
6

Modeling of Product Life-cycle Knowledge and Data
for an Intelligent Concurrent Design System

Deyi Xue
Department of Mechanical and Manufacturing Engineering, The University of Calgary,
Calgary, Alberta, Canada T2N IN4

Key words: Product life-cycle, Concurrent design, Artificial intelligence, Optimization,
Object-oriented modeling

Abstract: This paper discusses the issues in modeling product life-cycle knowledge and
data for an intelligent concurrent design system. Requirements for intelligent
concurrent design are first outlined. Mathematical formulation for intelligent
concurrent design is then introduced. Development and implementation of an
intelligent concurrent design system and its applications are subsequently
presented based upon the theoretical research results. A case study example is
given at last to demonstrate the effectiveness of the introduced methods. This
research focuses on the following four issues: (I) representation of various
product life-cycle aspects, (2) automated generation of product life-cycle
aspects, (3) maintenance of relations among product life-cycle aspects, and (4)
identification of the optimal design considering relevant product life-cycle
aspects.

1. INTRODUCTION

1.1 Product life-cycle and concurrent design

A product changes from its birth to its death through a sequence of life­
cycle phases, including design, production process planning, manufacturing,
inspection, distribution, operation/maintenance, and disposal/recycle. With
the advances in computer technologies, many of the product development
activities have been automated by introducing computer-based systems, such
as Computer-Aided Design (CAD), Computer-Aided Process Planning

S. Finger et al. (eds.), Knowledge Intensive Computer Aided Design
© Springer Science+Business Media New York 2000

118 Knowledge Intensive Computer Aided Design

(CAPP), Computer-Aided Manufacturing (CAM), and so on (Chang, Wysk,
and Wang, 1991; Singh, 1996). Many intelligent systems have also been
developed for further improving the computer-based product development
systems (Kusiak, 1992; Dong, 1994). Despite of the progress, information in
most of these automated and intelligent systems still flows only in one
direction - from design to other downstream product development phases.
Since many re-designs have to be conducted to achieve good evaluation in
these downstream product life-cycle aspects, the sequential product
development process requires long product development lead time.

Concurrent design is an approach to incorporate considerations in
different downstream product development life-cycle aspects, including
manufacturing, assembly, maintenance, disposal/recycle, etc., into design
phase, thus generating the design with the best overall life-cycle
performance (Kusiak, 1993; Prasad, 1996). Because evaluations to these
downstream product development aspects are carried out simultaneously
during the design phase, concurrent design approach can reduce the number
of costly re-designs and shorten product development lead time. Many
industrial companies have employed this approach for improving the
competitiveness of their products (Kusiak, 1993; Prasad, 1996).

The research on computer-aided concurrent design was initiated by the
early work on feature recognition (Choi, Barash, and Anderson, 1984;
Henderson, 1984). Feature recognition is an approach to automatically
extract the geometric features, such as holes and slots, to be produced by
certain manufacturing operations from the CAD database for planning
production process and evaluating the design from manufacturing point of
view. Due to the difficulty in feature extraction, another approach, called
feature-based design that defines features as a library and uses the features
to model a design, has been employed by many researchers (Pratt, 1984;
Luby, Dixon, and Simmons, 1986; Shah and Rogers, 1988). Detailed review
on feature recognition and feature-based design can be found in Reference
(Shah and Mantyla, 1995).

To improve design with good evaluation in downstream product
development life-cycle aspects, research on design-for-X was started by
incorporating considerations in these life-cycle aspects into the early design
phase. Typical downstream life-cycle aspects considered in design-for-X
methods include manufacturing (Bralla, 1986; Dong, 1993), assembly
(Boothroyd and Dewhurst, 1983), maintenance (Makino, Barkan, and Pfaff,
1989; Gershenson and Ishii, 1993), disposal/recycle (Zhang et al., 1997), etc.
Many advanced computational techniques, including constraint-network
(Young, Greef, and O'Grady, 1992), optimization (Dowlatshahi, 1992), etc.,
have been employed for automating concurrent design processes.

