
11
SECURITY VULNERABILITIES
IN EVENT-DRIVEN SYSTEMS

Simeon (simos) Xenitellis*
information Security Group,

Royal Holloway University of London,

TW20 OEX United Kingdom

S.Xenitellis@rhul.ac.uk

Abstract The event-driven model is a model commonly used in the implementation of
systems such as the Graphical User Interface (GUI). While it offers important
advantages over alternative choices, it often exhibits security vulnerabilities due
to its architectural characteristics in the handling of events. In this paper we
examine the security vulnerabilities of event-driven systems and define the con­
ditions that produce them. We show that a substantial number of these vulnera­
bilities follow the same principles with buffer overrun vulnerabilities and finalIy
we provide countenneasures.

Keywords: software security, event-driven system threats, active attacks, trojan horse, gra­
phical user interface security

1. INTRODUCTION
An event-driven system [Berson, 1992] is a system of objects which interact

with each other using a message-passing mechanism. This mechanism is con­
trolled by a distinct component that is usually called the event dispatcher, and
acts as an intermediary between objects. The data communicated are called
events and they can originate from input devices in an unprocessed form (raw
event) or they can be a result of communication between objects. The objects
receive events in the form of event messages, typically of a fixed length and
made up of an event type identifier and the event parameters. Each object
has a designated programming procedure called event procedure that invokes
individual procedures called event handlers for each type of event message.

"The author's studies arc funded by the State's Scholarship Foundation (SSF) of Greece.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002

10.1007/978-0-387-35586-3_46

M. A. Ghonaimy et al. (eds.), Security in the Information Society

http://dx.doi.org/10.1007/978-0-387-35586-3_46

148 Part Three: Threats and Attacks to Information

To illustrate how an event-driven system works, suppose in a OUI the user
clicks the left mouse button1 in the client area of the window of a drawing
application. This generates a raw event that contains the mouse position and
which mouse buttons were pressed at that moment. The event dispatcher re­
ceives the raw event and adds infonnation such as the application it is destined
for, creates an event message and places it in a queue for the recipient ap­
plication to pick it up. The recipient application checks for new messages and
finds it. Subsequently, the event procedure is executed and chooses the suitable
event handler for the specific mouse event message.

This paper describes security vulnerabilities that can arise in environments
that support the event-driven model. The source of these vulnerabilities is
twofold; any object is generally able to send events to any object without re­
strictions and specially crafted sequences of events can easily make an object
malfuction.

Although we mainly provide examples on event-driven OUI systems, such
as the Microsoft Windows range of operating systems and the Java Virtual
Machine (JVM) implementations, these vulnerabilities can be found in any
event-driven system. The scope of this paper is to cover generic event-driven
systems.

This paper is divided into six main parts. In the following section we provide
a background in the event-driven systems. In section 3 we list the related work.
In section 4 we describe the event-driven system vulnerabilities. In section 5
we provide an analysis and in the last two sections we list countenneasures and
end with conclusions.

2. BACKGROUND
In the evolution of computer engineering, the client / server architecture

emerged to replace the monolithic systems of the mainframe computing [Berson,
1992]. A type of client / server architecture is the event-driven model and it
is commonly used in the design of OUIs for modem multi-tasking operating
systems or in real-time applications [Lorin and Deitel, 1981, page 69]. In the
latter case, it is also called queue-driven, in contrast with the process-driven
model.

In the event-driven model (Figure I), the event dispatcher acts as an inter­
mediary between the input devices and the applications. The event dispatcher
is the server and the applications are the clients.

The event dispatcher receives input from the input devices as events and
fonnulates them into event messages. Nonnally, one application is active at a

I Assuming a right-handed user.

Security Vulnerabilities in Event-Driven Systems

Mouse

r==== I C
Keyboard

Mouse
related rJNI

events

Application A

Event Dispatcher <: _____ _8-1

events

The Event Dispatcher
does the polling

.........

The event dispatcher feeds the
applications with messages appropriately

Figure 1. With the event-driven model

149

time. The event dispatcher knows which application that is and directs the flow
of event messages to it.

