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A VERY SMART CARD FOR FIGHTING 
AGAINST TERRORISM i 

Jean-Franyois Geneste 
Astrium. 31, rue des cosmonautes. 31402 Toulouse cedex. 

1. INTRODUCTION 

On September 11th 2001, 2 planes were flown into the New York Twin 
Towers while another was flown into the Pentagon. The main problem came 
from the fact that the terrorists were able to fly the planes without 
authorization. In [1], the interest of identifying the pilot before obeying his 
orders has been discussed and the need for smart cards having no secret 
inside has been raised (these cards could be stolen or lost with no 
damage for their security). One of the main ideas of [1] is to identify in a 
secure way, the pilot. The case when the legal pilot is the terrorist himself is 
treated in [1 ] but is out of the scope of this paper. 

Let us therefore now tum to our problem, which is authentication of the 
legal pilot, and let us examine the characteristics of the cards used today. In 
fact all the cards store secret keys within their chip because of the protocols 
they use. These keys are protected by hardware tricks, which are themselves 
kept secret. We can point out a first inconsistency. At least in theory, the 
algorithms used by the smart cards can be made public whereas the hardware 
protection must be kept secret. The second point we want to raise is about 
the real difficulty of reading the chip of the card or cloning it. It is well 
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known that it is an easy reach if you have money enough. In fact, no 
electronic circuit can be made sure under some types of attacks. And in our 
case we are facing terrorists with unlimited funds. In fact, what we want to 
avoid is what we call a long-term attack. Namely, let us imagine the pilots 
own smart cards making it compulsory for them to identify before 
authorization from the ground of flying a plane, and that one of them (at 
least) has been stolen his card. Then, can the terrorists get any advantage 
several years or tens of years later when trying to use the stolen card or 
trying to defeat the whole identification system? 
The answer we propose to give in this paper is that we can ensure a 
perfect security whatever is the power of the terrorists. For this, we 
design a card, which can prove it knows a secret but does not have any 
secret within it. We treat all the cases of attack as well those at the ground 
level as the ones on board. 
The paper is organized as follows. In part 2 we give a general description of 
the type of PKC we need and we even give the best-suited existing 
algorithm. In part 3 we explain how we use our scheme. Part 4 is devoted to 
the description of the card and its associated protocols whereas part 5 
consists in a quick (because of a lack 0 time!) assertion of the security 
provided. 

2. GENERAL DESCRIPTION OF THE PKC 
Let (E, f, I, r ... ) a set where f, I, r .. are operations on E. We say that E is 

a structure. Some well known examples of structures are (\7, +, .), (/\/n/\, .) 
Etc. Given some properties of a structure, we will say that they allow 
defining a model of structure. Some well-known models are groups, rings, 
fields, algebras Etc. But there are also sub models such as unique 
factorization domains, non-commutative rings and so on. 
Conjecture 1 

Given a structure model, then there exists at least one problem +, which is 
in NIT-n. (We do not make here any difference between probabilistic 
computations and deterministic ones, but it could be useful in some cases). 

For example, a good candidate for + is finding the eigenvalues of an 
endomorphism over a finite dimensional module over a non-commutative 
ring. 

Now given a structure (E, f, I, r .. ) it is often possible to find an 
equivalence relation - on the Cartesian product EtxE2><..xEn where the 
E;'s are subsets of E and where - is consistent with the structure of E. That 
means (F, f, I, r .. ) has the same structure model as E where F= 
E1XE2><..xEnl-. An example of such a construction is when building the 
ring of fractions of a non-commutative ring with the equivalence relation 



A Very Smart Cardfor Fighting Against Terrorism 

known as the right Ore condition. 
Assumption 1 
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Given (E, f. I, (.oo) a structure and its associated problem + by conjecture 
1, let us assume that there exists over E a PKC f, which is resistant against a 
chosen cipher text attack. What we mean here is roughly that the 
cryptosystem is significant in the sense of Bellare [3] for proofs of 

knowledge. Namely, if a corrupted Alice A can decipher a polynomial 
number of messages that she is submitted, then there exists a polynomial 

time Turing machine M, using A as an oracle that can find the secret key of 
f with overwhelming probability. This significantcy property is easy to be 
shown equivalent to resistance to a chosen ciphertext attack in the Naor­
Yung Model [4]. Roughly speaking, this can be viewed as follows. Let us 
remember that a PKC f is resistant against a chosen ciphertext attack in the 
Naor-Yung model when no distinguisher exists able to discriminate 2 
cleartexts rrro and ml when given a ciphertext c corresponding to either one 
of these messages with probability Yz. Now let us assume that the real 
property of our scheme is the following. Finding one bit of information 
about the cleartext x, for polynomially many x, given the ciphertext y, on an 
adaptive chosen ciphertext attack is equivalent to solve the problem + in 
polynomial time. This is well known to be equivalent to the Naor-Yung 

property. Now, let us consider a corrupted Alice A and let us build the 

following Turing machine M. M has complete control over A and it picks 
random entries of the form y as potentially valid ciphertexts. Then M outputs 

