
BALANCING FIDELITY AND PERFOR­
MANCE IN VIRTUAL WALKTHROUGH

Yixin Ruan, Jason Chionh, Zhiyong Huang, Lidan Shou, Kian-Lee Tan
Department of Computer Science, National University of Singapore, Singapore 117543
[ruanyixi. jchionh. huangzy. shoulida. tanklj@comp.nus.edu.sg

Abstract In a virtual reality (VR) system, users expect both high visual quality as well
as a high constant frame rate when they interact with the system (walkthrough).
However, realizing these two requirements for very large virtual environments
(VE) that cannot fit in the main memory has not been adequately addressed in
the literature. In this paper, we present a novel access method, called ViSA (Vis­
ibility and Spatial data Access method) that, given a region of the current view
point, returns the set of 3D objects of VEs that are visible from, as well as those
that are in, the region. Ideally, these 3D objects will be loaded into memory and
rendered during walkthrough. However, to balance the visual fidelity (showing
all visible objects) and constant high frame rate, we dynamically determine the
number and set of objects that are to be loaded based on the current memory size
and frame rate. In order to minimize 110 cost, we propose an optimized search
technique. We have implemented the ViSA structure in a prototype walkthrough
system and our experiments show that it can provide quality visual fidelity with
an acceptable constant real time frame rate.

Keywords: Visual Fidelity, Visibility and Spatial Data, Virtual Environment, Secondary
Storage Indexing

1. INTRODUCTION
Traditionally, in walkthrough applications, the Virtual Environment (VE)

is stored in its entirety in the main memory. However, this assumption is no
longer reasonable. For a realistic VE, secondary storage must be used. How­
ever, relying on the OS's virtual memory management for walkthrough gives
unacceptable results because the OS is application independent.

One promising strategy that has been adopted in the literature is to exploit
spatial index structures, e.g., R-trees (Guttman, 1984), for VE data (Pajarola
et al., 1998; Shou et aI., 2001). While these works can achieve high frame
rates for real-time walkthrough, they have not adequately addressed the issue
of visual fidelity. This is because spatial index structures are designed to clus-

X. Zhou et al. (eds.), Visual and Multimedia Information Management
© Springer Science+Business Media New York 2002

220

ter objects that are spatially close together. As such, a window query may
miss "distant" objects that are visible from the viewpoint (i.e., those that do
not intersect the query box) resulting in unsatisfactory visual quality. Clearly,
using a sufficiently large window size that bounds the region for the maximum
viewing distance of human eye sight is certainly not a practical solution.

In this paper, we capture two categories of information from the VE data.
First, the VE space is split into regions, and for each region, we keep track
of its visibility set (Le., objects that are visible from at least one point within
the region). (We assume a static environment so that visibility information can
be pre-computed.) Second, the VE objects are organized into clusters so that
those that are spatially close are in the same cluster. The first set of information
is used to enhance the visual quality of the scene, while the second category is
used to facilitate high frame rates. We present a novel access method, called
ViSA (Visibility and Spatial data Access method), to facilitate speedy retrieval
of these two types of information. It is essentially an extended R-tree where
nodes contain information on the spatial and visibility information of their en­
tries. Given a window query, ViSA can therefore restrict the search space to
regions that are close to the query region. The additional information along
the paths of the nodes traversed provide the (pre-computed) visibility set that
should be accessed for these candidate regions.

While the set of objects obtained from ViSA can guarantee visual fidelity
(showing all visible objects), the system may not be able to sustain a constant
and high frame rate. We propose a novel scheme to balance these two po­
tentially conflicting user requirements. For each region, we pre-compute the
contribution of each visible object to the scene. These objects can then be
sorted using the contribution values in a non-ascending order. During walk­
through, visible objects are loaded according to this sorted order (Le., objects
with higher contribution values are loaded first) until some thresholds are vio­
lated. Two important thresholds can be used - available memory and the frame
rate, i.e., if the available memory or frame rate drops below a predetermined
value, then no further loading is performed. In order to minimize I/O cost, we
propose an optimized search technique.

We have implemented a prototype walkthrough system that employs the
proposed mechanisms. Our experiments on a large dataset show that the pro­
posed mechanisms can facilitate high and constant rendering frame rates and
excellent visual fidelity.

