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Abstract In a virtual reality (VR) system, users expect both high visual quality as well 
as a high constant frame rate when they interact with the system (walkthrough). 
However, realizing these two requirements for very large virtual environments 
(VE) that cannot fit in the main memory has not been adequately addressed in 
the literature. In this paper, we present a novel access method, called ViSA (Vis­
ibility and Spatial data Access method) that, given a region of the current view 
point, returns the set of 3D objects of VEs that are visible from, as well as those 
that are in, the region. Ideally, these 3D objects will be loaded into memory and 
rendered during walkthrough. However, to balance the visual fidelity (showing 
all visible objects) and constant high frame rate, we dynamically determine the 
number and set of objects that are to be loaded based on the current memory size 
and frame rate. In order to minimize 110 cost, we propose an optimized search 
technique. We have implemented the ViSA structure in a prototype walkthrough 
system and our experiments show that it can provide quality visual fidelity with 
an acceptable constant real time frame rate. 

Keywords: Visual Fidelity, Visibility and Spatial Data, Virtual Environment, Secondary 
Storage Indexing 

1. INTRODUCTION 
Traditionally, in walkthrough applications, the Virtual Environment (VE) 

is stored in its entirety in the main memory. However, this assumption is no 
longer reasonable. For a realistic VE, secondary storage must be used. How­
ever, relying on the OS's virtual memory management for walkthrough gives 
unacceptable results because the OS is application independent. 

One promising strategy that has been adopted in the literature is to exploit 
spatial index structures, e.g., R-trees (Guttman, 1984), for VE data (Pajarola 
et al., 1998; Shou et aI., 2001). While these works can achieve high frame 
rates for real-time walkthrough, they have not adequately addressed the issue 
of visual fidelity. This is because spatial index structures are designed to clus-
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ter objects that are spatially close together. As such, a window query may 
miss "distant" objects that are visible from the viewpoint (i.e., those that do 
not intersect the query box) resulting in unsatisfactory visual quality. Clearly, 
using a sufficiently large window size that bounds the region for the maximum 
viewing distance of human eye sight is certainly not a practical solution. 

In this paper, we capture two categories of information from the VE data. 
First, the VE space is split into regions, and for each region, we keep track 
of its visibility set (Le., objects that are visible from at least one point within 
the region). (We assume a static environment so that visibility information can 
be pre-computed.) Second, the VE objects are organized into clusters so that 
those that are spatially close are in the same cluster. The first set of information 
is used to enhance the visual quality of the scene, while the second category is 
used to facilitate high frame rates. We present a novel access method, called 
ViSA (Visibility and Spatial data Access method), to facilitate speedy retrieval 
of these two types of information. It is essentially an extended R-tree where 
nodes contain information on the spatial and visibility information of their en­
tries. Given a window query, ViSA can therefore restrict the search space to 
regions that are close to the query region. The additional information along 
the paths of the nodes traversed provide the (pre-computed) visibility set that 
should be accessed for these candidate regions. 

While the set of objects obtained from ViSA can guarantee visual fidelity 
(showing all visible objects), the system may not be able to sustain a constant 
and high frame rate. We propose a novel scheme to balance these two po­
tentially conflicting user requirements. For each region, we pre-compute the 
contribution of each visible object to the scene. These objects can then be 
sorted using the contribution values in a non-ascending order. During walk­
through, visible objects are loaded according to this sorted order (Le., objects 
with higher contribution values are loaded first) until some thresholds are vio­
lated. Two important thresholds can be used - available memory and the frame 
rate, i.e., if the available memory or frame rate drops below a predetermined 
value, then no further loading is performed. In order to minimize I/O cost, we 
propose an optimized search technique. 

We have implemented a prototype walkthrough system that employs the 
proposed mechanisms. Our experiments on a large dataset show that the pro­
posed mechanisms can facilitate high and constant rendering frame rates and 
excellent visual fidelity. 

