
CONSTRAINTS-BASED ACCESS CONTROL

WeeYehTan
School of Computing

National University of Singapore

Building S-16. Level 5. Room 05108

3 Science Drive 2. Singapore 117543

Tel: +65874 8850

Fax: +65 779 4580 *
tanwy@comp.nus.edu.sg

Abstract The most important aspect of security in a database after establishing the au­
thenticity of the user is its access control mechanism. The ability of this access
control mechanism to express the security policy can make or break the system.

This paper introduces constraints-based access control (CBAC) - an access
control mechanism that general associations between users and permissions are
specified by the rules (or constraints) goveming the access rights of eaeh user.
This association is not restricted to statie events but can include dynamie faetors
as weil.

One of the many advantages of CBAC is that even a static CBAC is a gener­
alisation of most of the access control meehanism in use today. We demonstrate
how CBAC can efficiently simulate role-based access control (RBAC) and aeeess
controllist (ACL). In fact, CBAC allows the introduction of any abstract eoncepts
as one would do roles in RBAC. On top of that, CBAC also allows the users to
specify interactions between these concepts.

Any ftexibile access control method usually raises eoneems over its time effi­
ciency. We advocate the use of partial solutions to the access control constraints
to improve the efficiency of CBAC.

Keywords: constraints, access control, security

1. INTRODUCTION
The security services does not stop after establishing the authenticity of a

user. A secured system still has to determine if each user has access rights to the
various resources within the system. The access control subsystem is, hence,

• Partial funding provided by a Strategie Research Programme on Computer Security funded by NSTBIMOE

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
M. S. Olivier et al. (eds.), Database and Application Security XV

10.1007/978-0-387-35587-0_24

http://dx.doi.org/10.1007/978-0-387-35587-0_24

32 DATABASE AND APPUCATION SECURITY XV

tasked with limiting the activities of the authenticated user. While establishing
the user's authenticity prevents unauthorized users from entering the system,
the access control mechanism in the system prevents authenticated users from
accessing unauthorized services or resources. This provides a finer grain of
control over the use of the system.

The main issues surrounding the design of access control mechanism are its
efficiency and effectiveness. For a mechanism to be effective, it need to be suf­
ficiently expressive and at the same time help (not complicate) the management
of permissions. While more advanced data structures and algorithms can be
devised to improve efficiency, the question of effectiveness is better approached
with a higher level specification language for programming the access control
mechanism.

Several advances have been made to the area of access control specification
and policies have been devised to narrow the gap between what the security
adminstrators want and what the access control system can provide. The most
common approaches are the Discretionary Access Control (DAC), the Lattice­
based Access Control (LBAC) and the Role-based Access Control (RBAC)
[Sandhu and Samarati,].

DAC controls access by explicitly specifying the authorization for each user
to each resource in the system. Implementations of DAC can be found in a
variety of systems, from Unix's file access control, to ACL. While DAC is
extremely ftexible, management of access control permissions can be a pain
due to the ftat structure. DAC does not provide real assurance on the ftow of
information in a system. For example, there is no guarding against a user with
the correct access rights leaking c1assified information to an unauthorized user.

LBAC, also known as Mandatory Access Control, enforces a direction in
the ftow of information in a lattice of security labels. In this approach, each
user and resource is assigned a security clearance. A user can only read a
resource of lower security c1earance and the user can only write to a resource
with a higher security clearance. While the write restriction may seem counter
intuitive at first, this restriction is necessary to guarrantee that information only
ftows upwards in security clearance. This approach is not weIl accepted outside
of the military due to its lack of ftexibility.

The third approach, RBAC [Sandhu et al., 1996, Sandhu, 1996], models
access control after the roles of the individuals in the organization. In this
model, users are assigned the various roles they play in the organization and
permissions are granted so that the roles can fulfiIl their task. Roles can be
taken more broadly to include abstractions of users and permissions are to be
granted to these abstractions. In [Sandhu, 1996], RBAC is shown to subsurne
LBAC. RBAC is widely adopted by several major databases like Oracle and
Informix.