Modeling of Product Life-cycle Knowledge and Data 119

1.2 Knowledge intensive engineering

As the result of market competition and technology advances, more
products are manufactured nowadays to satisfy the increasing demand from
customers. The current mass production paradigm brings tremendous
advantages to us such as to improve the quality of living. Despite of these
advantages, problems arose due to the mass production. These problems,
called modem evils by Yoshikawa (Yoshikawa, 1993), are caused by natural
constraints (e.g., materials, energy, and environmental capacity), social
constraints (e.g., market and transportation), and human constraints (e.g.,
acceptance of high technology) (Tomiyama, 1997).

To solve these problems in the current mass production paradigm, a new
manufacturing paradigm, namely Post Mass Production Paradigm (PMPP),
was proposed (Tomiyama, 1997). PMPP aims at reducing the volume of
production and consumption to an adequate and manageable size considering
the limitations of natural, social, and human resources, while improving our
living quality. In PMPP, the economical growth is decoupled from the
resource/energy consumption and waste creation.

To reach the goal ofPMPP, the past evaluation of living quality in terms
of quantitative sufficiency must be replaced by the future evaluation in terms
of qualitative satisfaction. The economic development therefore relies on the
creation of high value products using intellectual resources rather than
natural resources. Knowledge plays a crucial role in developing the value­
added products.

Since the development of a product involves a sequence of life-cycle
phases, the concept of knowledge-intensive engineering, which aims at
organizing the knowledge at different life-cycle stages in a flexible manner
to generate more added-value to products, was proposed (Tomiyama, 1994).

This research focuses on improving the current data-centered CAD
systems into the next generation CAD systems - the knowledge intensive
CAD systems. In knowledge intensive CAD systems, different product life­
cycle knowledge is described in different modules. The relevant life-cycle
knowledge is used when required to evaluate the design from a certain
product life-cycle aspect. Since both the knowledge and data play important
roles in the knowledge intensive CAD systems, modeling of product life­
cycle knowledge and data is addressed in this paper.

1.3 Previous research on intelligent concurrent design

During the past years, the author has devoted the efforts on the
development of an intelligent concurrent design system that supports the
activities in all product development life-cycle aspects (Xue and Dong,

120 Knowledge Intensive Computer Aided Design

1993; Dong, Hu, and Xue, 1994; Xue and Dong, 1994; Xue, Rousseau, and
Dong, 1996; Xue, 1997; Xue and Dong, 1997).

In this research, first modeling of product life-cycle aspects was studied
(Xue and Dong, 1993). The three major life-cycle aspects, design, geometry,
and manufacturing, are modeled by aspect primitives called features,
including design features (mechanisms and components such as a gear and a
shaft), geometry features (geometric primitives such as a box and a
cylinder), and manufacturing features (geometric elements to be produced
such as a hole and a slot). Representation of features follows the scheme of a
product modeling language - Integrated Data Description Language (IDDL)
(Tomiyama and ten Hagen, 1987; Xue et al., 1992), which was originally
developed at University of Tokyo. A system combining knowledge-based
reasoning and optimization was developed for generating aspect models
automatically and identifying the optimal design (Xue and Dong, 1994). Due
to the large size of feature library, a design-function based design feature
coding system and a manufacturing-function based manufacturing feature
coding system were introduced for organizing feature library and for
automatically generating design candidates and planning production process
(Xue and Dong, 1997). Since production cost is a key measure for evaluating
design from manufacturing point of view, the cost models considering
different production processes and tolerance requirements were then
developed (Dong, Hu, and Xue, 1994). An optimization model was
developed for achieving the design with the best tradeoff between functional
performance and production cost (Xue, Rousseau, and Dong, 1996). A
number of global optimization models were also introduced to identify the
optimal design (Xue, 1997).

