
24

FORMAL DESIGN OF PACKET FILTERING
SYSTEMS

G. Osman, M. G. Darwish, and M. Zaki
Research Developing Center (RDC)
Faculty o/Computer and In/ormation - Cairo Universty
Faculty 0/ Engineering - Azhar Universty

Abstract: Observing network traffic is necessary for achieving different purposes such as
system performance, network debugging and/or information security.
Observations, as such, are obtained from low-level monitors that may record a
large volume of relevant and irrelevant events. Thus adequate filters are needed
to pass interesting information only.
This work presents a filtering mechanism that acquirs the intersting packets from
the underlying network due to the user specifications. The packets are acquired
according to specific grammar rules, and they are preserved in an observation file
called log-file.

Key Words: packet filtering, monitoring, event filtemg, sniffing, context free grammar.

1. INTRODUCTION

Network traffic contains a huge amount of events and a lot of useful
information. Therefore, observing network traffic is necessary for achieving
different purposes that may include performance, debugging, security or load
analysis. The network traffic can be expressed in terms of traffic volume,
composition, or packet sizes in order to characterize the underlying network
behavior [1]. Global traffic trends can enable network architects to design a
better class of networks that may respond properly to new technologies and
protocols [2].

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002

10.1007/978-0-387-35586-3_46

M. A. Ghonaimy et al. (eds.), Security in the Information Society

http://dx.doi.org/10.1007/978-0-387-35586-3_46

300 Part Six: Information Security Services

Performance studies are concerned with major traffic trends that
could be obtained through statistical classification of the monitored network.
Moreover, the nature of the dynamic documents exchanged among the
network connections by different application protocols (http,smpt,ftp) can be
subjected to such statistics. Another objective of network monitoring is the
debugging of communication errors. Such systems respond to alarms as they
occur on the network. They work directly in real-time environments,
analyzing the situations as each new alarm comes in [3]. The information
security monitoring is a third objective of network monitoring systems in
which, the network traffic is analyzed [4].

As such, all monitoring activities include a large volume of events,
therefore filtering mechanisms are needed to exclude the unwanted
occurrences. A survey and evaluation of different event filtering mechanisms
are discussed by [5], [6], and, [7]. These filtering mechanisms are interested
in packet filtering. Such systems employ an interpretation model for event
identification and filtering so that it could detect interesting events and then
perform the appropriate action.

Also they present an effective means to observe the application's
behavior at run-time and it provides status information by making use of
certain debugging and management tools.

In this work the foucus will be on monitoring and filtering system, in
that system, there are two main functions executed at two layers, first layer is
an acquistion layer in which, the underlying packets are acquired from the
network and logged in a log-file. The interesting packets are selected online
according to user specifications. They are preserved in a specific file at the
second layer (packet-filtering layer). The output log-file contains a set of
selected packets that express the events of the acquisition duration on the
underlying network.

2. THE ACQUISITION PROCESS

The acquisition process is responsible for collecting the network
traffic and sending it to a log file. The information that could be monitored is
classified as:

• Static information, which characterizes the current configuration
and its elements.

• Dynamic information, which is related to the transmission of packet
on the network [8]. In this work we are interested in dynamic monitoring
information only.
The acquisition process needs a network-monitoring tool, to acquire and

display packets exchanged between different hosts of a network [9]. The
structure of the monitoring tool is presented in figure (1), which is

Formal Design of Packet Filtering Systems 301

implemented using a probe machine. Such machine connected to the
network segment, and consists of:
(1) Hardware Elements:

• Network Interface Card (NIC), attached to the probe machine.
Actually the NIC is turned to the "promiscuous mode", to make the
machine work as a listener to the network traffic [10], and [11].
Consequently the NIC can gather the underlying packets.

• Buffer, once the packets are acquired from the network, they are
stored in a buffer.