Tan 33

More recent development of web-based applications, Enterprise Resource
Planning systems and other large scale systems that depends on a database
backend requires a richer set of access control policy than is available today.
Application developers are writing their own codes to provide the access con­
trol policies they wish to enforce where the access control mechanism provided
by the database falls short. A typical web-application will include both codes
to authenticate its users as weil as codes that implements some access control
policies before accessing the database on behalf of the user. More recent re­
search like [Bertino et al., 1998] also confirms the need for a more expressive
access controllanguage.

This paper introduces Constraints based Access Control (CBAC), our ap­
proach to extensible access control. Constraints are used to specify general
associations between the users and their authorizations. Further constraints
may be placed between the environmental factors, e.g. time of day, and these
factors can affect the outcome of the authorization.

The following section will introduce CBAC formally and explain the rational
behind a constraints based approach. We will then explore the expressiveness
of CBAC by simulating both ACL and RBAC, further explore the use of the
rich syntax of CBAC, and introduce a flexible grantlrevoke semantics supported
directly by CBAC. Section 4 discusses implementation issues and presents an
implementation model for developing the CBAC mechanism and the database
server seperately. A list of future work is presented before we conclude the
paper.

We conclude this introduction with a motivating example. In CBAC Inc, a
pay clerk can access the pay table but only within working hours, and the access
must be within an hour of the clearance given by the database adminstrator. The
following constraints is imposed to the access of the said table:

• The user must play the role of the pay clerk

• The time of day must be within the working hours

• DBADM has given the clearance

• Clearance is within 1 hour.

2. CONSTRAINTS-BASED ACCESS CONTROL
Constraint programming is a declarative form of programming where the

programmer specifies the problem in terms of constraints and an automatie
solver finds solutions to the problem within the specified constraints [Marriott
and Stuckey, 1998]. The mathematical nature of constraints allows the auto­
matic sol ver to prune the search space by ensuring consistency between the
available solutions. This feature also allows the solver to detect contradictions

34 DATABASE AND APPUCATION SECURITY XV

in constraints without iterating through potential assignments. Several systems
have been developed from Constraints Programming research and a handful,
like iLog, has been successfully deployed in the industry.

There are several reasons constraints are a natural choice for specifying
access control policy:

• Constraints can be used directly to specify relationships between entities,
events and authorizations.

• Constraints has a strong theoretical foundation and has been applied to
program verification. The same principles can likely be applied directly
to policy verification.

• Constraint programming languages are turing-complete.

• Advances in the field of automatic constraint solving will have a direct
and beneficial impact on this application.

• Techniques like constraint simplification can help weed out redundant
rules. The simplified rules are likely to be easier to analyse.

• With the recent interest in Constraint Databases, a constraint based ap­
proach to access controllike CBAC's matches exactly the tuple generating
rules in CDB.

Direct specification of all access control policies in CBAC leads to better
consistency in the final authorization with respect to the security policy. In
essence, the security adminstrator will specify the policy as a set of constraints
and the access control system, in this case the constraint solver, ensures that
all accesses complies with the specified constraints. When a user attempts to
access aresource, the constraint solver is invoked to check his permissions
against the specified constraints.

Definition 1 We define CBAC as folIows:

• U, 0, andP (users, resources and permissions respectively)

• auth : U x 0 x P ---t {yes, no,partial}, a junction that answers if
the user is given some permission for a particular resource. 'partial'
represents a partial solution when the system cannot determine at the
said time whether the user should be allowed to access the resource. I.e.
jurther information that is not available at the time of check is required
to give an final answer.

Tan 35

For purpose of presentation, we use a CLP based system [Jaffar and Lassez,
1987] and syntax to demonstrate the constraints in CBAC *. An authorization
constraint, is a predicate in the form

auth(User, Resource, Permission) :- C_1, C_2, ... , C_n.

where C_i is some generic constraints. This predicate is invoked with the
necessary parameters when an authorization is required.