The rest of this paper is organized as follows. In the next section, we review
some related work. In Section 3, we present the ViSA framework in detail. In
Section 4, we describe an optimized search technique. Section 5 presents our
experimental study and report our findings, and finally, Section 6 concludes
the paper.

221

2. RELATED WORK
Existing works have addressed the problem from two different perspec­

tives - either from the visibility (Cohen-Or et aI., 1998; Panne and Stew­
art, 1999; Yagel and Ray, 1995) or from the spatial proximity (Kofler et aI.,
2000; Pajarola et aI., 1998; Shou et aI., 2001) point of views. Detecting objects
that are visible from at least one point in a 3D view cell is a non-linear 4D
problem (Teller, 1992). Most of these works assume that the entirety of the VE
can fit in the main memory.

A straightforward approach to indexing visibility information for large VEs
is to decompose the VE space into regular grid cells, and maintain cell-to-cell
visibility information. However, this method is shown to be inefficient (Shou
et aI., 2001). Works on spatial proximity have largely employed the R-tree
to organize the data space to facilitate searching. In Figure 1, we illustrate
a sample dataset with 8 objects (Minimum Bounding Rectangles (MBRs) are
shown in Figure l(a», and the corresponding R-tree structure (Figure 1 (b».
The works in (Pajarola et aI., 1998; Shou et aI., 2001) consider only the spatial
proximity of objects, while (Kofler et aI., 2000) adapted the R-tree structure to
also store multiple level of details of an object. R-tree, however, is not adequate
in addressing the issue of visual fidelity.

3. THE VISA STRUCTURE
In this section, we shall present the ViSA structure. After giving an overview

of the structure, we shall present the basic search algorithm. Next, we shall
examine how ViSA can be used to balance visual fidelity and constant high
frame rate. We shall end this section by looking at how ViSA can be created.

3.1. The Big Picture
ViSA is a Visibility and Spatial data Access method to facilitate speedy re­

trieval of visibility as well as spatial proximity information. For pedagogical
reasons, we shall use the example in Figure l(a) in our discussion. Figure 2(a)
shows the cell-to-object visibility information of the MBRs of the objects. For
example, objects 2, 3, 4 and 5 are visible from MBR 1. This means that if
the viewpoint is in MBR 1, then (ideally) objects 2-5 should also be loaded to
ensure high visual fidelity walkthrough. Figure 2(c) shows the ViSA structure
for our example dataset and visibility information.

As can be seen from Figure 2(c), the core of ViSA is an R-tree structure
that provides the spatial proximity information (compare the structure given
by the box with the R-tree in Figure l(b». However, ViSA extends the R-tree
in several ways. First, each leaf node contains entries of the form (MBR, OP,
VP) where MBR is the minimum bounding rectangle of the object, OP is the

222

pointer to the object, and VP (which is newly added) is a pointer to the list of
objects visible from at least one position in MBR. As shown in Figure 2(c),
MBR 1 points to objects 2-5.

Each internal node contains entries of the form (MBR, NP, VP) where MBR
is the minimum bounding rectangle that bounds all regions in its child node
pointed by NP, and VP is a pointer (newly added) to the visibility informa­
tion of MBR. Clearly, the visibility information of MBR is a superset of the
visibility information of its children regions. To enhance performance, the vis­
ibility information of MBR is determined by excluding those of its children
regions. However, since the region bounded by MBR can be very large, the
visibility information can be very large. For example, consider MBR 14 in
Figure l(a), even if we have excluded MBRs 5, 6, 7 and 8, the region covered
by MBR 14 is still large, and the visibility set of this space can be very large.
Thus, if a query window, Q (see Figure l(a)), intersects MBR 14, the entire
visibility set corresponding to MBR 14 may have to be retrieved. We resolve
this problem by splitting the region into smaller subregions. As an example,
in Figure 2(b), the regions ofMBRs 12 and 14 have been further decomposed
into 4 and 7 subregions respectively. This decomposition is done such that each
subregion contains approximately the same number of visible objects. Thus,
VP points to a list of regions, each of which provides the visibility informa­
tion for the region. Using the same query example where query window Q
intersects MBR 14, we now only need to access visibility set corresponding to
MBR 14.6 which is much smaller than MBR 14! The root node structure is
similar to the internal node.