(2) Software Elements:
• The monitoring program, which runs on the probe machine collects

the Ethernet packets, figure (2), these packets are intercepted and stored
in a structured buffer according to the Ethernet packet grammar rules,
described in figure (3). The monitoring program is composed of five
functional modules, as presented in figure (2), they are pointed out in
the following.

(1) Device initialization: this module calls a subroutine, which initializes
the network interface and puts it into promiscuous mode.
(2) Structure definition: in which a number of structures are defined.
They are data link layer header structure (Ethernet-header), network
layer header structure (IP-header) and transportation layer header
structure (TCP-header). These structures then hold the packet. The IP­
packet format is described in the grammar shown in figure (3).

Monitoring Program

,..------- -------1
I
I

Buffer I
I
I
I
I

Network Interface Card I
I

NIC I
I
I

------- -------I

Network Segme nt

Figure (J) Structure of the monitoring tool

302 Part Six: Information Security Services

(3) Looping: the loop contains two parts, first is the main module of
capturing process and the second is print module, the program goes into
loop capturing data from the NIC and then printing it to the "log-file"
and starting the loop again.
(4) Capturing: this module is concerned with reading data from NIC,
when packet is sensed by the NIC, then data is read from NIC into a
buffer, the buffer is the Ethernet packet structure, this structures defines
the different layers of the TCP/IP protocol (Ether-header, IP-header,
TCP-header, and the application layer protocol data).

Device
Initialization

Structure
Definition

Loop limit
(start)

Capturing
Process

Print
Module

Loop limit
(end)

NIC in promiscuous L mode

Ethernet packet structure ep
{

Ether header structure eth;
IP header structure

ip;
TCP header structure tcp;

};

whole packet
content (eth,ip,tcp)

source MA C address &
destination MAC address

from Ethernet header
+

source IP address & destination IP address
from IP header

+
source port number &

destination port number
from TCP header

+
data

from application protocols

Figure (2) The monitoring program

Formal Design of Packet Filtering Systems 303

(5) Print module: in which, the interested fields from the acquired
headers (source and destination MAC addresses from Ether-header,
source and destination IP-addressees from IP-header, source and
destination TCP-port numbers from TCP-header, and data from
application protocols) are printed into a log-file.
The produced "log-file", from the acquisition layer is structured as in

figure (4), in that "log-file", there are a header part and a data part. The
header part contains the selected header fields from the acquired packet,
while the data part contains the selected header fields, while the the data part
contains the corresponding packet data.

3. PACKET FILTERING

The second layer in the system, figure (5), is responsible for
reducing the amount of data so that a user can receive only the desired
information at suitable level of detail [7]. One of the best policies to
minimize the unwanted information by conditional generation in which a
monitoring report or log-file is generated when a certain predefined
conditions are satisfied [12]. Filters will be defined by two components:
filter expression and filter action. A packet filter expression describes all
predicates (including the message fields and the operators), while the actions
describe what will be done when the desired event is detected [5]. These
filter predicates can be used to specify protocol header fields (such as TCP
port numbers, IP source and destination addresses) [13].

<etherpacket>:: =<ethhdr><iphdr><tcphdr><data>
<ethhdr>::=<h_dest><h_source><hyroto>
< iphdr> :: = <ihl> < version> <tos> <tot_len> <id> <frag_ off> <ttl> <protocol> < ipcheck> /
/<saddr> <daddr> <option>
<tcphdr>:: = <source> < dest > <seq> <ack_seq> <doff> <resvl > <resv 2><urg><ack>/
/<psh> <rst> <syn > <fin> <window> <tcpcheck> < urgytr>
<data>::=«byte» *
<h_dest>::=<sixbyte>
<h_source>::=<sixbyte>
<hyort>::=<twobyte>
<ihl>: : = <haljbyte>
<version>::=<haljbyte>
<tos>::=<byte>
<tot_len>:: = < two byte >
<id>:: = < twobyte >
<frag_off>::=<twobyte>
<ttl>::=<byte>
<protocol>:: = <byte>
<ipcheck>:: =<twobyte>
<saddr>::=<fourbyte>
<daddr>:: == <fourbyte>
<option>:: = «byte» *

