively short period of time given the approach that we followed.
Not only that, but this was achieved as part of a general framework
that also provides access to the applications from a range of desktop
and mobile devices. At the same time, these experiments highlighted

249

many challenges in terms of the best ways of designing speech dialogues
- especially in the case of generic database browsers - and we intend
addressing these in future projects.

REFERENCES
Anderson, C. R., Domingos, P., and Weld, D. S. (2001). Personalizing Web Sites for

Mobile Users. In Proceedings of the 10th International World Wide Web Confer­
ence, Hong Kong.

Balentine, B. and Morgan, D. P. (1999). How to Build a Speech Recognition Applica­
tion: A Style Guide for Telephony Dialogues. Enterprise Integration Group.

Batini, C., Ceri, S., and Navathe, S. B. (1992). Conceptual Database Design: An
Entity-Relationship Approach. Benjamin/Cummings.

BeVocal (2002). BeVocal, Inc., http://www.bevocal.com.
Booch, G., Rumbaugh, J., and Jacobson, I. (1998). Unified Modelling Language User

Guide. Addison-Wesley.
Freire, J., Kumar, B., and Lieuwen, D. (2001). WebViews: Accessing Personalized

Web Content and Services. In Proceedings of the 10th International World Wide
Web Conference, Hong Kong.

Geissbuehler, P. and Heiniger, D. (2001). Voice-Based User Interface for the eXten­
sible Information Management Architecture (XIMA). Semester work, Institute for
Information Systems, ETH Zurich.

Geissbuehler, P. and Heiniger, D. (2002). Providing A Telephone Avalanche Warning
Service Using XIMA, VoiceXML and WML. Diploma thesis, Institute for Informa­
tion Systems, ETH Zurich.

IBM Voice Server (2002). Voice Server SDK, http://www-4.ibm.com/software/speech.
Kobler, A. and Norrie, M. C. (1999). OMS Java: Lessons Learned from Building a

Multi-Tier Object Management Framework. In Proceedings of the Workshop on
Java and Databases: Persistence Options, Denver, USA.

Kobler, A., Norrie, M. C., Signer, B., and Grossniklaus, M. (2001). OMS Java: Provid­
ing Information, Storage and Access Abstractions in an Object-Oriented Frame­
work. In Proceedings of the 7th International Conference on Object-Oriented In­
formation Systems (OOIS'Ol), Calgary, Canada.

Norrie, M. C., Steiner, A., Wiirgler, A., and Wunderli, M. (1996). A Model for Clas­
sification Structures with Evolution Control. In Proceedings of 15th International
Conference on Conceptual Modelling (ER '96), Cottbus, Germany.

Roe, D. B. and Wilpon, J. G. (1994). Voice communications between humans and
machines. National Academy Press.

Schmandt, C. (1994). Voice Communication with Computers, Conversational Sys­
tems. Van Nostrand Reinhold Verlag.

Signer, B., Grossniklaus, M., and Norrie, M. C. (2001). Java Framework for Database­
Centric Web Engineering. In Proceedings of the 4th Workshop on Web Engineering
(in conjunction with 10th International World Wide Web Conference), Hong Kong.

Voice Genie (2002). VoiceGenie Technologies, http://www.voicegenie.com.
VXML (2002). VoiceXML Forum, http://www.voicexml.org.
Wiirgler, A. (2000). OMS Development Framework: Rapid Prototyping for Object­

Oriented Databases. PhD thesis, ETH Zurich.