The goal of the research presented in this paper is to further develop the
intelligent concurrent design system and its applications with focus on
modeling product life-cycle knowledge and data. The requirements for
intelligent concurrent design are discussed first. The mathematical
formulation for intelligent concurrent design is then introduced. The
development and implementation of the intelligent concurrent design system
and its applications are subsequently presented based upon the theoretical
research results. Effectiveness of the introduced methods is illustrated using
a case study example at the end of this paper.

Modeling of Product Life-cycle Knowledge and Data

2. REQUIREMENTS FOR INTELLIGENT
CONCURRENT DESIGN

121

The requirements for intelligent concurrent design were achieved based
upon an extensive study on the activities in concurrent design. These
requirements are summarized as follows:
1. An efficient method for modeling product life-cycle aspects should be

introduced
The different product life-cycle aspects, including design, manufacturing,
assembly, and so on, should be described as aspect models. Each aspect
model is composed of aspect descriptions for representing .and evaluating
the product from that life-cycle perspective. To improve the modeling
efficiency, aspect models should be constructed using aspect building
primitives. A building primitive is represented by a group of relevant
descriptions for a particular purpose in the product development process.
For instance, descriptions of a gear can be grouped as a building primitive
for modeling a design candidate, and a hole can be described by a
collection of geometric elements to be produced by a certain
manufacturing operation. These building primitives also serve as the
elements for evaluating the product aspect models. Descriptions in aspect
models, including data and their relations, are classified into two
categories: qualitative descriptions and quantitative descriptions.
Different aspect models are associated by their relations.

2. An automated product life-cycle aspect model generation mechanism
should be achieved
This mechanism aims at further improving the efficiency of constructing
product life-cycle aspect models and their relations. Since the aspect
models and their relations are built based upon relevant knowledge in
product development process, a knowledge-based system is required to
generate these aspect models and their relations automatically. In
addition, because the development of a product undergoes a sequence of
processes, including design candidate generation, design geometry
modeling, manufacturing operation identification, and so on, this
evolutionary nature of product realization process should also be
represented.

3. An integrated environment to maintain the relations among aspect models
should be developed
The aspect models are used for representing the same product from
different life-cycle perspectives. Aspect models are associated by their
relations. Because a concurrent design is carried out by considering these
different life-cycle aspects simultaneously, a mechanism to maintain the
relations among aspect models in an integrated environment is required.

122 Knowledge Intensive Computer Aided Design

The relations include qualitative relations and quantitative relations. Any
change in one aspect model should be propagated to other aspect models
automatically using these relations.

4. An optimal design model considering all relevant product life-cycle
aspects should be identified.
Because the same design requirement can be reached by alternative
design candidates and different design parameter values, a mechanism to
identify the optimal design alternative and its parameter values
considering relevant life-cycle aspects should be developed. The product
life-cycle aspect performance measures, including manufacturability,
assemblability, serviceability, disposalability/recyclability, etc., should be
employed for evaluating the product from the different product life-cycle
aspects. Optimization approach can be used to achieve this objective.
The mathematical models and the intelligent concurrent design system

were developed based upon the requirements summarized above. Details of
these mathematical models and system implementation are presented in the
following sections.

3. MATHEMATICAL FORMULATION FOR
INTELLIGENT CONCURRENT DESIGN

A number of mathematical models have been developed for modeling
intelligent concurrent design. The intelligent concurrent design system and
its applications were implemented based on these mathematical models.