304

<source>:: = <twobyte>
< dest>::=<twobyte>
<seq>:: = <fourbyte>
<ack_seqt>::=<fourbyte>
<doff>:: = <halfbyte>
<resvl>::= < halfbyte >
<resv2>::=<twobit>
<urg>::=<bit>
<ack>::=<bit>
<psh>::= <bit>
<rst>::=<bit>
<syn>::=<bit>
<jin>::=<bit>
<window>::=<twobyte>
<tcpcheck>::= < twobyte >
<urg-ptr>::= <twobyte>
<sixbyte>:: = <fourbyte> <two byte >
<fourbyte>::= < twobyte > <twobyte>
<twobyte>:: = <byte> <byte>
<byte>::=<halfbyte><halfbyte>
<halfbyte>::= <twobit> <twobit>
<twobit>:: = <bit> <bit>
<bit>::=OIJ

Part Six: Information Security Services

Figure (3) Ethernet IP packet grammar

3.1 Header Matching

The input of the packet filter, figure (5), is a stream of Ethernet
packets, which are defined according to the grammar rules in figure (3).
Thus all fields for Ethernet-header, IP-header, TCP-header, and the data part
of application protocol (http, ftp, or smtp) are defined. The filter expressions
can be constructed on the basis of any field of these protocol header fields.
The selection is based on a direct match so that a comparison is carried out
between the current field value of the acquired packet and the pre-specified
field value. Here, we focus only on filtering using any combinations of IP­
address and TCP-port during packet acquisition.

.. ______

d_d __ I II IP-Add. &port sour. I f>l '-__ IP_-A_d_d._&..:..po_rt_d_es_t._-,-I-JI

DataPW

Packet Delimiter

Figure (4) Layout of the produced "log-file"

3.2 Filtering Statements

The filtering process starts when a user describes his demands to the
monitoring program. By this description user constructs the filter statement,

Formal Design of Packet Filtering Systems 305

which, passed to the monitoring program, the packets monitored upon this
filter statement. Table (1) demonstrates the possible filtering statements and
the corresponding meaning.

Tabl (1) F'l . St t e I termg a emen s
FUter Statement Statement Meaninr
Filter any The filter logs all monitored packets.

The filter only logs all packets concerned to the
Filter port [port] specified port number (80,21, or 25).

The Filter only logs all packets concerned to the
Filter ip <ip-add> specified IP address.

Filter only logs packets concerned to the specified
FUter ip port <ip-add> [portJ IP address and port number.

Filter only logs packets concerned to specified two
Filter ip ip <ip-add1><ip-add2> IP addresses.

These filter statements are tested by the monitoring program to
determine the value of specified filter arguments, which are used to activate
the concerned filter case in the monitoring program, this process is
implemented as in pseudo code which presented in figure (6). In which there
are three arguments offered by the testing mOQule, first one is argument­
value[l], which accepts one string value to express the filter case ("ip",
"port", "ipport", "any", and "ipip"), second is argument-value[2], which
accepts the first value of argument-value[l], such as ip-address-value or tcp­
port-value, and the third is argument-value[3], which is used to accept the
second value of argument-value[l], such as tcp-port-value in condition 3 or
ip-address-value[2] in condition 5.

Layer 2
Packet Filter

Layer 1

________ ______ -""*letwork

Stream of packets

Figure (5) The proposed multilayer packet filtering model

306 Part Six: Information Security Services

3.3 Internal Representation of the Filter

Deterministic Finite Automata (DFA) is used to represents our event
filter, figure (7), presents a finite state machine graph, in which, each state
represents the history of the system environment either before or after the
occurrence of an event. In this model, a filter consisting of a single primitive
event is represented by a three state automaton consisting of start state,
accept state, and non-acceptance (false) state, in figure (7), state 2, 3, 8, and
state 10 are representing an example for a primitive event filter. While states
2, 5, 6, 7, 8 and 10 constitute an example of composite event filter, it's
constructed by combining a DFAs of primitive events together into one DFA
using the joining rules of finite automaton.