3.2. The Basic ViSA Search Algorithm

Figure 3 shows the algorithmic description of the basic ViSA search algo­
rithm. The algorithm is very similar to the R-tree search algorithm, except for
lines 5-7 and 12-13. Given a query window, the search begins from the root
node, and traverses down the tree. For each internal node of ViSA examined
(lines 1-7), the Bounding Boxes (BB) of the entries within the node are first
checked against the query window (line 2). If the BB of an entry E overlaps
the query window, it means that objects covered by the BB may be spatially
close to or within the query window. As such, the search will continue with the
child node associated with E (line 4). Next comes the differences from R-tree.
Since ViSA internal nodes also keep track of visibility information of the space
covered by the BB of E, the VP pointer is used to retrieve the list of regions
not covered by E's children nodes. For those regions that intersect the query
window, we return the pointer to the list of the visible objects (lines 5-7). In
this way, all potentially visible objects along the path can be accessed.

(a) A sample dataset

Figure 1.

(a) Visibility infonnation.

reaiomo in MBR IS

@ ~ 0 @ 4,5, 3 ,5,
6 6 6 ••

D SpAliallnfonnation

pointer to .patial
infonnation

(b) The corresponding R-tree.

An R-tree example.

@J 3
6,7.

•
ffi] ...

7 ••

(b) Partitioning of MBR.

14. 1.1t2. 1~.3.14 .4.14;~.14:~.14~?

~/ '. --,', "

12.:1. 12 .. ~. 12.3, 12~4

,-::-,-,--~., '\ \ ~
objecu vi.Jble
in tbc relions

~: •. @J~.
5,7. 6.7

•

CJ Vi.ibility Illtonnation

pointer to vbibUhy
infonnation

(c) The ViSA structure.

Figure 2. A ViSA example.

223

224

Now, for a leaf node, similar process is performed (lines 9-12). If the BB
of an entry E of the leaf node overlaps the query window, then we know that
E is a qualifying record. So, both the pointer to the object corresponding to E
and the pointer to the list of objects visible from E are returned. Finally, we
need to merge the query results of steps 7 and 12. The reason is that the same
object can be queried more than once, e.g., one object can be visible from two
different regions.

As in the R-tree search algorithm, those entries that do not intersect with
the query window can be pruned away. Thus, ViSA facilitates speedy retrieval
of spatial and visibility data. In order to minimize I/O cost, we propose an
optimized search algorithm that will be described in Section 4.

Algorithm Search (T, C)
Input: T: pointer to node, C: Query window

1. if T is not a leaf node 1* search subtrees *1
2. for each entry E of node T do
3. if (BB(E) Overlaps C)
4. Invoke Search on the sub-tree whose root is the node

associated with E
5. for each region V obtained via pointer VP associated with E
6. if (V Overlaps C)
7. Return VP of node T, the pointer to list of visible objects
8. else 1* search leaf node *1
9. for each entry E of node T do
10. if (BB(E) Overlaps C)
11. E of node T is a qualifying record
12. Return the SP and VP of node T
13. Merge the results of steps 7 and 12

Figure 3. The search algorithm.

3.3. Visual Fidelity vs High Frame Rate

Given a query window Q, we can obtain the set of objects that are in Q as
well as objects that are visible from any point in Q. However, depending on
the memory size and the computational power of the system, it may not always
be possible to sustain high frame rates as well as visual fidelity. Under such a
situation, our approach is to provide as much visible data as possible as long as
the frame rate does not degrade beyond a certain predetermined threshold, i.e.,
when the frame rate falls below a certain prescribed threshold, we will sacrifice
the visual quality by dropping some visible objects.

225

Essentially, given a region, we associate with each object in its visibility set
a contribution value. An object's contribution value reflects its importance to
the rendered image. In other words, it is more valuable to load an object with a
larger contribution value than one with a lower contribution value. Thus, all we
need is to sort the objects in non-ascending order of their contribution values.
During a walkthrough session, visible objects with higher contribution values
are loaded first, followed by those with smaller values. In this way, whenever
the frame rate drops below the threshold value, we stop loading the visibility
objects.

3.4. Creation of the ViSA Structure

To create a ViSA structure from a VE is a fairly complex and time consum­
ing task. Fortunately, this process is done offline, and only need to be done
once for a static VE. As described in the previous subsections, the major data
structures of ViSA are (1) the hierarchical cells that represent the spatial adja­
cency of 3D objects (referred by SP) and (2) the visible set of each node and
regions (referred by VP).