-P
Event Generator - Server

The server polls for raw events
or receives them

asynchronously, if supported

This is a typical event sequence.
The server has knowtedge which
event goes to which client and feeds
it. The client may choose to ignore
specific types of events, if it makes
no use of them.

The server
formulates the raw
events into event

messages , ,
II

Event sequence:

event1
event1
event2
eventO
event1
eventO
event1

Client A

event_O:
execute_event_OO;

event_1 :
execute_event_10;

event_2:
do_nothingO;

Figure 2. A generic event-driven application

A generic event-driven system (Figure 2) is comprised ofthe event generator
that generates raw events, a server or event dispatcher that does the process­
ing and encoding of the raw events into event messages and the client(s) that
receive them for processing. The client(s), depending on its functionality, pro-

150 Part Three: Threats and Attacks to Information

vides execution code (also known as message handlers) only for the events that
are used in the specific application. As shown, the client provides execution
code for events numbered 0 and 1 while event 2 is not used, thus implicitly ig­
nored. The event dispatcher may send event messages of all three event types,
however, the client will execute something interesting only for types 0 and 1.
Additionally, the client is in a passive mode, one that accepts event messages
from the event dispatcher, identifies the event types and forwards them to the
proper execution code fragment. This puts the client in a position of dumb pro­
cessing all event messages being sent. Event messages can come at any time,
in any order and they can even be generated by the clients themselves, for the
purposes of interprocess communication.

3. RELATED WORK
In [Forrester and Miller, 2000, Miller et al., 1995] it is shown that when

event-driven applications are fed with random sequences of events, they tend
to malfunction. In fact, all the applications tested in [Forrester and Miller,
2000] were found to be vulnerable to random event messages. Among the ap­
plications tested, they managed to find code fragments where the parameters
of the event messages were trusted enough to be used to dereference pointers
which is a very dangerous security practice. In another situation, the identifica­
tion of an application that was received in a message was trusted to the degree
that it was used directly without verifying the correctness of the value.

The difference between [Forrester and Miller, 2000, Miller et aI., 1995] and
this paper is that the former examine mainly the problems in event-driven sys­
tems as a software reliability issue. In this paper we examine them in the
security perspective.

In [Ghosh and Voas, 1999, pages 38-44), the problem of software relia­
bility with regards to commercial off-the-shell (CarS) software is examined
and a method of software inoculation is presented. Using such an inoculation
technique, a filtering layer is put in place that protects the operating system's
system calls from invocations with invalid parameters.

4. EVENT-DRIVEN SYSTEM VULNERABILITIES
We present specific conventions to aid in the analysis of an event-driven

system's vulnerabilities. Additionally, where it is appropriate, we provide ex­
amples using the GUI event-driven system.

4.1. Conventions
The purpose of the event-driven system is to manage efficiently multiple ob­

jects that are executed at the same time and interact with each other and with
the environment. The victim and the attacker can be objects of the same event-

Security Vulnerabilities in Event-Driven Systems 151

driven multitasking system. However, with the advent of distributed systems,
it is possible for these two entities to be objects of different event-driven mul­
titasking systems. As long as the distributed system supports the passing of
events between distributed objects, this discussion still applies. The attacker
can also be a hardware device capable of sending event messages to objects.
This can be achieved by manipulating the input devices.

A custom event message is defined as an event message that may have any
of its fields set to any value. Moreover, as object enumeration we describe the
retrieval of descriptive data of the available objects in an event-driven system.
These data should be sufficient to identify which applications are running. Ad­
ditionally, they should contain appropriate information to allow another object
to send events to it.

The victim can be an application already running or one initiated by the
attacker and controlled by sending appropriate event messages.

Modem operating systems provide a set of privileges that may be given to
users. Typically, administrators hold several privileges while other users have
far less. Objects, in this scenario processes, that are executed under each user
normally inherit their privileges. Thus one can make comparisons between
processes as being more or less privileged than the other depending on whether
they possess or lack a privilege. A security violation can take place if an at­
tacking object can take advantage of the privileges owned by the victim object.
This can be done by exploiting a security vulnerability.