3.1 A feature-based product life-cycle aspect
representation model

Models of different product life-cycle aspects are called aspect models,
including design aspect model, MD), manufacturing aspect model, MM), and
so on. These aspect models are built using aspect primitives, namely aspect

(1') • (p)· features (Xue and Dong, 1993). An aspect feature, F; (1=1,2, ... ,n['), IS

represented by a group of relevant descriptions in the aspect model for a
particular product development purpose. The superscript (P) of F/") denotes
the life-cycle aspect of the feature, such as design aspect, (D), manufacturing
aspect, (M), and so on. For instance, a motor is a design feature for creating
rotational motion, and a pocket is a manufacturing feature to be produced by
a milling machining operation. A feature usually consists of quantitative
descriptions called attributes. An attribute, A/I'} , of the feature, F/"J, is
described by

Modeling of Product Life-cycle Knowledge and Data 123

A<'P) =A(P)(P(P» ;=12··· n(P>'J·=12 ••• n(P)
y Y I' '" F' '" Ai

(1)

For instance, rotational speed and output power are two attributes of a motor.
Features and attributes are associated by their qualitative relations, RF/(P),

and quantitative relations, RAm(P), respectively. These relations are defined as

R(P) = R(P) (F.(P) F(P) ••• F(P» 1=1 2 ... n(P)
F, F, 1 , 2 , , nj!'l , '" RF (2)

(3)

For example, the connection relation between a gear and its shaft is a
qualitative relation, while the relation between the speeds of the gear and the
shaft is a quantitative one.

An aspect model, MP), consists of aspect features, pP), attributes of these
features, A(P), qualitative relations among features, R/P), and quantitative
relations among attributes, RA(P), as defined by

(4)

where,

F(P) - (F.(P) F(P) ... F(P)}
- I '2 , 'nV} (5)

(6)

(7)

(8)

A product, P, is defined by all its life-cycle aspect models, M, and their
relations, RF and RA , using

(9)

where, M is a collection of aspect models described by

124 Knowledge Intensive Computer Aided Design

M = (M(D) ,M(M) , ... } (10)

3.2 A product realization process model

The product aspect models are built gradually from design to other
downstream life-cycle aspects. Usually design candidates are fIrst created
based upon design requirements. Product geometry is then achieved to
model design details. Manufacturing descriptions are subsequently obtained
from the product geometry. In this research, a product realization. process
model was introduced for representing this progressive nature of product
development activities. This model is an extension of the General Design
Theory (GDT), in which a design is considered as a process of mapping
from function space to attribute space (Yoshikawa, 1981; Tomiyama and
Yoshikawa, 1987).

In the product realization process model, new product descriptions, Ai, at
a certain product development stage are derived from the product
descriptions, M, at an earlier product development stage using relevant
knowledge, K, as described by

M f"'IK~M' (11)

In this equation, f"'I and ~ are logical symbols representing AND relation
and description derivation relation respectively. The relations among the
derived data are of two types: AND relations and OR relations. For instance,
the two machining operation descriptions derived by

internal thread f"'I K\ ~ drilling f"'I threading (12)

have an AND relation, while the two design candidate descriptions generated
by the following two equations

rotational motion f"'I K 2 ~ electrical motor (13)

rotation motion f"'I K 3 ~ gasoline engine (14)

have an OR relation.

Modeling of Product Life-cycle Knowledge and Data 125

3.3 A data relation maintenance model

Since different product life-cycle aspect models are used for representing
different aspects of the same product, any change in one aspect model should
be propagated to other aspect models to keep the consistency of the product
database. In this research, the consistency of aspect models is maintained
using the relations among these aspect models including qualitative relations
among features and quantitative relations among attributes.

In the process of product development, since a piece of product
description is usually derived from other descriptions using relevant
knowledge, change of an earlier created description should have influence on
the derived descriptions. For instance, the two machining operation
descriptions in Eq. (12) are derived from the internal-thread manufacturing
feature. If the internal-thread manufacturing feature is removed from the
database, the two derived machining operation descriptions should also be
deleted. This dependency relation is described by

(15)

where, d; could be a feature, an attribute, a qualitative relation among
features, or a quantitative relation among attributes.

A quantitative relation among attributes can be further described by

(16)

where, Aj is calculated usingA" A2, ••• , An as input attributes.