The creation is split into three steps. First, we construct the R-tree compo­
nent of ViSA. This process is straightforward by using the R-tree construction
scheme proposed in (Guttman, 1984). However, we need to allocate space for
all the additional visibility pointers that are needed in ViSA. The process is
essentially an iterative inserting process: for each object and its MBR in the
scene, we traverse a single path down the tree from the root to the leaf and
insert the entry into the leaf node. At each level of the traversal, we choose
the child node whose MBR needs the least enlargement to contain the MBR of
the object. In our implementation, we adapted the linear node split algorithm
of (Ang and Tan, 1997). This algorithm minimizes both the coverage and the
overlap of the cells of SP. It is very efficient with linear time complexity for
the number of 3D objects in aVE.

Second, we determine the regions in which visibility set should be com­
puted. We traverse the R-tree component bottom up, i.e., from the leaf levels
first, followed by the level above the leaves and so on. At each leaf node, for
each data object, its MBR corresponds to the region. For each internal node,
the space that is not captured by the children nodes are split into regions. In
our current work, we have adopted a simple strategy: we split the space into
regions whose size must be smaller than the largest MBR of the children nodes.

Third, we compute the visible set for the region defined by each node in
the hierarchy. The resulting objects of the visible set will be recorded in the
visible table (referred by VP). To pre-compute the visibility information, we
change the model set to the k-D tree structure. For each node region R, some
nearby large convex objects will be selected as the occ1uders. The k-D tree

226

hierarchy of bounding boxes is then tested against the z-buffer to find which
nodes are hidden by the occluder. The hidden sets for eight vertices are inter­
sected, generating the hidden set of the occluder. And finally, all the hidden
sets of all occluders are unioned to make up the global hidden set occluded by
the occluder set. In such a way, we can get the visibility set for each region.

4. THE OPTIMIZED SEARCH ALGORITHM
In a large VE walkthrough system, in order to minimize I/O cost, the user's

viewpoint is typically associated with a disk cell that contains the view frustum
(Shou et al., 2001). For simplicity, in our experiments, we used a box-shaped
cell (i.e., typical Window query) as a disk cell. The disk cell serves two pur­
poses. First, if the frustums of subsequent frames are totally bounded in the
disk cell, there is no need to access data from secondary storage. This can lead
to higher frame rate. Second, whenever a user moves such that its view frus­
tum is no longer bounded by the disk cell, new data has to be accessed from the
secondary storage. The disk cell (corresponds to a query window) serves to de­
fine the region of space in the VE that contains objects that should be accessed
from the secondary storage and brought into main memory for rendering.

However, in a walkthrough environment, consecutive disk cells, say
G1, G2, ... ,Gi, issued to the retrieval engine to access data from secondary
storage may contain significant overlap. Consider a user's frustum cell is ini­
tially within cell G1• When the user's frustum cell moves out of G1, data of
cell C2 has to be loaded. Intuitively, we should only load objects that are in
G2 but not in G1. Similarly, if C3 becomes the current cell, then only objects
in 0 3 that are not in G2 and G1 should be accessed. This is also true for the
visible sets VI, V2 , and V3 . Unfortunately, the non-overlapped areas of cells
are usually concave geometries, so it is difficult to describe such a region in
each retrieval operation. It is also difficult to search for objects overlapping
such a concave area in ViSA as the original search algorithm employs only
box-shaped regions.

In (Shou et al., 2001), a novel complement overlap concept was introduced
to reuse overlap information to retrieve only objects in the non-overlapped re­
gions. ComplementOverlap between two regions are defined as follows: given
a cell A, the space not contained in A is the complement of A, which is denoted
as..4. If a bounding box BB (of a virtual object or a group of objects) overlaps
(or intersects) ..4, then we say that BB complement overlaps A. Complemen­
tOverlap can be exploited in our context as follows:

• Given that we want to load objects of a new cell C, we can use a history of cells HS =
{C1 , C2, ... , Ci} to filter away (spatial) objects that are already loaded in memory by
the cells in HS. Thus, the problem becomes one of retrieving objects whose bounding
boxes overlap C but do not overlap any of the cells in HS.

227

• Similarly, given that we want to load objects that are visible from a new cell C, we can

use a history of regions whose visibility objects are already loaded in memory, HV =
{VI, V2, ... , Vi}, and use them to filter away visible objects that are already loaded in

memory.