4.2. Conditions
Different event-driven systems have different characteristics with regard to

the handling of events. Since we cannot capture all systems in a single group,
we devise a set of conditions or requirements of existence of characteristics.
While describing the vulnerabilities in section 4.4, we present which condi­
tions should be met so that they can take effect.

• Condition Enumeration requires that objects must be able to enumerate
the objects of the event-driven system and retrieve descriptive informa­
tion that could help to mount an attack.

The enumeration of the objects is a common facility and there are gen­
erally no restrictions imposed as to which objects can be enumerated.

• Condition Sending requires that objects must be able to send event mes­
sages, possibly custom ones, to other objects. This includes, but is not
restricted to, unprivileged objects sending events to at least one type of
object of higher privilege.

The ability to send events to any recipient without any access controls is
common in event-driven systems and is typically due to their architec-

152 Part Three: Threats and Attacks to Information

ture. This was observed when the author implemented a simple multi­
threaded event-driven system. Specifically, to send an event to another
object, an application invokes an exported procedure of the event dis­
patcher that places the event in the event queue of the system. The event
dispatcher checks its queue for undispatched messages and distributes
them to the individual object queues. The method of placing the mes­
sage in the message queue of the event dispatcher does not allow for an
efficient and foolproof mechanism to identify the source.

• Condition Interception requires that objects must be able to intercept
event messages from other objects. This includes unprivileged objects
intercepting events of objects of higher privilege.

The interception facility is normally used for debugging purposes and to
aid automated software testing.

4.3. Practical reference
As an example, we describe which conditions described in 4.2 are available

in typical event-driven systems. We list the Windows9xJNT/2000 operating
systems and common Java Virtual Machine implementations.

Table 1. Matrix o/Conditions and Event-driven environments

Condition Windows 9x Windows NTI2K Java Java Plug-irr

Enumeration Yes Yes No2 No3

Sending Yes Yes No2 No3

Interception Yes No' No2 No3

In Windows 9x there are no enforced access control mechanisms and con­
sequently there is no provision for protection of the passing of events between
processes. In Windows NT/2000 there is an access control mechanism and
processes cannot intercept messages that are destined to a process of another
user.

We provide sample code for the three conditions presented in 4.2 using the
Windows operating systems as a reference.

• Condition Enumeration

EnumWindows «WNDENUMPROC)lpMyEnumFunc, (LPARAM)myarray);

'It is available when the attacker and the victim are processes belonging to the same user.
21t is available to applets originating from the same code base.
3 Because each applet is executed in a separate NM.

Security Vulnerabilities in Event-Driven Systems 153

This command sets up a callback function called /pEnumFunc and passes
it to the system to execute it iteratively for each available window. This
function can use the second argument to return back to the main program
the identification information of the windows found.

• Condition Sending

PostMessage(hWnd_victim, WM_CLOSE, 0, 0);

This command sends an event message to the victim process that in this
example forces it to terminate.

• Condition Interception

g_hExistingHook = SetWindowsHookEx(WH_KEYBOARD,
(HOOKPROC)g_HookProc, g_hlnstance, 0);

This command sets a hook, a procedure that will be able to receive all the
keyboard related messages before the actual recipient.

As a side note, in Windows 2000 a user can execute an application with
another identity by invoking the runas command-line command.

In the case of Java as it is available in browsers, Java applets are able to
run in the same virtual machine instance and communicate with each other.
However, this communication is quite restricted, posing minimal threat. For
example, some browsers require that applets originate from the same server
or additionally originate from the same directory path on the server. Newer
browsers do not have internal Java support and they manage to run Java applets
by making use of a plugin called the Java Plug-in. Typically, each applet of
the same web page is run in a different virtual machine, making inter-applet
communication using events infeasible.