3.4 An optimal concurrent design model

Since design requirements can be satisfied by alternative design
candidates, each of these candidates is further described by attributes with
different values, in this research an optimal concurrent design model was
introduced to identify the optimal design alternative and its attribute values
considering relevant life-cycle aspects. The optimization is conducted at two
different levels: alternative optimization level and attribute optimization
level.

A feasible design alternative is modeled by a number of features and their
attributes. Since the qualitative descriptions of features remain the same for a
design alternative, a feasible alternative, Pi, can therefore be described by a
collection of attributes:

126 Knowledge intensive Computer Aided Design

(17)

The optimal attribute values regarding one design alternative are obtained
using constrained optimization approach:

subject to:

hi} (Ail' Ai2 , .. " Aini) = 0, j = 1,2, ... , ki

(18)

The objective function,J;(Aj}, Ai], ... , Am), is an evaluation measure of the
design from a certain product life-cycle perspective, such as manufacturing.

The optimal objective function evaluation measure is described as J;(Pi).

The optimal alternative is identified from all possible alternatives using

Min. /; (Pi·)
w.r.t. Pi

(19)

where Pi· is iterated among the feasible alternatives with the optimal
attribute values.

4. DEVELOPMENT OF AN INTELLIGENT
CONCURRENT DESIGN SYSTEM AND ITS
APPLICATIONS

Based upon the mathematical formulation introduced in the previous
section, an intelligent concurrent design system was developed for
automating concurrent design activities. In this system, product life-cycle
aspects are described by aspect models, as shown in Figure 1. The
mathematical models introduced in the previous section were implemented
as follows: (1) The product life-cycle aspects are modeled using a feature
representation language. (2) The product realization process model is
automated through knowledge-based inference. (3) The data relations among
aspect models are maintained through data relation networks. (4) The
optimal concurrent design is identified using a multi-level optimization
approach. The system was implemented using Smalltalk, an object oriented
programming language (Goldberg and Robson, 1983).

Modeling of Product Life-cycle Knowledge and Data

Design
Aspect Model

Assembly
Aspect Model

Manufacturing
Aspect Model

Maintenance
Aspect Model

Figure I. Aspect models of a product

127

Many industrial applications were also developed using the intelligent
concurrent design system. One of these applications is used for designing
building products for a local manufacturing company - Gienow Building
Products Ltd. Many examples used in this paper were implemented for this
application.

4.1 Modeling product life-cycle aspects using a feature
representation language

In the feature-based product life-cycle aspect representation model
introduced in Section 3.1, features are primitives for modeling product life­
cycle aspects including design, manufacturing, and so on. In the intelligent
concurrent design system, a feature representation language was introduced
for modeling these aspect features.

In the feature representation language, features are described at two
different levels, class level and instance level, corresponding to generic
feature libraries and specific data for modeling particular products,
respectively. Class features are used as templates for creating instance
features. Object-oriented programming approach IS employed for
implementing class features and instance features.

Class features are used for modeling product libraries. All class features
are organized in a hierarchical data structure. A new class feature is defined
as a sub-class of an existing class feature. All the descriptions in a super­
class feature are inherited by its sub-class features automatically. The top
level class feature is a built-in class feature called Feature. Examples of
class feature definitions used for the building product design application are

128 Knowledge Intensive Computer Aided Design

shown in Figure 2. A class feature has 4 types of major components: (1)
element-features, (2) attributes, (3) qualitative relations among features, and
(4) quantitative relations among attributes.

Class Feature: Window r&J2\ Element-features:
?Top: WindowTop, mllm ?Left: WindowS ide,
?Right: WindowSide,
?Center: WindowCenter

Attributes:
(x,y)

width[?selt], height[?self]
Feature-relations: .

(above, ?Top, ?Center), (under, ?Center, ?Top),
Attribute-relations:

x[?Right] := x[?self] + width[?Center]l2,
y[?Right] := y[?self],
......