The rest of this paper is organized as follows. In the next section, we review 
some related work. In Section 3, we present the ViSA framework in detail. In 
Section 4, we describe an optimized search technique. Section 5 presents our 
experimental study and report our findings, and finally, Section 6 concludes 
the paper. 
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2. RELATED WORK 
Existing works have addressed the problem from two different perspec­

tives - either from the visibility (Cohen-Or et aI., 1998; Panne and Stew­
art, 1999; Yagel and Ray, 1995) or from the spatial proximity (Kofler et aI., 
2000; Pajarola et aI., 1998; Shou et aI., 2001) point of views. Detecting objects 
that are visible from at least one point in a 3D view cell is a non-linear 4D 
problem (Teller, 1992). Most of these works assume that the entirety of the VE 
can fit in the main memory. 

A straightforward approach to indexing visibility information for large VEs 
is to decompose the VE space into regular grid cells, and maintain cell-to-cell 
visibility information. However, this method is shown to be inefficient (Shou 
et aI., 2001). Works on spatial proximity have largely employed the R-tree 
to organize the data space to facilitate searching. In Figure 1, we illustrate 
a sample dataset with 8 objects (Minimum Bounding Rectangles (MBRs) are 
shown in Figure l(a», and the corresponding R-tree structure (Figure 1 (b». 
The works in (Pajarola et aI., 1998; Shou et aI., 2001) consider only the spatial 
proximity of objects, while (Kofler et aI., 2000) adapted the R-tree structure to 
also store multiple level of details of an object. R-tree, however, is not adequate 
in addressing the issue of visual fidelity. 

3. THE VISA STRUCTURE 
In this section, we shall present the ViSA structure. After giving an overview 

of the structure, we shall present the basic search algorithm. Next, we shall 
examine how ViSA can be used to balance visual fidelity and constant high 
frame rate. We shall end this section by looking at how ViSA can be created. 

3.1. The Big Picture 
ViSA is a Visibility and Spatial data Access method to facilitate speedy re­

trieval of visibility as well as spatial proximity information. For pedagogical 
reasons, we shall use the example in Figure l(a) in our discussion. Figure 2(a) 
shows the cell-to-object visibility information of the MBRs of the objects. For 
example, objects 2, 3, 4 and 5 are visible from MBR 1. This means that if 
the viewpoint is in MBR 1, then (ideally) objects 2-5 should also be loaded to 
ensure high visual fidelity walkthrough. Figure 2(c) shows the ViSA structure 
for our example dataset and visibility information. 

As can be seen from Figure 2(c), the core of ViSA is an R-tree structure 
that provides the spatial proximity information (compare the structure given 
by the box with the R-tree in Figure l(b». However, ViSA extends the R-tree 
in several ways. First, each leaf node contains entries of the form (MBR, OP, 
VP) where MBR is the minimum bounding rectangle of the object, OP is the 
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pointer to the object, and VP (which is newly added) is a pointer to the list of 
objects visible from at least one position in MBR. As shown in Figure 2( c), 
MBR 1 points to objects 2-5. 

Each internal node contains entries of the form (MBR, NP, VP) where MBR 
is the minimum bounding rectangle that bounds all regions in its child node 
pointed by NP, and VP is a pointer (newly added) to the visibility informa­
tion of MBR. Clearly, the visibility information of MBR is a superset of the 
visibility information of its children regions. To enhance performance, the vis­
ibility information of MBR is determined by excluding those of its children 
regions. However, since the region bounded by MBR can be very large, the 
visibility information can be very large. For example, consider MBR 14 in 
Figure l(a), even if we have excluded MBRs 5, 6, 7 and 8, the region covered 
by MBR 14 is still large, and the visibility set of this space can be very large. 
Thus, if a query window, Q (see Figure l(a)), intersects MBR 14, the entire 
visibility set corresponding to MBR 14 may have to be retrieved. We resolve 
this problem by splitting the region into smaller subregions. As an example, 
in Figure 2(b), the regions ofMBRs 12 and 14 have been further decomposed 
into 4 and 7 subregions respectively. This decomposition is done such that each 
subregion contains approximately the same number of visible objects. Thus, 
VP points to a list of regions, each of which provides the visibility informa­
tion for the region. Using the same query example where query window Q 
intersects MBR 14, we now only need to access visibility set corresponding to 
MBR 14.6 which is much smaller than MBR 14! The root node structure is 
similar to the internal node. 