4.4. Types of vulnerabilities

We give a list of types of vulnerabilities that can arise by the exploitation of
events in event-driven systems. These types are classified by the security effect
of the exploitation, and along with the descriptions we provide the conditions
that need to be met so that each attack is possible.

4.4.1 Denial of service. Conditions Enumeration and Sending must be
met in order to perform a denial of service attack. A sequence of custom event
messages is sent to the victim by the attacker. The victim malfunctions, leading
to loss of availability to the victim itself and possibly to the event-driven system
as well.

Evidently, the victim object has to be susceptible to crashing once such a
sequence of event messages is received. However, as [Forrester and Miller,
2000, Miller et aI., 1995] have shown, this is quite common.

154 Part Three: Threats and Attacks to Information

In a drawing application, the user can draw a line by holding down the
mouse button, dragging the mouse and then releasing mouse button. In this
three-step procedure, the drawing application receives the following messages
from the mouse device.

WM_LBUTTONDOWN WM_MOUSEMOVE WM_MOUSEMOVE WM_MOUSEMOVE WM_LBUTTONUP

The attacker can send a second WM-LBUTIONDOWN before the mouse
button is actually lifted up. Such a situation looks quite unlikely to happen
and the programmer will probably not check the validity of the source code if
this happens. If a counter (instead of a flag) was used to keep track whether
the mouse button is down or up, then the application could get confused and
would consider that the mouse button is pressed down all the time.

The mouse software of a popular mouse device manufacturer offers the op­
tion to simulate the double-click message using a single click of the middle
mouse button. That is, to send two WM-LBUTIONDOWN events, each tak­
ing place quickly one after the other. Thus, the user can hold down the left but­
ton and click the middle button resulting in three messages of clicking down
before the left button is released. Furthermore, it has been tested that in all
version of Windows where this mouse software is supported (that is, from the
early Windows 3.1 up to Windows 2000), the user is able to use the middle
button facility to confuse the scrollbar component in any application. The user
simply has to click either one of the arrow buttons and drag the mouse over
the scrollbar, position the mouse on the scrollbar and finally click the middle
button. The result is a visually deformed scrollbar.

4.4.2 Modification of running application. Conditions Enumeration
and Sending must be met in order to modify a running application.

This modification is common practice even in legitimate applications. If the
application wants to change the state of a text box from enabled to disabled
so that is shows that it is no longer in use, it sends a disable message to the
specific component. Obviously, the same mechanism can be used to change a
text box from read-only to a modifiable one and vice versa.

However, apart of the technical feasibility of modifying a running applica­
tion, an attacker can find other uses. For example, when installing an applica­
tion, the user is typically shown an end-user license agreement (EULA) that he
or she has to abide to in order to continue with the installation. This agreement
is shown in a text box that is normally read-only so that it cannot be modified.
In order to continue with the installation, the user has no other option than to
select the Accept radio button, implicitly accepting the license shown. How­
ever, an attacker can easily send a crafted event message to the EULA text box
that will convert it to a modifiable one. Then, it can be edited at will before
choosing Accept and continuing. The existence of such a modification proce-

Security Vulnerabilities in Event-Driven Systems 155

dure does not invalidate the license since the attacker intentionally modifies
the license material. However, it seems to be easy for the casual attacker to
believe that he or she is bypassing the license. In such situations of confusion,
the vendors should disallow any possible modifications.

4.4.3 Unauthorised access to objects. When Conditions Enumeration
and Sending are met, any object can send events to any other object. Thus, an
unprivileged object can manipulate a privileged object by sending events.

In the Windows operating systems, an unpriviledged trojan horse can send
an appropriate sequence of events to add a new administrative account, if the
Administrator is logged on. Otherwise, the trojan horse can momentarily dis­
able a personal firewall in order to communicate with the Internet.