Class Feature: WindowTop ~
Attributes:

V grid[?self], spoke[?self], radius[?self]

Class Feature:
...... (x,y)

BuildingProduct

--- Attributes:

\\
Class Feature: WindowSide

(x,y) m x[?selt], y[?selt] Attributes:
...... gridX[?selt], gridY[?selt],

width[?selt], height[?selt]
......

Class Feature: WindowCenter

II Element-features:
?Left: WindowCenterHalf,

~ ?Right: WindowCenterHalf
Attributes:

(x,y) gridX[?self], gridY[?selt],
width[?selt], height[?selt]
......

Class Feature: WindowCenterHalf

(x,y) I Attributes:
gridX[?selt], gridY[?selt],
width[?selt], height[?selt]
......

Figure 2. Class feature definitions

Modeling of Product Life-cycle Knowledge and Data 129

An element feature is a component that composes the feature being
defined. For instance, the Window class feature, shown in Figure 2, is
composed of four element features. An element feature is defined by a
variable and its class feature type. A variable is described by a string starting
with "?". In the class feature Window, the four element features are
associated with four variables: ?Top, ?Left, ?Right, and ?Center. When an
instance feature is generated using this class feature as the template, the
element features should also be created according to their class feature types
defined in the class feature. The variables that are associated with element
features can be used in other parts of the class feature definition. For
instance, the four variables in class feature Window are used for defining
feature relations and attribute relations of this class feature. The feature itself
is associate with a built-in variable ?self. When a class feature is used for
generating an instance feature, all the variables, representing element
features, should be replaced by the actual element instance feature names in
the created instance feature.

An attribute is a piece of quantitative description of a feature. An
attribute is described by an attribute name and an attribute value. In a class
feature definition, an attribute can be associated with a default value.
Attributes ar:e used in the form of attribute[feature] in other parts of the
feature definition. For instance, width[?Center] in Figure 2 represents the
attribute width of the feature ?Center.

A qualitative relation among features is described by a predicate, in the
form of (X1,X2, ... , xn), where X1,X2, ... , Xn are terms of this predicate
represented by strings (e.g., above, under), integers (e.g., 25, -14), floats
(e.g., 2.5, 1.2e-25), variables (e.g., ?Left, ?Center), and attributes (e.g.,
width[?self], height[?self)). A predicate without variable terms is called a
fact.

A quantitative relation among attributes is defined by a function with a
number of input attributes and one output attribute, as shown in Figure 2.
Syntax of functions follows the syntax of Smalltalk. Element feature
variables and attributes are also allowed in function definitions.

Instance features are generated from class features and used for modeling
actual products. When a class feature is selected as the template for
generating an instance feature, the element features defined in this class
feature should also be created as instance features. All the descriptions
defined in the class feature and its super-class features are inherited by the
generated instance feature automatically. Figure 3 shows the instance
features that are generated from the class features given in Figure 2 for
representing a window product. In an instance feature, the variables in its
class feature definition, representing element features, are replaced by the

130 Knowledge Intensive Computer Aided Design

names of the actually created element instance features. Descriptions of
instance features can be modified, added, and deleted.

Instance Feature: w
Class-type: Window 0ffiS\ Element-features:
?Top: t, ?Left: I, ?Right: r, ?Center: c mill Attributes:
x[w]=O, y[w]=O, width[w]=lO, height[w]=8

Feature-relations:
(above, t, c), (under, c, t), (x,y)

Attribute-relations:
x[r] := x[w] + width[c]/2, y[r] := y[w],
......

~/ ~~
Instance Feature: t Instance Feature: I Instance Feature: c Instance Feature: r
Class-type: Class-type: Class-type: Class-type:

WindowTop WindowS ide WindowCenter WindowS ide
Attributes: Attributes: Element-features: Attributes:

x[t]=O, y[t]=5, x[I]=-5, y[I]=O, ?Left: c\, x[r]=3, y[r]=O,
grid[t]=3, gridX[I]=2, ?Right: cr gridX[r]=2,
spoke[t]=3, gridY[I]=5, Attributes: gridY[r]=5,
radius[t]=3 width[I]=2, x[c]=O, width[r]=2,

W
height[I]=5 II

height[r]=5
......