/Start Testing of Arguments passed to Programl
if ((argument-value[J}= "ip"))

{ condition = J ;
activate case number J

using argument-value[2} =ip-address-value
}

if ((argument-value[J)= "port"))
{ condition=2;
activate case number 2

using argument-value[2 }=tcp-port-value
}

if ((argument-value[J}= "ipport"))
{ condition=3;
activate case number 3

using argument-value[2}=ip-address-value
using argument-valuer 3 }=tcp-port-value
}

if(argument-value[J}= "any"))
[condition =4;
activate case number 4

}
if ((argument-value[J}= "ipip"))

{
condition=5;

activate case number 5
using argument-value[2}= ip-address-value[J}
using argument-value[3 }=ip-address-value[2}

}
/* End Testing of Arguments passed to Program */

Figure (6) pseudo code representing the arguments testing module

4. CASE STUDY

When a filter statement is constructed by the user, the accepted
arguments is passed to filter module in order to activate the corresponding

Formal Design of Packet Filtering Systems 307

filter case, each case has its filter expression and the desired action, the
implementation of the filter core is implemented according to each case of
table (1). These filter cases are presented by the pseudo code in figure (8).
When certain filter case is activated by the previous argument testing
module, a comparison is carried out between specified field value
(arguments content) and the current field value of the acquired packet, and
when the condition is satisfied, the capturing function is called to acquire the
whole packet content (Ethernet-header, IP-header, TCP-header, and
application protocol-data). Figure (8) presents all filtering cases and the
desired action for each case. It is clear from figure (8) that both case 1 and
case 2 are "one-value checking", in which one specified value is examined.
But case 3 and case 5 are "two-value checking", in which compound
conditions are formed. Actually, case 4 has no condition i.e. no filter. When
the user specify a filter for certain IP address (Filter ip <ip-add», as in
table (1), the argument is then tested by the argument testing module, which
replays to activate the case 1 of the filter, figure (8). The filter expression is
based on comparing both source IP address and destination IP address of the
acquired packet with the specified IP address by the user, if one IP address
matched the specified one, the action takes place by calling the capture
module to acquire the Ether header, IP header, and TCP header, of only
packets which contain a source or destination IP address that matches the
user specified IP address. When case 3 is fired (Filter ip port <ip-add>
[port]),. It is "two-value checking" case, in which, the filter expression has a
compound condition, which contains two checking parts. The first part is
comparing both source IP address and destination IP address of the acquired
packet with the specified IP address by the user while the second part of
filter expression is comparing both source TCP port number and destination
TCP port number of the acquired packet with the user specified port number.
If both the first and second parts of the filter expression are satisfied then the
same action as case 1 is done. When the user specify the argument any
(Filter any), as in table (1), the argument is then tested by the argument
testing module, which activates case 4 of the filter, figure (8). In this case
there is no filter expression and consequently all packets will be acquired.

4.1 Packet Filter Output

The packet filter output is shown and discussed. The filtering
statements in table (l) are used to fire three filters simultaneously, first
filter upon port 25, second filter upon port 25 and IP-address of a
client in the network, third filter is as same as second filter but on IP­
address of another client on the network. We found that the first filter
acquires all smtp packets that exchanged in that duration, a sample
from the log-file shown in figure (9), in which there exist sample from

308 Part Six: Information Security Services

two different sessions. The second filter acquires only packets with
TCP port number 25 and originated from certain IP-address. The third
filter, acquires only the packets have also an TCP port number 25 and
originated from another IP-address.