The following are some examples of the use of CBAC/CLP.

• User 'adminstrator' is allowed access to every resource.

auth(adminstrator, _, _).

• All users are allowed all permissions to the tables they own.

auth(User, Resource, _) :­
is_dbtabIe(Resource), own(User, Resource).

• A user can only read from or write to a row that contains his username
fram table 'particulars'.

auth(User, TupIe, [read, writeJ) :­
Tuple particuIars(User, ...),

• A pay clerk can access the pay table but only within working hours, and
the access must be within an hour of the clearance given by the database
adminstrator.

auth (User, Object, _) :­
role (User , pay_cIerk),
date_time (Time) , in_working_hour(Time) ,
clearance(dbadm, Clearance),
time_of_clearance(Clearance, T_CIear),
time_diff (Time , T_CIear, T_Diff), T_Diff <= 60.

• List all resources that can be read by User judge_dred.

auth (judge_dred, Resource, read).

3. EXPRESSIVENESS OF CBAC

This section discusses the expressiveness of CBAC. In sections 3.1 and 3.2,
we shall show that CBAC subsurnes both ACL and RBAC by simulation. We
also describe in these sections how the simulations can be done efficiently.
Lastly, we shall discuss how CBAC can be used to handle policies like contra I
ftow and how GRANT/REVOKE can be supported natively by CBAC.

• CBAC does not limit the use of constraint solver to CLP

36 DATABASE AND APPUCATION SECURITY XV

3.1. A CBAC simulation of ACL
ACL, or access control list, is a list bound to each resource in the system.

The list indicates, for the particular resource, the access rights of each users.

Definition 2 ACL can be viewed as a function defined formally as follows

• U, 0, and P (users, resource, and permission respectively)

• AG L : 0 x U -+ P, a function mapping the resource 0 and user U to
his access authorizations P.

A user is allowed to access the resource 0 if the permission P returned by
AC L is equivalent to or dominatest the authorization required for his current
actions. In actual implementation, the ACL might be a list attached to the
resource. Upon access, the access control system retrieves this list and looks
up the user's permission in the list. This is matched against the action the user
is trying to perform to determine if the access is to be granted.

Given that ACL is a list that is optimised for searching, a direct simulation
will have the same semantics but will not enjoy the same optimization. Instead.
we introduce a rule as folIows:

auth(U, 0, P) :- '* User, Resource and Permission *,
auth_acl(O, U, P).

The term auth_acl is introduced so we can store the authorization list as a
constraint fact with Resource 0, User U and Permission P as the first, second
and last term of the fact respectively. This is to take advantage of the indexing
of facts and mIes that is normally done on CLP systems. The abstraction is
also allows us to introduce more authorization constraints that applies across
the access control system.

We can include terms in the ACL in CBAC using constraint facts as follows:

VACL(O, U,P), assert(auth_acl(O, U, P».

The execution sequence ofthe CBAC program proceeds as follows in resolv­
ing the read authorization for User judge_dred on Resource pilot_ table:

1 auth(judge_dred. pilot_table. read) resolves to

2 auth_acl(pilot_table. judge_dred. read).

This term is looked up in both the rules as weIl as the facts database
and the system returns yes if there is a solution to this binding and no
otherwise.

tIn the case of a hirerachy of permissions

Tan 37

3.2. A CBAC simulation of RBAC
Role-Based Access Control works by associating permissions to roles and

roles to users. This design models the security policies of organizations with
the assumptions the roles sufficiently determines the access authorization of the
users. RBAC is recently adopted by several weIl known databases like Orac1e,
Sybase and Informix. Due to the varying definitions of RBAC, we took the
definition off [Sandhu, 1996].