3.2. The Basic ViSA Search Algorithm 

Figure 3 shows the algorithmic description of the basic ViSA search algo­
rithm. The algorithm is very similar to the R-tree search algorithm, except for 
lines 5-7 and 12-13. Given a query window, the search begins from the root 
node, and traverses down the tree. For each internal node of ViSA examined 
(lines 1-7), the Bounding Boxes (BB) of the entries within the node are first 
checked against the query window (line 2). If the BB of an entry E overlaps 
the query window, it means that objects covered by the BB may be spatially 
close to or within the query window. As such, the search will continue with the 
child node associated with E (line 4). Next comes the differences from R-tree. 
Since ViSA internal nodes also keep track of visibility information of the space 
covered by the BB of E, the VP pointer is used to retrieve the list of regions 
not covered by E's children nodes. For those regions that intersect the query 
window, we return the pointer to the list of the visible objects (lines 5-7). In 
this way, all potentially visible objects along the path can be accessed. 
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Now, for a leaf node, similar process is performed (lines 9-12). If the BB 
of an entry E of the leaf node overlaps the query window, then we know that 
E is a qualifying record. So, both the pointer to the object corresponding to E 
and the pointer to the list of objects visible from E are returned. Finally, we 
need to merge the query results of steps 7 and 12. The reason is that the same 
object can be queried more than once, e.g., one object can be visible from two 
different regions. 

As in the R-tree search algorithm, those entries that do not intersect with 
the query window can be pruned away. Thus, ViSA facilitates speedy retrieval 
of spatial and visibility data. In order to minimize I/O cost, we propose an 
optimized search algorithm that will be described in Section 4. 

Algorithm Search (T, C) 
Input: T: pointer to node, C: Query window 

1. if T is not a leaf node 1* search subtrees *1 
2. for each entry E of node T do 
3. if (BB(E) Overlaps C) 
4. Invoke Search on the sub-tree whose root is the node 

associated with E 
5. for each region V obtained via pointer VP associated with E 
6. if (V Overlaps C) 
7. Return VP of node T, the pointer to list of visible objects 
8. else 1* search leaf node *1 
9. for each entry E of node T do 
10. if (BB(E) Overlaps C) 
11. E of node T is a qualifying record 
12. Return the SP and VP of node T 
13. Merge the results of steps 7 and 12 

Figure 3. The search algorithm. 

3.3. Visual Fidelity vs High Frame Rate 

Given a query window Q, we can obtain the set of objects that are in Q as 
well as objects that are visible from any point in Q. However, depending on 
the memory size and the computational power of the system, it may not always 
be possible to sustain high frame rates as well as visual fidelity. Under such a 
situation, our approach is to provide as much visible data as possible as long as 
the frame rate does not degrade beyond a certain predetermined threshold, i.e., 
when the frame rate falls below a certain prescribed threshold, we will sacrifice 
the visual quality by dropping some visible objects. 
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Essentially, given a region, we associate with each object in its visibility set 
a contribution value. An object's contribution value reflects its importance to 
the rendered image. In other words, it is more valuable to load an object with a 
larger contribution value than one with a lower contribution value. Thus, all we 
need is to sort the objects in non-ascending order of their contribution values. 
During a walkthrough session, visible objects with higher contribution values 
are loaded first, followed by those with smaller values. In this way, whenever 
the frame rate drops below the threshold value, we stop loading the visibility 
objects. 