(x,y) I ···(x,y) I
(x,y) (x,y)

~~ ~
Instance Feature: c\ In"anoe F,,'areo " I
Cl"Hyp'o WindowC"",,,H,lf I Class-type: WindowCenterHalf
Attributes: Attributes:

x[c\]=-3, y[c\]=O, gridX[c\]=3, x[cr]=O, y[cr]=O, gridX[c\]=3,
gridY[c\]=5, width[cl]=3, gridY[c\]=5, width[cl]=3,

(x,y) height[cl]=5, (x,y) height[c\]=5,

Figure 3. Instance feature definitions

4.2 Automating product realization process through
knowledge-based inference

In Section 3.2, product realization process is modeled by mapping
among different product development life-cycle aspects. In the intelligent

Modeling of Product Life-cycle Knowledge and Data 131

concurrent design system, the mapping process is described by an AND/OR
graph, as shown in Figure 4. In this graph, product descriptions, including
features, attributes, qualitative relations among features, and quantitative
relations among attributes, are described by nodes. The AND and OR
relations among sub-nodes are achieved using the knowledge as described in
Eqs. (12), (13) and (14).

< AND Relation

F: Design Function
D: Design Candidate
G: Product Geometry
M: Manufacturing Feature
P: Production Operation

< OR Relation

Figure 4. An AND/OR graph of product realization process

To automate the product realization process, a knowledge base system
has been developed for generating the AND/OR graph through kriowledge­
based reasoning. In this system, product development knowledge is
described by rules. Rules are grouped as rule-bases. The idea for organizing
rules in groups follows the concept introduced for the Intelligent Integrated
Interactive CAD (IIICAD) system (Tomiyama and ten Hagen, 1987; Xue et
ai., 1992).

A rule-base is defined by a rule-base name and a collection of rules, as
shown in Figure 5. Each rule description consists of a rule name and the rule
itself in the form of IF-THEN data structure representing a piece of cause­
result knowledge. Both the IF part and the THEN part of a rule are described
by a number of patterns linked with logical-and (&). A pattern is described
by a predicate in the form of (Xl, X2, ••• , xn), where Xl, X2, ••. , Xn are terms
described by strings, numbers, variables, and attributes. The condition part
and result part of a rule are used for matching, creating, deleting, and
modifying the data in product models, including features, attributes,
qualitative relations among features, and quantitative relations among
attributes, through knowledge-based inference.

To improve the efficiency of reasoning, only partial database and partial
knowledge base are considered during product development process. Since
an instance feature is composed of element features, attributes, qualitative
relations among features, and quantitative relations among attributes, an
instance feature is such a database unit selected for inference. The partial
knowledge base used in inference is a collection of selected rule-bases.

132 Knowledge Intensive Computer Aided Design

Therefore, each instance feature is associated with a number of rule-bases.
This idea is illustrated in Figure 6.

Design 1

Rule-base: WindowDesign

Rule: changeLeftGridY
IF (left, ?L) & (center, ?C) & (oO, gridY[?L], gridY[?C]) &

(message, 'gridY values ofleft and center are not equal!') &
(confirm, 'Do you want to change gridY ofleft?')

THEN (=, gridY[?L], gridY[?C])

Rule: changeCenterGridY
IF (left, ?L) & (center, ?C) & (oO, gridY[?L], gridY[?C]) &

(message, 'gridY values ofleft and center are not equal!') &
(confirm, 'Do you want to change gridY of center?')

THEN (=, gridY[?C], gridY[?L])

Figure 5. A rule-base definition

Knowledge Base

Instance Features Rule-base:
WindowTopDesign ~

&-top
r-.... Rule-base:

...... WindowTopDesign

• center
Rule-base: _

WindowCenterDesign
......