Referring to our example again, if 0 3 is the current cell whose objects we want
to retrieve, then (1) objects that overlap 03 but not 0 1 and 02 and (2) visible
objects of 03 but not visible from 0 1 and O2 are the ones that we are interested
in.

We incorporated this idea to the basic ViSA search algorithm. As it works
on the spatial and visible information of a disk cell, we refer to it as the SVC­
search (Spatial-Visual Complement search). Figure 4 gives the algorithmic
description for the SVCsearch. In the figure, we use T to denote an ViSA
node, use E to denote an entry of the ViSA node, and use SP and VP to denote
the references (pointers) to objects inside and visible objects of the ViSA node
region as described in Section 3. As shown, the main difference between this
algorithm and the basic search algorithm in Figure 3 is the additional Comple­
mentOverlaps statements that appear in lines 4 and 8.

If we denote the cells that a user accesses as 0 1 , O2 , 0 3 , ••. , based on the
SVCsearch algorithm, the retrieval engine will issue the following queries to
the database (ViSA): 01> O2 - 0 1, 0 3 - (01 U O2),04 - (03 U C2 U Od, ... ,
OH 1 - (Oi U ... U 02 U 0 1) and so on. As a comparison, a traditional method
would issue queries 01. C2 , 0 3 , ... , to the database. For a SVC search like
Oi+ 1 - (Oi U ... U O2 U 0 1), we can remove any cells from { 0 1 , 02, ... , Oi},
if the bounding boxes of all their objects do not overlap Oi+!. Such cells have
no effect on the query result because objects overlapping them cannot overlap
Oi+1. Thus, before sending the query to the database, a filtering operation can
be conducted on the cell list, so those cells not intersecting the current cell
do not need to be considered in the SVCsearch algorithm. In our prototype
walkthrough system, the number of cells in the history to be maintained is
fewer than twenty in most cases. With such short cell lists, the CPU cost on
the extra ComplementOverlap and Overlap testing is negligible. The above
argument also applies to the ComplementOverlap operation on visibility data.

Besides exploiting the concept of complement overlap, we also keep track
of the list of objects that are in memory. In this way, by comparing the IDs of
the objects, we can avoid loading a memory-resident object. Since the number
of objects to be compared is small, the computation cost is negligible compared
to the I/O savings in loading the actual objects.

As a user "steps" out of a cell boundary, a SVCsearch returns a new result
set. The algorithm guarantees that the result sets will have no overlap. How­
ever, as the object buffer in the main memory gets filled up, old objects should
be freed to make space for new cells. Our solution is to delete from the buffer

228

Algorithm SVCsearch (T, C, HS, HV)
Input: T: pointer to node, C: Query window, HS: History of spatial search
cells, HV: History of visible regions

1. if T is not a leaf node 1* search subtrees *1
2. for each entry E of node T do
3. if (BB(E) Overlaps C)
4. ifBB(E) ComplementOverlaps all of C1, C2, ... , Ci in HS
5. Invoke SVCsearch on the sub-tree whose root is the node

associated with E
6. for each region V obtained via pointer VP associated with E
7. if (V Overlaps C)
8. if V ComplementOverlaps all of VI, V2, ... , Vi in HV
9. Return VP of node T, the pointer to list of visible

objects
10. else 1* search leaf node *1
11. for each entry E of node T do
12. if (BB(E) Overlaps C)
13. if BB(E) Overlaps none of GI , C2,'" ,Ci in HS
14. E of node T is a qualifying record
15. Return the SP and VP of node T
16. Merge the query results of steps 9 and 15

Figure 4. The SVCsearch algorithm.

the objects of the cells that do not overlap the latest cell, while maintaining the
objects whose cells overlap it.

5. EXPERIMENTAL STUDY
We implemented the ViSA system that employs all the proposed techniques.

The system was built upon a PC with Pentium III and 128 megabytes ofmem­
ory, running Windows NT4. We generated a synthetic dataset to simulate a
large cityscape. There are about 100,000 virtual buildings requiring about
100 MB of harddisk space (inclusive of ViSA index), and more than 500 MB
of memory space if fully loaded into main memory (in scene graph format).