Definition 3 The RBACo model consists ofthefollowing components:

• U, R, P, and S (users, roles, permissions and sessions respectively)

• P A P x R, a many-to-many permission to role assignment relation,

• U A U x R, a many-to-many user to role assignment relation

• user: S --t U, afunction mapping each session Si to the single user(Si)
(constantfor the session's lijetime), and

• roles: S --t 2R, a function mapping each session Si to a set of roles
roles(si)
{rl(user(Si), r) E U A} (user's role maY change with session) and ses­
sion Si has the permissions UrEroles(s;) {pl(P, r) E PA}.

For this simulation, we define the following predicates:

• ua (U, R), UA binding as defined above,

• pa (R, 0, P), binding between roles, resource and permission,

• user (S, U), mapping from session S to user U. Fails if user has no
current session.

• roles (S, R), roles R that are active for session S.

The authorization function auth is defined as:

auth(U. O. P) :- autb_rbac(U. 0, P).
auth_rbac(U. O. P) :-

user(S. U). roles(S. R). 1* R • active roles of user U *1
pa(R. O. P). 1* Get P for O.R *1

Once again, we abstract auth_rbac from auth to enable introduction of
further constraints at that level. We also assume that role-assignment is con­
sulted prior to the role activation. In other words, the user is not allowed to
activate an unauthorized role so there is no need to do a check after retrieving
the activated role.

Given the same indexing method for facts described in seetion 3.1, the worst
case analysis is

O(ERlpa(R, 0, P)I).

38 DATABASE AND APPLICATION SECURITY XV

3.3. Beyond tbe Simulations

Consider organization CBAC Inc again. The leave clerk should be authorized
to access the leave table of all employees in order to accomplish his job. The
above is perfectly captured in RBAC model, "Any user with the role of aleave
clerk should be allowed to modify the leave table". However, we may want to
exert a little more control over the access to the leave table. We might want
to say that this authorization to modify the leave table should be given only
when the employee has taken leave. This workflow is not captured in RBAC.
On the other hand, it is not difficult to see how CBAC can naturally model
this workflow step by checking for an assertion of some employee taking leave
before allowing the leave clerk through.

auth(U, 0, P) :-
in_dbtable(O, leave), /* 0 is from leave table */
o = leave(Employee, ...), /* break up leave tuple */
leave_applied(Employee), 1* Employee applied for leave */
auth_rbac(U, 0, P), /* RBAC authorization */

Next, we might chose to employ different kinds of access control mechanism
for different kinds of tables. CBAC captures them within the same syntax. E.g.
we may want to have an rbac-based control from some tables but acl based
control for others. The above can be handled with the disjunction of constraints.

auth(U, 0, P) :­
acl_controlled(O),
auth_acl(O, U, P).

auth(U, 0, P) :­
rbac_controlled(O) ,
auth_rbac(O, U, P).

The above examples are aimed at demonstrating how expressive CBAC can
be. In fact, CBAC/CLP provides the full expressive power of the underlying
CLP language wh ich is Turing-Complete.

3.4. Grant and Revoke Semantics
The GRANTIREVOKE semantics is aheavily debated issue in implementing

any access control mechanism. The question usually revolves around what
happens to the access rights of a user whose right is gran ted by another user
when the latter's rights are revoked. In a nutshell, any of the following scenarios
may be the ans wer, depending on the system.

1 Revoke the rights 01 all the users down the pipeline. This gives rise to a
cascading REVOKE where a right granted may be revoked if the grantor's
rights are removed. Removing the access rights of a user implicitly means

Tan 39

removal of access rights granted by this user. It is easy to see how this
model gives rise to better control over the access rights.

2 Revoke the rights %nly the users specified, leaving the implicated users
alone. Here, we honour any rights that has been granted and requires
explicit removal of any rights. This model is more flexible than the
former but requires more work in tracking down the rights that needs
removal. This is the approach taken by today's implementation of SQL.