A's answer x. What we need to prove is that M knows A's secret2• Just let 
us remark that M can pick a polynomial number of entries y. It gets their 
deciphering x, polynomially many times. Therefore M is able to decipher a 
polynomial number of messages thus being able to solve in polynomial time 
the problem + by resistance to a chosen ciphertext attack. But necessarily, f 
is based on that problem and f's trapdoor too. Therefore f's trapdoor is 
available to M. 
Q.E.D. 
Assumption 2 

We want to catch here the notion of intrinsic knowledge an attacker has 
about the clear text given a chosen cipher text. In fact, even if the algorithm 
is resistant against a chosen cipher text attack and even if the encipherment 
is probabilistic, it can happen that, say, by construction, the clear text has 
some specific properties. For example for a PKC over a module or algebra, 

2 Here we denote A for the corrupted participant whereas we call A the honest 

player. We have also implicitly assumed that A can decipher polynomially many 
messages. 
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the clear text may lie in a certain direction or subring Etc. In the following, 
we will consider that the PKC we use, f, is what we call a Public Predicate 
PKC (PPPKC). We formally define what it means. Let us call K(x) the 
whole a priori knowledge the attacker has about any clear text x. We assume 
that this knowledge can be represented by a polynomial time computable 
predicate P(x, y) where the output of P(x, y) represents the best that can be 
computed from the knowledge K(x) about the clear text x corresponding to 
the cipher text y. We shall say that the public predicate is indistinguishable if 
there exists a polynomial time Turing machine M, which is able to pick at 
random (i.e. with the uniform distribution) some x''#x such that P(x', y). 
Please notice that there must be at least an x''#x otherwise the attacker could 
get the clear text that way and we would no more have a PKC. We will call 
such a PKC a PIP PKC for Public indistinguishable Predicate PKC. Such a 
property has been shown to exist in [2]. 
Assumption 3 

We assume we can build as above from E, a structure of the same model, 
F. Now the algorithm f over E can be turned into the same algorithm over F. 
We still call it f. We also note x the elements of F. 
Theorem 

Let x E F and y = f( X )E F the corresponding enciphered message. 

Deciphering y gives x= f-I(j). However, an encipherment machine never 

directly works on equivalence classes but at best on representatives of the 
equivalence classes. Moreover, the deciphering algorithm is obviously secret 
so that it can make, internally, some random choices in its computations, 
leading to get the right result (i.e. x), but it gets it under the form of a 
uniformly distributed representative, say x' such that x'=x. Under that 
condition, and the one that f is a PIP PKC, the following round of 
communication constitutes a zero-knowledge proof of knowledge in the 
sense of Fiat-Shamir. 
Bob randomly chooses x E F and computes y = f( x). Bob sends Alice 

y. Alice computes x'= f-I(j) and sends it to Bob. Bob then verifies that 

x'=x . If this is the case he accepts the proof, otherwise he rejects. 
Proof: 
The 3 properties we have to prove are consistency, significantcy and zero­
knowledge. 
Consistency 

It is clear that if both Bob and Alice follow the protocol, then the 
probability of success is 1. 
Significantcy 

This is our assumption 1 and is equivalent to the fact that f is resistant to a 
chosen cipher text attack in our model (see [2] for a more complete and 



A Very Smart Card/or Fighting Against Terrorism 

example proof). 
Zero-knowledge 
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We now face a corrupted Bob called B . We have to prove that interacting 

with Alice B cannot get any bit of information about the secret. Let us 
therefore consider the following polynomial time Turing machine M. M has 