Alternatively, the attacker can intercept the password of the administrator
while the latter is trying to authenticate himself to a service. The authentication
procedure generally involves the entering of a username and password in two
textboxes. The password textbox has a property set that shows asterisks in
the place of each character of the password typed. A further property is that
it is not possible to perform a copy and paste operation on this textbox. The
inability to perform a copy and paste operation is due to the first property that
hides the user input. If there was no such protection, the attacker could send
the messages

PostMessage(hWnd_victim, EM_SETSEL, 0, -1);
PostMessage(hWnd_victim, WM_COPY, 0, 0);

to select the password text and copy to the local clipboard.
However, the attacker can bypass this protection by disabling the password­

hiding property momentarily in order to perform the copy and paste operation
and subsequently enabling it again with these messages

PostMessage(hWnd_victim, EM_SETPASSWORDCHAR, 0, 0);
... perforn copy and paste operation as above ...
PostMessage(hWnd_victim, EM_SETPASSWORDCHAR, '.', 0);
PostMessage(hWnd_victim, EM_SETSEL, 0, 0);

This operation takes place quickly enough so that the victim does not ob­
serve a visual change.

4.4.4 Execution of malicious code. Conditions Enumeration and Send-
ing must be met in order to execute arbitrary or malicious code.

The event message is a structure of fixed and limited length and one would
expect that it does not allow malicious code to be delivered to the victim. The
attacker should put the malicious code in the address space of the victim using
an indirect method such as forcing to read a file. Thus, using a custom event
sequence this code can be executed.

156 Part Three: Threats and Attacks to Information

Another scenario is that of the combination with buffer overruns. The at­
tacker sends custom sequences of event messages so that a buffer overrun can
by accomplished.

An example with the Windows operating system is that of the use of the
WM_TlMER message to execute custom code. In Windows 2000, an applica­
tion cannot execute code that does not reside in its address space. Thus, the
attacker has to find an already available function in the victim application and
execute it. The command is shown below.

PostMessage(hwnd_Victim, WM_TIMER, (WPARAM)0, (LPARAM)Ox76f7a3)j

It is very important to be able to provide a valid procedure address as the
fourth parameter. It has been tested with the address of the PostQuitMessageO
function that closes the running application and with the address of an internal
function in the victim application.

4.4.5 Event Interception. Conditions Enumeration and Interception
must be met in order to identify the victim object and intercept the events
destined to it. Being able to intercept the events sent to an object allows the
attacker to breach the confidentiality of only one direction of the object com­
munication with the system.

In a aUI environment, intercepting the keyboard events can easily reveal
authentication details that have been typed with the keyboard.

In an other situation the randomness in the key pair generation of a public
key algorithm is based on the user moving the mouse in random directions on
the screen. Intercepting the mouse movement can lead to the calculation of the
private key.

4.4.6 An additional avenue of attack. This refers to Conditions Enu­
meration, Sending and interception and the ability to attack hardware devices
like smart cards or other secure event-driven devices.

In such devices, the attacker could generate artificial raw events that can
subsequently be injected electronically into the event-driven device. This can
cause the hardware device to malfunction, bypass security barriers or even
reveal confidential information. This area is an unexplored alternative avenue
to direct attacks against smart cards or similar devices.

Other hardware devices that can be victims of this attack could be Point
Of Sale systems. These typically offer a variety of input devices like touch­
screens, mice or keyboards. Again, it is possible to inject electronically custom
raw events. For example, it is common in some configurations of systems that
make use of the mouse to disable the right button (that is used to provide a
menu of options) using mechanical alterations to the device itself. An attacker
could re-enable this functionality. The right button can be used to show the

Security Vulnerabilities in Event-Driven Systems 157

properties and valid actions of the screen components. This can be used to
invoke the system shell and allow full access to the device.

In the airports of a major European city there are Internet kiosks that enable
users to navigate the Internet for free and make purchases. It is possible to
restart or freeze the system simply by dragging and dropping a component
from the windows of the process located at the lower area of the screen to the
window of the process located at the top. Subsequently, it could be possible
to interfere in the booting process and take over the system. The reason the
application causes the system to restart is because one of the two applications
running was apparently not coded correctly when it receives the WM PASTE
message.