In [Rosenthal and Seiore, 2000], Rosenthai et. al. proposed to extend the
SQL grantlrevoke model to allow grantors to impose limitations on use of
gran ted rights as weil as a flexible revocation scheme. The approach falls
between the two scenarios described above. It gives the adminstrators control
over the revocation of access priviledges via revoke with limitation predicates,
as weil as extends the grantor control via predicated grants. This is not unlike
the use of constraint roles in describing authorization except that CBAC allows
the description of more complex relationship beyond simple predicates.

Use of constraint roles in CBAC should reduce the need to delegate GRANT
priviledges to users. Where necessarily, the adminstrators can in fact provide
roles that asserts authorisation constraints. Such roles can be as straight for­
ward as an SQL GRANT or support cascading revocation as described in the
first senario, or even a predicated GRANT as proposed in Rosenthal et. al.
Revocation of user rights can be done through simili ar interfaces provided by
the adminstrator.

The following example shows how the predicated grant and flexible revoca­
tion can be acheived in CBAC.

auth(U, 0, P) :-
granted(U, 0, P, Grantor),
not revoked(U, 0, P, Grantor),
auth(Grantor, 0, P).

Authorisation is given if granted permission is not revoked and grantor still
has rights to the resource. The grantors can be allowed free play in asserting
their own granted and revoked thereby acheiving predicated grants and
flexible revocation. Grants and Revokes by different grantors are independent
of each other so a grantor cannot revoke the rights gran ted by another.

4. CBAC: IMPLEMENTATION ISSUES
Efficiency and effectiveness are the 2 main considerations surrounding the

design of access control mechanism. We have explore how CBAC can help man­
agement of permissions as weil as demonstrated the expressiveness of CBAC
in the previous sections. The concem about efficiency will be addressed in the
sections that folIows.

40 DA TA BA SE AND APPLICATION SECURITY XV

First, the bad news. CBAC allows access if there exists an assignment of
variables such that auth (...) is realized. The general problem is thus to find
an assignment to a problem that is subjected to some constraints, in our case,
access control constraints. This is a constraint satisfaction problem (CSP) that is
NP-Complete in general [Tsang, 1993]. In other words, a huge system of access
control constraints might run into an search that is potentially very expensive.
An access control system running on exponential timet will be unusable since
it will take too long to respond with the appropriate access authorization.

4.1. Efficiency Considerations

While the general CSP may be NP-Complete, our access control check need
not be. In reality, the access control requires only very small constraint programs
without deep searches. The typieal use of CBAC would be to compute fairly
straight forward access authorizations which can be done very efficiently. As we
have demonstrated in the section 3, CBAC indeed works efficiently for simple
authorization. Complex authorizations would have to come at a cost anyway.
Only very few special authorization would need more computation.

The consistency checking mechanism in most constraint solvers are impor­
tant to ensuring the performance when applying constraints to access control.
Constradictions, defined as constraints that will yield no solutions, can be iden­
tified by the consistency checking algorithm before further search is invoked.
The same consistency checking algorithm will help pmne the search space of
wrong solutions. Automatie constraint sol vers have been known to perform
better with a more streamlined set of mies than a larger set of more explicit
mies. The former translates to a smaller set of access control rules that facili­
tates checking and encourages a more unified set of access control policies than
patching.

We do not attempt to conclude that CBAC would be optimal for all complex
authorizations but its use of a constraint engine that can generate partial solutions
can in fact help even in speeding up the database search.

Partial solutions generated by constraint sol vers when it cannot give adefinite
answer may be useful in limiting SQL searches. In a typical system, normal
users may be allowed to access only their own record. This check is usually done
through a frontend that accesses the database on the user's behalf. A smarter
application programmer would realise that in this senario, the username can
be used to limit the SQL search. For example, if user 'NormalUser' tries to
access the system to retrieve his payroll statement, the SQL query formulated
by the application can be:

select * from payroll where employee='NormalUser'ö

In CBAC, the access control will be written as:

t Until we can prove that P = NP

Tan 41

auth(U. O. P) :- 0 • payroll(U ••..).