- -complete control over B. Whenever B asks a question y to A (we call x 
the clear text corresponding to y) M computes x' in polynomial time 

verifying P(x',y) where x' is chosen with the uniform probability among 

the vectors x verifying P(x,y). For a given y, P(x',y) represents the 

whole polynomial time computable knowledge about X. Now we have to 

prove that the view of M is the same as the view of (A,B). However, 

assumption 2 implies that x' is random among the vectors verifying P(x,y). 
On the other hand, A answers X. Let us then assume that there is a 
distinguisher T able to distinguish x and x'. Let us consider the following 
algorithm. Pick a random chosen clear text x, encrypt it as y= f(x), choose 

in polynomial time x' such that P(x',Y)=P(x,y). Repeat this polynomially 

many times. Then feed T with (x,x',y). Then we have a distinguisher for the 
chosen cipher text attack in the Naor-Yung model, which is in contradiction 
with assumption 1. 
Q.E.D. 
We now give an example of such a construction. The interested reader is 

referred to [2]. 
Let A be any finite ring (commutative or not) and E = A3 . Let us assume 

that Bob wants to send a message to Alice, and let us describe how Alice 
makes her public key. She firstly runs a random generator outputting 3 
uniformly chosen values in A, all non-zero and all different, Al,A2andJ'b. 
She then picks with the uniform distribution a random 3x3 invertible matrix 

of the fonn h-'{?a l Then Alice's public key is F=h-{ gU } . 
Encryption algorithm 

We assume the message to send is under the form x E E. Bob then picks at 
random with the uniform distribution 2 other vectors y and z in E such that 
{x, y, z} is a basis for E. Let us call g-l the matrix made by the coordinates 

of x, y and z in column and 0' the second coordinate of y. Bob then computes 
j=g-lFg, and (72 x + Y + z, and sends to Alice the cipher text (f, (72 x + Y 

+ z). 
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Decryption algorithm 
The decryption algorithm is only a matter of linear algebra and the reader 

is referred to [2] for the details. It makes essential use of the knowledge of 
the eigenvalues, which constitute the secret key. 

The complete algorithm has been proven to be resistant against a chosen 
ciphertext attack if A = /\InA the ring of integers modulo n and if n is chosen 
like in the RSA [2]. Now it has been conjectured that some other rings that 
/\InA are subject to give the same security characteristics, and it was 
suggested that local rings (commutative or not) could be good candidates. 
Moreover, always in [2], under the assumption that finding the eigenvalues 
of a square matrix is a difficult problem, it was proven that if one considers 
the ring of fractions of a non commutative ring for A, then one is no more 
able to decipher uniquely. However, deciphering in this case gives, as shown 
above, a zero-knowledge proof of knowledge protocol in the sense of Fiat 
and Shamir. 

We gave here the minimum to understand the following. We don't want to 
complexify things, the object being to use the algorithm and not to discuss it. 

3. HOW WE USE THE ALGORITHM 
In our context, the problem we face is to get a "zero-knowledge proof" 

protocol involving 3 parties. What we propose is the following. Let us 
assume, as above, that we have a protocol issued from a PKC resistant 
against a chosen cipher text attack. Let f be the algorithm. We also suppose 
that Alice (the pilot!) wants to prove Bob (the plane!) that she is authorized 
to fly the plane and that Clair (the ground!) is her guaranty. Now if there is 
no possible direct interaction between Alice and Clair, let us assume 
that Alice picks x at random (i.e. with the uniform probability) and 
that she forms the triple (Alice, x, y = f( x ». She then gives her triple to 

Bob who filters it and sends (Alice, y) to Clair. Upon reception, Clair 

deciphers and gets x'=x and sends back x' to Bob. If x'=x then Bob 
accepts the identification otherwise he rejects. Do we still have a zero­
knowledge proof of knowledge? The answer is yes. In fact, the merger of 
both Alice and Bob, as polynomial time Turing machines still makes a PTM 
and therefore the protocol is zero-knowledge. 

Now we face another problem. As said earlier, we want to achieve a smart 
card with no secret inside. But as soon as we merge Alice and Bob, the latter 
knows f and can forge as many identifications as he wants. We see how to 
solve this problem in the next section. 
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4. THE CARD AND ITS PROTOCOL 
In this section we now build the card step by step. We saw that the 