We compare the ViSA system against the REVIEW system (Shou et aI.,
2001). REVIEW is the predecessor of ViSA designed to facilitate walkthrough
in large YEs. REVIEW employs R-tree to index the VE data. However, it does
not handle visibility data beyond those within a query region, i.e., given a
query region, nothing outside of the region can be viewed. Currently, both sys­
tems support the same replacement and prefetching policies that are designed

229

in REVIEW based on walkthrough semantics. The distance-priority-based re­
placement policy keeps those nodes that are close to the current viewpoint in
memory, while replacing those nodes whose bounding boxes are distant from
the current viewpoint. The prefetching scheme computes the position of the
view cell that the user will be in based on the velocity in which the user is
moving. Both schemes have been shown to perform better than other non­
semantic-based schemes.

The metrics of measuring the quality of a walkthrough are the frame time
and the smoothness of the walkthrough. Frame time is defined as the cycle time
between two consecutive rendering operations. The time for database query,
memory data manipulation, rendering and other overheads are all included in
frame time. The smoothness of the walkthrough can be represented by how
much each frame time varies from the average frame time. A walkthrough
with a small average frame time and a small variance is considered to be of
good quality.

Both the average frame time and the frame time variance of the ViSA and
REVIEW system are listed in table 1. We can see the frame time and time
variation of ViSA is close to those of REVIEW. With increasing query cell
size ratio (defined as the ratio of the disk cell size over the view frustum cell
size), the frame time and its variance become worse. This is because when the
size of the querying box increases, more objects are loaded into memory. The
average frame time of ViSA is about 3.5ms more than that of REVIEW and
its average variance is about 17.3ms more than that of REVIEW. Thus, ViSA's
performance is acceptable especially since it can provide much better visual
fidelity than REVIEW (as we shall see shortly).

Cell ViSA ViSA REVIEW REVIEW
size ratio ft (ms) vt (ms) ft (ms) vt (ms)

1.0 25.89 28.53 22.52 10.24
1.1 29.76 30.57 26.51 12.94
1.2 34.20 32.30 30.92 14.04
1.3 39.18 32.78 35.67 15.92
1.4 44.32 35.84 40.68 18.24
1.5 49.37 35.26 45.88 18.51
1.6 54.35 35.37 50.57 19.15

Table 1. Comparisons of ViSA and REVIEW on the average and variance of frame time (ft
and vt) for different query cell size.

Figures 5(a) and 5(b) show the results on the rendering time for each frame
when a user path is applied to ViSA system and REVIEW system. The results
show that the ViSA has longer rendering time and less smooth frame rate be­
cause the visible objects were loaded and rendered. However, the performance

230

is only marginally lower. At some frames (20 of total Soo frames), the frame
time is very large for both systems because of the queries to the secondary
storage.

Another straightforward approach to indexing visibility information for large
VEs is to decompose the VE space into regular grid cells (REGULAR in short).
We now compare the rendering time of REGULAR (Figure S(c» and ViSA
(Figure S(a». REGULAR's average frame time (70.9ms) is longer than ViSA's
(2S.9ms). The variance of frame time of REGULAR is 343.6ms, longer than
that of ViSA(28.Sms) as shown in table 1. It is due to REGULAR's longer
average disk access time.

As expected, the fidelity of ViSA is significantly higher than REVIEW in
walkthrough. The missing visible objects in REVIEW can be 0% (all the vis­
ible objects are occluded by the objects in the region) to 00 (no objects in the
region, e.g., a football ground, but many visible objects around, "blind spots").
To visually compare, Figure 6 displays three pairs of snapshots of display of
ViSA and REVIEW using the same viewpoint for a same VE. It is clear from
the figure that some visible buildings are only shown in the results of ViSA.

In the next experiment, we study the effect of trading off visual fidelity for
performance. We use the cell size ratio 1.0 for this experiment. Figure 7 shows
how the percentage of visible objects loaded affect the average frame time of
the walkthrough. In other words, a point (x, y) in the figure means that (100-
x)% of the objects were dropped, while x% were loaded into memory.

We can see that in Figure 7, as we decrease the percentage of visible objects
information, the ViSA's frame time decreases. The frame time of REVIEW re­
mains constant as REVIEW does not consider visibility information, but rather,
only the spatial information. The curve of ViSA will not reach the horizontal
line of REVIEW. The reason is that there is a constant additional overhead for
ViSA to do the computation for the visibility part even if there is no visible
object to be loaded.