Since payroll (U t •••) is a non-entailing but linear constraint, the con­
straints system will return it as the partial solution. This partial solution can be
passed on the database backend as an additional condition yielding the same
effect as the smart programmer. In fact, we can do this for any number of linear
constraints.

The advantage of CBAC stands out when there are many such applications.

4.2. Implementation Model
This section discusses a priliminary implementation model for CBAC on

existing databases. The model is designed so that the CBAC layer can be de­
veloped independently from the database server. This philosophy will allow us
to use existing databases as well as existing constraint solvers. The assumptions
for the model area as follows:

• The database backend need not have constraint solving capabilities

• All connections to the database has to pass through the CBAC layer

• Existing access control system may continue to be in place

Listener)

CBAC Layer) R

ISQLQuery

Database
Server

Figure 1. Incorporating CBAC into existing databases

Our proposed model seperates the system into 3 layers as shown in figure 1.

• Listener. The listener listens for incoming connection and does the
authentication as required by the database server.

• CBAC layer. The CBAC layer will store all the access control constraints
and apply them on incoming queries before passing the queries to the
database.

• Database Server. This is the existing database server.

42 DATABASE AND APPUCATION SECURITY XV

In this model, all queries will pass thru the CBAC layer. Queries may be
modified by the CBAC layer to the security specifications before being passed
to the database backend. There are also mechanisms that will allow the CBAC
layer to "check" with the database backend so that proper access control status
can be determined.

Results from the database server is sent directly to the frontend.
The CBAC layer works as follows:

• Any queries that can be cleared directly is passed unchanged to the
database backend.

• Queries that faH the security specifications are dropped and CBAC will
return an "Access Violation" to the frontend.

• The use of constraint based specification allows for queries that can only
be c1eared pending some conditions. If these conditions can be answered
by the database backend, e.g. linear constraints, the partial solution is
added as extra conditions to the original query and the modified query is
passed to the backend as c1eared.

• Otherwise, the CBAC layer may need to formulate its own queries to the
database until any of the above conditions prevails.

The CBAC layer will be compatible with whatever access control strategies
the existing database server employs since the SQL queries still need to pass
through the existing access control mechanism of the database. In fact, if the
existing database server uses RBAC, the CBAC layer may pass the RBAC
checks to the database instead.

5. FUTURE WORK
This paper presents a fresh approach to specifying access control directed at

database systems. Several issues are yet to be smoothened out.

• Further implications 0/ applying CBAC to databases. Most access con­
trol mechanism buHd on top of SQL which is familiar to most database
adminstrator but CBAC introduces a rule-based language which may not
be familiar to most users.

• Further implications 0/ the GRANTIREVOKE mechanism. While we
paint a rosy picture about the GRANTIREVOKE mechanism and are
comfortable about that CBAC can support predicated grants and condi­
tional revocation, the impact of loose use of GRANT is yet to be known.
One of the problems that are not addressed is forming of infinite loops
through the grant semantics - the grantor grants himself. The flexible

Tan 43

grantlrevoke mechanism discussed in section 3.4 introduced an addi­
tional level of search that will have an impact on the efficiency of the
entire system if Ioosely used.

• Customising the constraint solver tor CBAC. Most constraint solvers are
buHt to be general engines and will remain as such. Some work can
be done to customise constraint solvers to speed up the evaluation of
constraints that are frequently used by CBAC.

• CBAC dependency on the database when unresolved authorization con­
straints are non-linear is not dear. We are certain this can happen due
when complex constraints are involved but are not sure the communica­
tion costs for the resolution.

• A tighter integration with existing databases. The layered approach will
only serve as a demonstration of how the CBAC engine and the database
server can be seperately developed. A tighter integration is required to
reduce the communication cost between the two systems.

• Use otvalidation libraries on CBAC rules. The expressiveness ofCBAC
allows users to write authorization roles without introducing another fron­
tend check. This permits us to compute a closure of the access control
of the system without having to worry about any further access mecha­
ni sm at work outside of CBAC. There are validation tools that work with
constraint sol vers and they may be applied to validate the access control
constraints.