knowledge of f by Bob is a big problem. From now on we assume that Alice 
identifies via her card. Let us then assume that the binary representation of f 
is Ul, ... ,Un. Now let's choose some u;'s at random (Le. with the uniform 
distribution) and let us force them to zero. We get a new algorithm, f '. Let us 
store it in Alice's card. Let us call the bits of f forced to zero Vl, ... ,Vm. For 
example m = 128. Now let us include within Alice's card a random generator 
which outputs, under Alice's PIN, the sequence Vl, ... ,Vm and noise otherwise. 
Let us also assume that there is a battery within the card and a keyboard so 
that Alice can type her PIN directly on this keyboard with no power supply 
from the outside. What is the protocol then? Alice types her PIN and the 
pseudorandom generator outputs the right sequence allowing to build f 
from f ' (recall if the typed PIN is not the right one then another 
sequence is generated giving f";ff). Then another random generator, 
within the card, picks a random x and forms the triple (Alice, x, y = 
f( x» as in the previous section. Now the protocol is the same as in 
section 3. We only have to care that once the triple has been computed, 
then a special device inside the card has to erase f in order that only f ' is 
visible from Bob or anyone else. The computation of the triple must be 
done in Alice's card and f erased before Alice inserts her card in Bob's 
device. We postpone the security proof to the next section to turn to another 
problem. 

Our problem now is to avoid replay of a given transaction. A valid 
transaction could have been recorded and then been replayed by the 
terrorists. The model we use is the one of a dishonest Bob. At this step, Bob 
could record a triple and send it twice to Clair or even more. What we 
suggest is then to use an extra invertible function, gd, so that d is the current 
date and time. Then the protocol is the following. Alice types her PIN, 
forms the quadruple (Alice,x,y= f(gd(X»,d) and sends it to Bob. The 

latter filters and sends Clair the triple (Alice, y, d). Upon reception, 
Clair verifies if d is consistent with her own date and time. If this is the 
case, then she computes X'=gd1(j-l(Y» and sends it back to Bob. Bob 

then verifies and accepts or not depending on whether x'=x or not. We 
must add that the data making d must be included in Alice's card in order to 
be available for the computation of the quadruple in order to allow the erase 
function for f to work before inserting Alice's card in Bob's reader. See 
figure 1 for more preCisions. 
The last problem we face is when Clair is dishonest. The case we treat here 
is when the ground is under threat of terrorists or if some ground station tries 
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to impersonate Clair. Another example is when Clair would forge false 
transactions and could deny her responsibility. How can Alice avoid such a 
fact? The answer is quite easy. Just give Alice, within her card, the 
possibility to sign with a function h. Then Alice sends Bob the quintuple 
(Alice,h(Alice,d),y,x,d) . The protocol does not change, but, in case of any 
contest on the transactions from Alice, then Clair would have to exhibit 
h(Alice, d) which she cannot forge by construction of a signature scheme, as 
a proof of a demand from Alice. We can also remark that in the case we 
assume the link between Bob and Clair is securized, Clair could have to 
prove a demand of a transaction by Bob and therefore avoid any signature by 
Alice. 

Keyboard or 
biometrical 
system 

PRGI 

-

I--

Electric power 
and monostable 
function 

Storage of f and 
computation 
("padding") of f 
Erase function 

RG2 

Date and time 
(permanent 
clock) 
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of the 

I- quadruple 
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y= J(gd(X» , 
X, d) 
and send 
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Figure 1. Schematics of the smart card 
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5. PROOF OF SECURITY 
In the following we prove the security of the whole system. Firstly we list 

the potential attacks. These are related to the model of Turing machines we 
work with. This model is described in figure 2. 

Working tape 

Working tape 

J 
Clair I 

Alice 
.....--

I 

I Corns tape I 
Random tape Random tape 

Bob 

Random tape 
Working tape 

Figure 2. How the Turing machines are communicating 

1- The first thing we have to verify is that the proof remains zero­
knowledge. 

2- Then, is it possible for Bob, in the context of a transaction, to 
replay Alice's connection after a while, thus asking for the same 
identification twice or more? 
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3- Is it finally possible to try a meaningless transaction 
in order to 

get illegal authorization? 
May be there are other possible types of attacks, however, we believe these 

are the main ones and we are going to answer each of them. But before, let 
us quickly describe what we think the reality is. Firstly, Alice may want to 
identify via Clair but be able to repudiate the transaction. Bob can be 
interested in colluding with Alice to obtain the same result, but also he can 
try alone to impersonate Alice and get illegal authorization from Clair. 
Finally, if Clair is dishonest (a ground attack from the terrorists is possible 
for hijacking with complicities), since we imposed a signature from Alice, 
this rules out the case. 

The 3 parties zero-knowledge 

We said earlier that Alice, Bob, or both could try to cheat to get 
authorization from Clair. Let us consider the 3 cases. Don't forget to look at 
figure 2 for the model. 