Finally, in electrically unstable environments, electrical disturbances may
be translated into custom raw events and trigger malfunctions.

5. ANALYSIS

The vulnerabilities presented in 4.4 occur for two reasons.
Firstly, there are generally no access control mechanisms with regard to the

enumeration of objects, the sending of events and the interception of events
in event-driven systems. This is mainly due to performance degradation by
adding access control and the handling complexity of the access control rules.

Secondly, it is generally difficult to control the impact of malformed events
being sent to an object. An object changes state through interactions with the
environment. If its security gets compromised, then it is due to its internal
logic not being able to filter efficiently the input.

The inability to control efficiently the input to an object is also manifested
in the buffer overrun2 [Gollmann, 1999, Aleph One, 1996, Smith, 1997] vul­
nerabilities. In this type of vulnerability, the improper bounds checking of the
internal buffers can cause other data structures of the victim to be overwritten
with custom data, leading to a security compromise.

We show the similarities between buffer overruns and vulnerabilities in
event-driven systems.

• Both of them generally surface in the implementation phase. While de­
signing an application, the software analyst is working on a high level
of abstraction that does not check array boundaries on all input of data
or safeguards the event-driven objects from receiving events in a custom
sequence. As shown in Section 3, these issues are left to the skills of the
programmers and the aids of the language or developing environment to
capture them. While in small applications it is relatively easy to avoid
mistakes, in large ones the complexity appears to be overwhelming.

2 Also know as buffer overflows.

158 Part Three: Threats and Attacks to Information

• Both of them can make the applications to malfunction. It has been
quantified in both buffer overruns [Dawson et aI., 1997, Forrester and
Miller, 2000, Miller et al., 1995, Shelton et aI., 2000], and event-driven
system vulnerabilities [Forrester and Miller, 2000, Miller et al., 1995].

• Both of them should exploit some sort ofprivileged applications in order
to be considered that they undermine the security. In both scenarios exist
applications running with different privileges. While these vulnerabili­
ties are present in all types of applications, they appear to be considered
non-critical to their vendors [Miller et aI., 1995].

• Both of them give a relative measure ofthe quality ofthe software, when
checked in the big ratio of unprivileged objects.

• Both of them lead to denial of service that when investigated may allow
malicious code execution.

Currently, buffer overruns are more researched than the vulnerabilities in
the event-driven systems.

6. COUNTERMEASURES

Any countermeasure should focus on the two weaknesses of the event­
driven systems. The inability to determine the origin of an event and the dif­
ficulty to ensure that an object will function correctly for all combinations of
events received.

In order for a malicious object to attack an event-driven system, it should be
able to do an enumeration of the available objects and then send events to them.
A mechanism in the system should restrict object enumerations and the send­
ing of events for objects that specifically request it. That is, an object should
be able to become partially invisible to other objects. The application itself
should be visible to avoid hiding of trojan horse objects, however the critical
components should be able be hidden. This hiding should be irrevocable and
remain during the lifetime of the object.

Additionally, there should be a security review of the available types of
events and those that are potentially dangerous, such as those which pass ref­
erences to memory, should be flagged as such. Then, during the security in­
spection of the source code, these event types should be checked whether they
can be exploited.

Furthermore, the event dispatcher should identifY which events have been
sent from objects in contrast to the events sent from other sources like input
devices or the system itself. The system procedure used by objects to send
messages can flag them as insecure and forward them to a firewalling compo­
nent. Alternatively, the application itself could take notice of the special flag
and handle these events accordingly.

Security Vulnerabilities in Event-Driven Systems 159

Moreover, in security evaluations of computing devices, such as automated
teller machinces (ATMs), there should be testing for the threat of injecting
malicious events.

Finally, methods of inoculation such as those presented in [Ghosh and Voas,
1999] could provide a level of security by filtering malicious event messages.
Although this degrades performance, it is a solution to COTS software.