6. CONCLUSION
In this paper, we have presented CBAC, a radically different approach to

database access control that is still work-in-progress. This constraints based
approach allows the users the full ftexibility of the constraints language.

Specifying access control policies using a constraints based language has
many advantages. Most of the time, access control policies are specified in
roles that can be translated directly into constraint roles. The expressiveness of
the constraints Ianguage removes the reliance on access proxies. This greatly
simplifies the job of access control analysis since alt information is available
at a single point instead of being spread across several programs and possibly
different languages. The use of constraint roles also help the analysis.

We showed how CBAC can simulate both ACL and RBAC and went fur­
ther to demonstrate CBAC with a workftow exampte. We also discussed the
grantlrevoke semantics that can be acheived within CBAC. The database ad­
minstrator now can specify exaclly how grantlrevoke is used with the same
language that authorizes the user-rights of his database.

44 DATABASE AND APPUCATION SECURITY XV

CBAC casts the access control graph into a CSP problem which is NP­
Complete. However, as demonstrated by the exarnples, the use of CBAC would
typically be restricted to fairly straight forward computations that will not result
in deep searches. Partial solutions generated by the constraint solvers can be
added to the final SQL query to limit the database search.

An implementation model that keeps the development of CBAC and the
database server seperate is also presented.

In summary, CBAC presents a rich syntax for describing access control poli­
eies. It is important to note that CBAC still needs a lot of work to deployment
as we have highlighted in section 5. Despite the followups required, we be­
lieve that CBAC deserves attention, not only from the database developers,
but also from developers of massive systems where access control policies are
important.

References

[Bertino et al., 1998] Bertino, E., Bettini, C., Ferrari, E., and Samarati, P. (1998). An access con­
trol model supporting periodicity constraints and temporal reasoning. In ACM Transactions
on Database Systems, volume 23, pages 231-285.

[Bertino et al., 1993] Bertino, E., Samarati, P., and Jajodia, S. (1993). Authorizations in rela­
tional database management systems. In 1st ACM Conference on Computer and Communi­
cations Security, pages 130-139.

[Castano et al., 1994] Castano, S., Fugini, M., Martella, G., and Samarati, P. (1994). Database
Security. Addison Wesley.

[Jaffar and Lassez, 1987] Jaffar, J. and Lassez, J.-L. (1987). Constraint 10gic programrning. In
Principles of Programming Languages.

[Marriott and Stuckey, 1998] Marriott, K. and Stuckey, P. J. (1998). Programming with Con­
straines. Tbe MIT Press.

[Rosenthai and Sciore, 2000] Rosenthal, A. and Sciore, E. (2000). Extending sql grant and
revoke operations to limit and reactive privileges. In IFIP Working Conference on Database
Security.

[Sandhu,1996] Sandhu, R. S. (1996). Role-based access control. Technical report, Laboratory
for Information Security Technology, Geore Mason University.

[Sandhu et al., 1996] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996).
Role-based access control models. IEEE Computer, 29(2):38-47.

[Sandhu and Samarati,] Sandhu, R. S. and Samarati, P. Access control: Principles and practice.
www.isse.gmu.edu/faculty/sandhu.

[Tsang, 1993] Tsang, E. (1993). Foundations 0/ Constraint Satis/action. Academic Press.

	CONSTRAINTS-BASED ACCESS CONTROL
	1. INTRODUCTION
	2. CONSTRAINTS-BASED ACCESS CONTROL
	3. EXPRESSIVENESS OF CBAC
	3.1. A CBAC simulation of ACL
	3.2. A CBAC simulation of RBAC
	3.3. Beyond tbe Simulations

	4. CBAC: IMPLEMENTATION ISSUES
	4.1. Efficiency Considerations
	4.2. Implementation Model

	5. FUTURE WORK
	6. CONCLUSION
	References

		2017-09-14T11:00:46+0530
	Preflight Ticket Signature