In fact if Alice tries to cheat, then just consider the protocol with 2 Turing 
machines that is A on one side and the couple (B, C) on the other. Then let 
us apply the zero-knowledge property to the case when there are only 2 
parties and we get the result. The fact that, in our model, no collusion is 
possible between Bob and Clair makes of (B, C) a Polynomial time Turing 
machine. 

If now Bob and Alice collude together, let us consider the couple (A, B) as 
a single PTM and then apply the result with 2 parties to «A, B), C) and we 
get the result. In that case however, Alice could give access Bob to her 
algorithm f. This is the case when the legal pilot of the company is the 
terrorist himself. We cannot solve this problem here. See [1] for a solution. 

Finally, if we consider only B cheating, then let us also consider «A, B), 
C) and we also get the result. 

We went however much too quick in what precedes. We have in fact 
assumed that the merger of 2 probabilistic polynomial time Turing machines 
is still a PTM and the power of the merger does not exceed the sum of the 
powers. But this is not, at least in theory, the case. For example, when 
merging B and C to obtain (B, C), since C knows i-I, then the new 

machine (B, C) could generate a valid forged certificate. But it cannot be so 
since in order the transaction cannot be under contest of Alice, Alice must 
sign the transaction. We could go on, in detail for every case, but the goal of 
this paper is only to make the reader feel there is no problem. However, in 
some cases, there can be sharper points and these are the ones we discuss 
now. 
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A particular collusion between Alice and Bob 
The case we treat here is the collusion when Alice gives internal access to 

the chip of her card when she types her PIN. In that case Bob could have 
access to f' and f and to the keys of the 2 random generators. Bob could then 
imagine some false transactions while Alice could be able to prove she was 
not present at the time of the transaction. It is clear, unfortunately, that if 
Bob has the same knowledge as Alice, then he can impersonate. However, 
we propose the following. We said in the description that only after the 
computation of the ciphertext Alice can insert her card in the reader. In order 
to prevent Bob from reading the remainder, we propose to erase the random 
generators tracks as soon as they have been used and that any reading is 
possible only after the computation of the cipher text is made. We suggest 
detecting any early connection of Bob's reader with the chip and executing a 
global erase of the data in that case, thus forbidding the use of these data. We 
cannot (and we regret it) fight against an intrusive look of what happens in 
the chip of the card. However, we just remark we are in a very special case 
of fraudulus use where Alice and Bob collude, have the means to look within 
the chip in an intrusive way and where Alice argues she was not present at 
the time of the transaction. Can this case be encountered in the reality? 

Replaying old transactions 
The case we look at is when Bob sends an old transaction. As we said 

earlier, the date should avoid such a transaction to be made since it is part of 
the message. However, the date comes from Alice's card and cannot be 
changed by Bob, except, like in the previous case, if Alice and Bob collude 
and then contest the validity of the date. But since Clair verifies Alice's date 
d and compares it with her current date, depending on a threshold value, she 
will accept or not the proposed date d, only for a valid new message. Every 
event leading to sucking up information illegally from Alice with her 
agreement seems, a priori, meaningless. 

Le collet marseillais 
Le collet marseillais consists in putting a special device in front of a 

reader, which swallows the card after recording the PIN. Although this 
seems very unlikely, some terrorists could try such an installation in a plane 
with no much risk. Since our card has its own keyboard, then no recording of 
the PIN is possible and therefore no further use of the card is possible. 

Cloning 
If a terrorist steals the card and clones it (it is not very difficult I), then what 

can he do with it? In fact he only gets f " and the PRG, but not the PIN. 
Therefore he cannot do anything. This is the big advantage of online 
identification. It is not possible to test the clone off line. Therefore, as soon 
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as the robbery has been signaled, Clair can refuse any trial of transaction 
from the stolen card. 

6. CONCLUSION 
We have shown how to derive a zero-knowledge protocol from a PKC 

resistant against a chosen cipher text attack on a structure model. We have 
shown, from there, using a concrete example, how to use this property to 
design a smart card, which needs no secret to be stored within the chip of the 
card. This makes this new card the most secure ever designed. It is even 
resistant against the French attack called Ie collet marseillais, and cloning. 
An application to plane security under terrorist attacks has been proposed 
and detailed. The result is that the only threats remaining are when the legal 
pilot is the terrorist himself or when both the ground and the pilot are 
corrupted. Some solutions have been found to this problem but remain out of 
the scope of this paper. 
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