3.4. Creation of the ViSA Structure 

To create a ViSA structure from a VE is a fairly complex and time consum­
ing task. Fortunately, this process is done offline, and only need to be done 
once for a static VE. As described in the previous subsections, the major data 
structures of ViSA are (1) the hierarchical cells that represent the spatial adja­
cency of 3D objects (referred by SP) and (2) the visible set of each node and 
regions (referred by VP). 

The creation is split into three steps. First, we construct the R-tree compo­
nent of ViSA. This process is straightforward by using the R-tree construction 
scheme proposed in (Guttman, 1984). However, we need to allocate space for 
all the additional visibility pointers that are needed in ViSA. The process is 
essentially an iterative inserting process: for each object and its MBR in the 
scene, we traverse a single path down the tree from the root to the leaf and 
insert the entry into the leaf node. At each level of the traversal, we choose 
the child node whose MBR needs the least enlargement to contain the MBR of 
the object. In our implementation, we adapted the linear node split algorithm 
of (Ang and Tan, 1997). This algorithm minimizes both the coverage and the 
overlap of the cells of SP. It is very efficient with linear time complexity for 
the number of 3D objects in aVE. 

Second, we determine the regions in which visibility set should be com­
puted. We traverse the R-tree component bottom up, i.e., from the leaf levels 
first, followed by the level above the leaves and so on. At each leaf node, for 
each data object, its MBR corresponds to the region. For each internal node, 
the space that is not captured by the children nodes are split into regions. In 
our current work, we have adopted a simple strategy: we split the space into 
regions whose size must be smaller than the largest MBR of the children nodes. 

Third, we compute the visible set for the region defined by each node in 
the hierarchy. The resulting objects of the visible set will be recorded in the 
visible table (referred by VP). To pre-compute the visibility information, we 
change the model set to the k-D tree structure. For each node region R, some 
nearby large convex objects will be selected as the occ1uders. The k-D tree 
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hierarchy of bounding boxes is then tested against the z-buffer to find which 
nodes are hidden by the occluder. The hidden sets for eight vertices are inter­
sected, generating the hidden set of the occluder. And finally, all the hidden 
sets of all occluders are unioned to make up the global hidden set occluded by 
the occluder set. In such a way, we can get the visibility set for each region. 

4. THE OPTIMIZED SEARCH ALGORITHM 
In a large VE walkthrough system, in order to minimize I/O cost, the user's 

viewpoint is typically associated with a disk cell that contains the view frustum 
(Shou et al., 2001). For simplicity, in our experiments, we used a box-shaped 
cell (i.e., typical Window query) as a disk cell. The disk cell serves two pur­
poses. First, if the frustums of subsequent frames are totally bounded in the 
disk cell, there is no need to access data from secondary storage. This can lead 
to higher frame rate. Second, whenever a user moves such that its view frus­
tum is no longer bounded by the disk cell, new data has to be accessed from the 
secondary storage. The disk cell (corresponds to a query window) serves to de­
fine the region of space in the VE that contains objects that should be accessed 
from the secondary storage and brought into main memory for rendering. 

However, in a walkthrough environment, consecutive disk cells, say 
G1, G2, ... ,Gi, issued to the retrieval engine to access data from secondary 
storage may contain significant overlap. Consider a user's frustum cell is ini­
tially within cell G1• When the user's frustum cell moves out of G1, data of 
cell C2 has to be loaded. Intuitively, we should only load objects that are in 
G2 but not in G1. Similarly, if C3 becomes the current cell, then only objects 
in 0 3 that are not in G2 and G1 should be accessed. This is also true for the 
visible sets VI, V2 , and V3 . Unfortunately, the non-overlapped areas of cells 
are usually concave geometries, so it is difficult to describe such a region in 
each retrieval operation. It is also difficult to search for objects overlapping 
such a concave area in ViSA as the original search algorithm employs only 
box-shaped regions. 