Figure (7) Deterministic finite automata representation of the filter

case 1: if(ip-address-value=source-ip-address) OR
(ip-address-value=destination-ip-address))
capture (ether-header, ip-header,tcp-header, application-data);

break;
case 2: if«tcp-port-value=tcp-port-source) OR

(tcp-port-value=tcp-port-destination»
capture (ether-header, ip-header, tcp-header, application-data);

break;
case 3: if((ip-address-value=source-ip-address) OR

(ip-address-value=destination-ip-address» AND
if «tcp-port-value=tcp-port-source) OR

(tcp-port-value=tcp-port-destination»
capture(ether-header, ip-header, tcp-header,application-data);

break;
case 4: capture(ether-header, ip-header, tcp-header,application-data);

break;
case 5: if«(ip-address-value[lJ=source-ip-address) OR

(ip-address-value{ 1] =destination-ip-address» AND
if «ip-address-value{2] =source-ip-address) OR

(ip-address-value{2J =destination-ip-address»

Formal Design of Packet Filtering Systems

capturer ether-header. ip-header. tcp-header. application-data);
break;
Figure (8) pseudo code representing packet filter cases

00:cO:d/:jD:a4:eb->00:80:48:81:0a:61192.168.2.3[1027J->192.168.2.1[25J

309

Received: by client.filter.com with Microsoft Mail ... id
<01C09619.282A8D40@client.jilter.com>; Wed. 14 Feb 2001 00:00:35 + 0200 .. Message-
1D: <01C09619.282A8D40@client.jilter.com> .. From: Gamal Ossman
<gamal@gamal.filter.com> .. To: '"sismaiel@gamal.jilter.com'''
<sismaiel@gamal.filter.com> .. Subject: mail-1..Date: Wed. 14 Feb 2001 00:00:33
+0200 .. MIME- Version: 1.0 .. Content-Type: multipart/mixed; boundary= "---­
=_NextParcOoo_OlC09619.283B5620" ------
= _NextPart_OOO_01C09619.283B5620 .. Content-Type: text/plain; charset= "us-
ascii" .. Content-Transfer-Encoding: 7bit.. ..
= _NextPart_OOO_Ol C09619.283B5620 .. Content-Type: text/plain;
name= "economy.txt" .. Content-Transfer-Encoding: quoted-printable Egyptian economy is
the focus of the world at the moment. the economic = .. proffesionals have put a
privitaization plan. and increased financial = .. projects. This strengthed the monetary
market of Egypt. Trade increased = .. as well both inside egypt and outside. The costs of
living decreased = .. thus making a lot of ser

00:cO:d/:jD:a4:eb->OO:80:48:81:0a:61192.168.2.3[1027J->192.168.2.1{25J
vices avialable to the common people. This = .. revived the Egyptian market.
=_NextPart_OOO_01C09619.283B5620--...... .

00:80:48:81 :Oa:61->00:cO:df:jD:a4:eb 192.168.2.1[25 J->192.168.2.3[1027J
250 BAA00165 Message accepted for delivery ..

OO:cO:df:ftJ:a4:eb->OO:80:48:81:0a:61192.168.2.3{1027J->192.168.2.1{25J
QUIT ..

OO:cO:d/:49:aj:ge->OO:80:48:81:0a:61192.168.2.2[1026J->192.168.2.1{25J
Received: by client2 with Microsoft Mail ... id <01C061A4.CDllCACO@client2>; Sat. 9
Dec 2000 05:56:40 +-200 .. Message-ID: <01C061A4.CDllCACO@client2> .. From:
ghadeer <ghadeer@gamal.jilter.com> .. To: "'sismaiel@gaml.filter.com'"
<sismaiel@gaml.jilter.com> .. Subject: mail-2 .. Date: Sat, 9 Dec 2000 05:56:22 +-
200 .. MIME-Version: 1.0 .. Content-Type: text/plain; charset= "us-ascii" .. Content-Transfer­
Encoding: 7bit to my friend sherif ismaiel that is just for test an email exchange between
client2 and server...... to check the monitoring program .. check out and replay
me gamal..