The fidelity for different dropping rates also can be visually compared. One
set of three snapshots is shown in Figure 8. The visual fidelity decreases as the
dropping of more visible objects in the visible set. In Figure 8(a), all distant
cylinder towers and lower blocks are shown. In Figure 8(b), two most distant
cylinder towers and some lower blocks are not shown. In Figure 8(c), only one
most close cylinder tower and lower blocks are shown.

6. CONCLUSION
In this paper, we have presented a novel access method to organize large

virtual environments that cannot fit into the main memory. The proposed struc­
ture, ViSA, stores both visibility and spatial proximity information, and facili­
tates optimized search and speedy retrieval of objects that are visible from and

llllJ

'ID

! "II
j
! 'm
l

OIl

OIl

..

llW

'ID

! "II
i
I,m
l

OIl

OIl

_
(b) REVIEW

231

Viu-

_
(a) ViSA

..... - Grid-

ltro

, ..
! , ..
j
J 'lIII

OIl

OIl

..
_

(c) REGULAR

Figure 5. Experiment results of rendering time for each frame: the spikes indicate time and
frame number for disk accesses.

spatially close to the viewpoint. This approach can successfully balance the
fidelity and performance for walkthrough. We plan to extend this work in sev­
eral directions. First, we would like to further study data structures that can
organize the visibility data (instead of using a visibility table which can be­
come a bottleneck for large number of objects). Second, we will take Level of
Detail (LOD) into consideration in our future work. We plan to integrate this
into the successor of ViSA.

232

(a) ViSA: viewpoint L

(d) REVIEW: viewpoint
1.

(b) ViSA: viewpoint 2.

(e) REVIEW: viewpoint
2.

(c) ViSA: viewpoint 3.

(0 REVIEW: viewpoint
3.

Figure 6. Visual comparisons of fidelity for ViSA and REVIEW. It shows that ViSA has
higher visual fidelity for walkthrough. For viewpoints 1 and 2, some buildings, e.g., a cylinder
tower, are missing from the REVIEW system. For viewpoint 3, all objects are missing, Le., a
"blind spot" is encountered during walkthrough.

ACKNOWLEDGMENTS
Yixin Ruan and Lidan Shou are supported by the University Research Schol­

arship. Initial discussion with Beng Chin Ooi prompted us to look into the issue
of visibility data.

REFERENCES
Ang, C. H. and Tan, T. C. (1997). New linear node splitting algorithm for r-trees. In Advances

in Spatial Databases, SSD'97, pages 339-349, Berlin, Germany.
Cohen-Or, D., Fibich, G., Halperin, D., and Zadicario, E. (1998). Conservative visibility and

strong occusion for viewspace partitioning of densely occluded scenes. Computer Graphics
Forum, 17(3):243-254.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In Proc. 1984
ACM SIGMOD International Conference on Management of Data, pages 47-57.

27

"

!
I '"
J

Vita_
Rnio:w_

tn~ __ ~ __ ~ __ ~~ __ ~ __ ~

~~----~----~----~----~----~ ". ..
PccIGlapo(mziC\'ld vitib»u:u (..)

233

Figure 7. The average frame time of the walkthrough in ViSA, dropping the visible objects,
against the REVIEW.

(a) No dropping of the
visible objects.

(b) Dropping 20% of the
visible objects.

(c) Dropping 40% of the
visible objects.

Figure 8. Visual illustration of fidelity for ViSA when dropping the visible objects with
small contribution values in order to maintain the frame time.

Kofler, M., Gervautz, M., and Gruber, M. (2000). R-trees for organizing and visualizing 3d gis
databases. Journal of Visualization and Computer Animation, 11: 129-143.

Pajarola, R., Ohler, T., Stucki, P., Szabo, K., and Widmayer, P. (1998). The alps at your finger­
tips: Virtual reality and geoinformation systems. In Proceedings of the ICDE'98 Conference,
pages 550-557.

Panne, M. and Stewart, A. (1999). Effective compression techniques for precomputed visibility.
In Proceedings of Eurographics Workshop on Rendering, pages 305-316.

Shou, L., Chionh, C., Huang, Z., Ruan, Y., and Tan, K. L. (2001). Walking through a very large
virtual environment in real-time. In Proc. VLDB 2001, pages 401-410.

Teller, S. (1992). Computing the antipenumbra of an area light source. In Proceedings of SIG­
GRAPH'92, pages 139-148.

Yagel, R. and Ray, W. (1995). Visibility computation for efficient walkthrough of complex en­
vironments. Presence, 5(1):45-60.