In (Shou et al., 2001), a novel complement overlap concept was introduced 
to reuse overlap information to retrieve only objects in the non-overlapped re­
gions. ComplementOverlap between two regions are defined as follows: given 
a cell A, the space not contained in A is the complement of A, which is denoted 
as..4. If a bounding box BB (of a virtual object or a group of objects) overlaps 
(or intersects) ..4, then we say that BB complement overlaps A. Complemen­
tOverlap can be exploited in our context as follows: 

• Given that we want to load objects of a new cell C, we can use a history of cells HS = 
{C1 , C2, ... , Ci} to filter away (spatial) objects that are already loaded in memory by 
the cells in HS. Thus, the problem becomes one of retrieving objects whose bounding 
boxes overlap C but do not overlap any of the cells in HS. 
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• Similarly, given that we want to load objects that are visible from a new cell C, we can 

use a history of regions whose visibility objects are already loaded in memory, HV = 
{VI, V2, ... , Vi}, and use them to filter away visible objects that are already loaded in 

memory. 

Referring to our example again, if 0 3 is the current cell whose objects we want 
to retrieve, then (1) objects that overlap 03 but not 0 1 and 02 and (2) visible 
objects of 03 but not visible from 0 1 and O2 are the ones that we are interested 
in. 

We incorporated this idea to the basic ViSA search algorithm. As it works 
on the spatial and visible information of a disk cell, we refer to it as the SVC­
search (Spatial-Visual Complement search). Figure 4 gives the algorithmic 
description for the SVCsearch. In the figure, we use T to denote an ViSA 
node, use E to denote an entry of the ViSA node, and use SP and VP to denote 
the references (pointers) to objects inside and visible objects of the ViSA node 
region as described in Section 3. As shown, the main difference between this 
algorithm and the basic search algorithm in Figure 3 is the additional Comple­
mentOverlaps statements that appear in lines 4 and 8. 

If we denote the cells that a user accesses as 0 1 , O2 , 0 3 , ••. , based on the 
SVCsearch algorithm, the retrieval engine will issue the following queries to 
the database (ViSA): 01> O2 - 0 1, 0 3 - (01 U O2),04 - (03 U C2 U Od, ... , 
OH 1 - (Oi U ... U 02 U 0 1) and so on. As a comparison, a traditional method 
would issue queries 01. C2 , 0 3 , ... , to the database. For a SVC search like 
Oi+ 1 - (Oi U ... U O2 U 0 1), we can remove any cells from { 0 1 , 02, ... , Oi}, 
if the bounding boxes of all their objects do not overlap Oi+!. Such cells have 
no effect on the query result because objects overlapping them cannot overlap 
Oi+1. Thus, before sending the query to the database, a filtering operation can 
be conducted on the cell list, so those cells not intersecting the current cell 
do not need to be considered in the SVCsearch algorithm. In our prototype 
walkthrough system, the number of cells in the history to be maintained is 
fewer than twenty in most cases. With such short cell lists, the CPU cost on 
the extra ComplementOverlap and Overlap testing is negligible. The above 
argument also applies to the ComplementOverlap operation on visibility data. 

Besides exploiting the concept of complement overlap, we also keep track 
of the list of objects that are in memory. In this way, by comparing the IDs of 
the objects, we can avoid loading a memory-resident object. Since the number 
of objects to be compared is small, the computation cost is negligible compared 
to the I/O savings in loading the actual objects. 

As a user "steps" out of a cell boundary, a SVCsearch returns a new result 
set. The algorithm guarantees that the result sets will have no overlap. How­
ever, as the object buffer in the main memory gets filled up, old objects should 
be freed to make space for new cells. Our solution is to delete from the buffer 



228 

Algorithm SVCsearch (T, C, HS, HV) 
Input: T: pointer to node, C: Query window, HS: History of spatial search 
cells, HV: History of visible regions 