7. CONCLUSION
We presented a set of vulnerabilities that affect event-driven systems and un­

dermine their security. These vulnerabilities are caused by two main reasons.
Firstly, it is difficult to determine the origin and the integrity of the events
sent to an application, thus enabling non-restrictive sending of events that al­
low very powerful control of the victim object. Secondly, it is very difficult
to ensure the correct behaviour of an object when it receives specially crafted
events.

We categorised the vulnerabilities based on the impact they have on the vic­
tim objects. Each vulnerability requires the existence of specific primitives by
the event-driven system. For each category, we listed the primitives needed.
Solving the vulnerabilities in event-driven systems requires actions in two di­
rections. Firstly, identifying the origin of events and applying access controls.
Secondly, verifying that the objects manage to function properly when spe­
cially crafted events are sent.

The malfunction of applications due to the receiving of custom events has
similarities with buffer overruns and follows the same principle which says that
an object to be secure it should be able to handle all input in a sanitised way.
Otherwise, the attacker can cause denial of service, execution of malicious
code, modification of running application, unauthorised access to objects and
event interception.

Furthermore, these vulnerabilities in event-driven systems can be consid­
ered as another avenue for the attacker for exploitation and another degree of
complexity for the software developer to provide security.

Finally, since it is becoming more common to have multi-user event-driven
systems and event-driven systems become distributed, we believe that the event­
driven system vulnerabilities will start to have negative effects very soon in
software security.

ACKNOWLEDGMENTS

The author wishes to thank Prof. Chris Mitchell and Dr. Keith Martin
(Royal Holloway, University of London, UK), Prof. Dieter Gollman (Mi­
crosoft Research Cambridge, UK) and Robert Carolina (TarIo Lyons Solici­
tors) for their input on this paper.

160 Part Three: Threats and Attacks to Information

REFERENCES

[Aleph One, 1996] Aleph One (1996). Smashing the stack for fun and profit. Phrack, 7(49).

[Berson, 1992] Berson, A. (1992). Client-server architecture. Computer Communications.
McGraw-Hill, New York.

[Dawson et a!., 1997] Dawson, S., Jahanian, F., and Mitton, T. (1997). Experiments on six
commercial tcp implementations using a software fault injection tool. Software - Practice
and Experience (SPE), 27(12):1385-1410.

[Forrester and Miller, 2000] Forrester, J. E. and Miller, B. P. (2000). An empirical study of
the robustness of windows NT applications using random testing. 4th USENIX Windows
Systems Symposium.

[Ghosh and Voas, 1999] Ghosh, A. K. and Voas, J. M. (1999). Inoculating software for surviv­
ability. Communications of the ACM (CACM), 42(7):38-44.

[Gollmann, 1999] Gollmann, D. (1999). Computer Security. Worldwide Series in Computer
Science. John Wiley and Sons.

[Lorin and Deitel, 1981] Lorin, H. and Deitel, H. M. (1981). Operating The Systems
programming series. Addison-Wesley Publishing Company Inc.

[Miller et a!., 1995] Miller, B. P., Lee, C. P., Maganty, v., Murthy, R., Natarajan, A., and Steidl,
J. (1995). Fuzz revisited: A re-examination of the reliability of unix utilities and services.
Technical report, Computer Sciences Department, University of Wisconsin.

[Shelton et aI., 2000] Shelton, C. P., Koopman, P., and DeVale, K. (2000). Robustness testing
of the Microsoft Win32 API. Proceedings of the International Conference on Dependable
Systems and Networks (DSN 2000), IEEE.

[Smith, 1997] Smith, N. P. (1997). Stack smashing vulnerabilities in the unix operating system.
htlp://destroy.net/machines/security/nate-bu:ffer.ps.

	11 SECURITY VULNERABILITIESIN EVENT-DRIVEN SYSTEMS
	1. INTRODUCTION
	2. BACKGROUND
	3. RELATED WORK
	4. EVENT-DRIVEN SYSTEM VULNERABILITIES
	4.1. Conventions
	4.2. Conditions
	4.3. Practical reference
	4.4. Types of vulnerabilities

	5. ANALYSIS
	6. COUNTERMEASURES
	7. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