00:80:48:81 :0a:61->OO:cO:df:49:af:ge 192.168.2.1{25J->192.168.2.2{ 1026J
250 BAAoo170 Message accepted for delivery ..

OO:cO:d/:49:af:ge->00:80:48:81:0a:61192.168.2.2[1026J->192. 168.2. 1{25J
QUIT..

Figure (9) sample of output from port filtering

310 Part Six: Information Security Services

5. CONCLUSION

In this work a packet filtering system is presented. This system
exploits a monitoring system with packet filtering mechanism. In that
system, the packet structure is defined according to context-free grammar
rules. All the packet header fields are available (Ethernet header, IP header,
and TCP header) for processing. The underlying packets are acquired from
the network and logged in a log-file. The interesting packets are selected
online according to some user specifications, such as IP- address, TCP-port,
or both. The selected packets are preserved in a specific file at the packet­
filtering layer.

REFERENCES

[1] Kevin Thompson, Gregory J. Miller, and Rick Wilder, "Wide-Area Internet Traffic
patterns and characteristics", IEEE Network, NovemberlDecember 1997.
[2] K. Claffy and Trace Monk, "What's Next for Internet Data Analysis? Status and
Challenges Facing the Community.", Proceedings of the IEEE, October 1997.
[3] Sameh Rabie, Drew Rau-Chaplin, and Taro Shibahara, .. DAD: A Real-Time Expert
System for Monitoring of Data Packet Networks", IEEE Network, September 1996.
[4] Biswanath Mukherjee, L. Todd Heberlein, and Karl N. Levitt, "Network Intrusion
Detection", IEEE Network, May/June 1994.
[5] Ehab S. Al-Shaer, " High-Performance Event Filtering for Distributed Dynamic Multi­

Point Application: Survey and Evaluation ",Old Dominion University, Norfolk, VA,USA,Oct.
1997.
[6] Ehab Al-Shaer, " Event Filtering Framework: Key Criteria and Design Trade-Offs", The
21§i IEEE International Conference on Computer Software and Applications, Pages 88-93,
Washington, D.C., August 1997.
[7] Douglas C. Schmit, "High-Performance Event iltering for Dynamic Multi-Point
Applications", In l§i Workshop on High Performance Protocol Architectures (HIPPARCH),
Sophia Antipolis, France, December 1994, INRIA.
[8] William Stallings, SNMP, SNMPv2, and RMON: Practical Network Management,
Addison-Wesly, 1996.
[9] Mahesh Jayaram, and Ron K. Cytron, " Efficient Demultiplexing of Network Packets by
Automatic Parsing", National Science Foundation Grant NCR-9405444, july 19, 1995.
[10] Matt Blaze, "NFS Tracing by passive Network Monitoring" ,Princeton University ,1992.
[II] Steven M. Bellovin , " Packets Found on an Internet", Computer Communications
Review, July 1993.
[12] Masoud Mansouri-Samani and Morris Sloman, " Monitoring Distributed System", IEEE
Network, November 1993.
[13] Guru Parulkar, Douglas, Eileen Kraemer, Jonathan Turner, And Anshul Kantawala, "An
Architecture for Monitoring, Visualization, and control of Gigabit Networks", IEEE Network,
September/October 1997.

	24 FORMAL DESIGN OF PACKET FILTERINGSYSTEMS
	1. INTRODUCTION
	2. THE ACQUISITION PROCESS
	3. PACKET FILTERING
	3.1 Header Matching
	3.2 Filtering Statements
	3.3 Internal Representation of the Filter

	4. CASE STUDY
	4.1 Packet Filter Output

	5. CONCLUSION
	REFERENCES