1. if T is not a leaf node 1* search subtrees *1 
2. for each entry E of node T do 
3. if (BB(E) Overlaps C) 
4. ifBB(E) ComplementOverlaps all of C1, C2, ... , Ci in HS 
5. Invoke SVCsearch on the sub-tree whose root is the node 

associated with E 
6. for each region V obtained via pointer VP associated with E 
7. if (V Overlaps C) 
8. if V ComplementOverlaps all of VI, V2, ... , Vi in HV 
9. Return VP of node T, the pointer to list of visible 

objects 
10. else 1* search leaf node *1 
11. for each entry E of node T do 
12. if (BB(E) Overlaps C) 
13. if BB(E) Overlaps none of GI , C2,'" ,Ci in HS 
14. E of node T is a qualifying record 
15. Return the SP and VP of node T 
16. Merge the query results of steps 9 and 15 

Figure 4. The SVCsearch algorithm. 

the objects of the cells that do not overlap the latest cell, while maintaining the 
objects whose cells overlap it. 

5. EXPERIMENTAL STUDY 
We implemented the ViSA system that employs all the proposed techniques. 

The system was built upon a PC with Pentium III and 128 megabytes ofmem­
ory, running Windows NT4. We generated a synthetic dataset to simulate a 
large cityscape. There are about 100,000 virtual buildings requiring about 
100 MB of harddisk space (inclusive of ViSA index), and more than 500 MB 
of memory space if fully loaded into main memory (in scene graph format). 

We compare the ViSA system against the REVIEW system (Shou et aI., 
2001). REVIEW is the predecessor of ViSA designed to facilitate walkthrough 
in large YEs. REVIEW employs R-tree to index the VE data. However, it does 
not handle visibility data beyond those within a query region, i.e., given a 
query region, nothing outside of the region can be viewed. Currently, both sys­
tems support the same replacement and prefetching policies that are designed 
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in REVIEW based on walkthrough semantics. The distance-priority-based re­
placement policy keeps those nodes that are close to the current viewpoint in 
memory, while replacing those nodes whose bounding boxes are distant from 
the current viewpoint. The prefetching scheme computes the position of the 
view cell that the user will be in based on the velocity in which the user is 
moving. Both schemes have been shown to perform better than other non­
semantic-based schemes. 

The metrics of measuring the quality of a walkthrough are the frame time 
and the smoothness of the walkthrough. Frame time is defined as the cycle time 
between two consecutive rendering operations. The time for database query, 
memory data manipulation, rendering and other overheads are all included in 
frame time. The smoothness of the walkthrough can be represented by how 
much each frame time varies from the average frame time. A walkthrough 
with a small average frame time and a small variance is considered to be of 
good quality. 

Both the average frame time and the frame time variance of the ViSA and 
REVIEW system are listed in table 1. We can see the frame time and time 
variation of ViSA is close to those of REVIEW. With increasing query cell 
size ratio (defined as the ratio of the disk cell size over the view frustum cell 
size), the frame time and its variance become worse. This is because when the 
size of the querying box increases, more objects are loaded into memory. The 
average frame time of ViSA is about 3.5ms more than that of REVIEW and 
its average variance is about 17.3ms more than that of REVIEW. Thus, ViSA's 
performance is acceptable especially since it can provide much better visual 
fidelity than REVIEW (as we shall see shortly). 

Cell ViSA ViSA REVIEW REVIEW 
size ratio ft (ms) vt (ms) ft (ms) vt (ms) 

1.0 25.89 28.53 22.52 10.24 
1.1 29.76 30.57 26.51 12.94 
1.2 34.20 32.30 30.92 14.04 
1.3 39.18 32.78 35.67 15.92 
1.4 44.32 35.84 40.68 18.24 
1.5 49.37 35.26 45.88 18.51 
1.6 54.35 35.37 50.57 19.15 

Table 1. Comparisons of ViSA and REVIEW on the average and variance of frame time (ft 
and vt) for different query cell size. 

Figures 5(a) and 5(b) show the results on the rendering time for each frame 
when a user path is applied to ViSA system and REVIEW system. The results 
show that the ViSA has longer rendering time and less smooth frame rate be­
cause the visible objects were loaded and rendered. However, the performance 
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is only marginally lower. At some frames (20 of total Soo frames), the frame 
time is very large for both systems because of the queries to the secondary 
storage. 

Another straightforward approach to indexing visibility information for large 
VEs is to decompose the VE space into regular grid cells (REGULAR in short). 
We now compare the rendering time of REGULAR (Figure S(c» and ViSA 
(Figure S(a». REGULAR's average frame time (70.9ms) is longer than ViSA's 
(2S.9ms). The variance of frame time of REGULAR is 343.6ms, longer than 
that of ViSA(28.Sms) as shown in table 1. It is due to REGULAR's longer 
average disk access time. 

As expected, the fidelity of ViSA is significantly higher than REVIEW in 
walkthrough. The missing visible objects in REVIEW can be 0% (all the vis­
ible objects are occluded by the objects in the region) to 00 (no objects in the 
region, e.g., a football ground, but many visible objects around, "blind spots"). 
To visually compare, Figure 6 displays three pairs of snapshots of display of 
ViSA and REVIEW using the same viewpoint for a same VE. It is clear from 
the figure that some visible buildings are only shown in the results of ViSA. 

In the next experiment, we study the effect of trading off visual fidelity for 
performance. We use the cell size ratio 1.0 for this experiment. Figure 7 shows 
how the percentage of visible objects loaded affect the average frame time of 
the walkthrough. In other words, a point (x, y) in the figure means that (100-
x)% of the objects were dropped, while x% were loaded into memory. 

We can see that in Figure 7, as we decrease the percentage of visible objects 
information, the ViSA's frame time decreases. The frame time of REVIEW re­
mains constant as REVIEW does not consider visibility information, but rather, 
only the spatial information. The curve of ViSA will not reach the horizontal 
line of REVIEW. The reason is that there is a constant additional overhead for 
ViSA to do the computation for the visibility part even if there is no visible 
object to be loaded. 

The fidelity for different dropping rates also can be visually compared. One 
set of three snapshots is shown in Figure 8. The visual fidelity decreases as the 
dropping of more visible objects in the visible set. In Figure 8(a), all distant 
cylinder towers and lower blocks are shown. In Figure 8(b), two most distant 
cylinder towers and some lower blocks are not shown. In Figure 8(c), only one 
most close cylinder tower and lower blocks are shown. 

6. CONCLUSION 
In this paper, we have presented a novel access method to organize large 

virtual environments that cannot fit into the main memory. The proposed struc­
ture, ViSA, stores both visibility and spatial proximity information, and facili­
tates optimized search and speedy retrieval of objects that are visible from and 
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frame number for disk accesses. 

spatially close to the viewpoint. This approach can successfully balance the 
fidelity and performance for walkthrough. We plan to extend this work in sev­
eral directions. First, we would like to further study data structures that can 
organize the visibility data (instead of using a visibility table which can be­
come a bottleneck for large number of objects). Second, we will take Level of 
Detail (LOD) into consideration in our future work. We plan to integrate this 
into the successor of ViSA. 
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(a) ViSA: viewpoint L 

(d) REVIEW: viewpoint 
1. 

(b) ViSA: viewpoint 2. 

(e) REVIEW: viewpoint 
2. 

(c) ViSA: viewpoint 3. 

(0 REVIEW: viewpoint 
3. 

Figure 6. Visual comparisons of fidelity for ViSA and REVIEW. It shows that ViSA has 
higher visual fidelity for walkthrough. For viewpoints 1 and 2, some buildings, e.g., a cylinder 
tower, are missing from the REVIEW system. For viewpoint 3, all objects are missing, Le., a 
"blind spot" is encountered during walkthrough. 
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Figure 7. The average frame time of the walkthrough in ViSA, dropping the visible objects, 
against the REVIEW. 

(a) No dropping of the 
visible objects. 

(b) Dropping 20% of the 
visible objects. 

(c) Dropping 40% of the 
visible objects. 

Figure 8. Visual illustration of fidelity for ViSA when dropping the visible objects with 
small contribution values in order to maintain the frame time. 
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