Rule-base:
Design 2 V WindowSideDesign

......
Instance Features Rule-base:

" ~ Rule-base:

WindowSideDesign

111m

Rule-base: I- WindowCenterDesign

WindowCenterDesign
left center right

Figure 6. Selection of partial knowledge base and database in product design

During the process of knowledge-based product modeling, first an
instance feature is selected as the partial database to be considered in
inference. A number of rule-bases are then selected as the partial knowledge
for this instance feature. All the rules in these rule-bases should be registered
in this instance feature. The inference is conducted first by matching the

Modeling of Product Life-cycle Knowledge and Data 133

condition parts of all the registered rules with the instance feature database.
If multiple rules are matched, the best rule is then selected and the result part
of this rule is executed. In this research, the first matched rule is considered
as the best rule to be fired.

The AND/OR graph of product realization process is also generated by
rule-based reasoning. When condition part of a rule matches with the
database, the data created by executing the result part of this rule should
have an AND relation. If several rules match with the same data, the data
generated by executing these rules have an OR relation. Figure 7 shows the
AND/OR graphs generated through rule-based reasoning.

electricalMotorl

internal Thread I rotationalMotion 1

gasolineEngine 1

(a) An AND relation (b) An OR relation

Rule: rl
IF (featureType, ?X, InternalThread)
THEN (assertFeature, ?YI, Drilling) & (assertFeature, ?Y2, Threading).

Rule: r2
IF (featureType, ?X, RotationalMotion)
THEN (assertFeature, ?Y, ElectricaIMotor).

Rule: r3
IF (featureType, ?X, RotationalMotion)
THEN (assertFeature, ?Y, GasolineEngine).

(c) Rules used for generating AND/OR relations

Figure 7. Generation of AND/OR graphs through rule-based reasoning

4.3 Maintaining data relations among aspect models
through data relation networks

In Section 3.3, a data relation maintenance model was introduced for
keeping the consistency of the product database using qualitative
dependency relations among features and quantitative relations among
attributes. In the intelligent concurrent design system, these two types of
relations among product data are described by two associated networks,
feature relation network and attribute relation network. The consistency of
the product life-cycle aspect models is maintained using these two data

134 Knowledge Intensive Computer Aided Design

relation networks. Any change in one life-cycle aspect is propagated
automatically to other aspects through the data relation networks.

The feature relation network is described by an AND/OR tree of the
product realization process. This network is composed of instance features
and their dependency relations, which are generated either manually or
through knowledge-based system. Other feature descriptions, including
element features, attributes, qualitative relations among element features,
and quantitative relations among attributes, are associated with these
instance features. A feature relation network, representing two design
alternatives shown in Figure 8 (a), is given in Figure 8 (b).

Product realization process alternatives, such as design alternatives or
production process alternatives, can be achieved from the AND/OR tree of a
feature relation network. An alternative is described by a collection of
instance features. The process to identify product realization process
alternatives is formulated in the following steps:
1. From the AND/OR tree, select the instance feature that needs alternative

subsequent product realization processes.
2. If a selected instance feature has descendant instance features with an

AND relation, all these descendant instance features should be selected.
3. If a selected instance feature has descendant instance features with an OR

relation, only one of these descendant instance feature should be selected.
Steps 2 and 3 are conducted continuously until no selection is required.
In the example shown in Figure 8, two alternatives, described by instance

features of (1) doorWindow1, door1, window1, win2Frame1, d11, dc1,
dr1, s1, w11, and wr1, and (2) doorWindow1, door1, window1,
win3Frame1, d11, dc1, dr1, s1, w12, wc2, and wr2, are obtained from the
AND/OR tree.

For each product realization process alternative, the quantitative relations
among attributes then form another network, called attribute relation
network. An attribute relation network is composed of two types of nodes:
attribute nodes and function nodes. A function node is linked with a number
of input attribute nodes and one output attribute node. The attribute relation
network for the first design alternative is shown in Figure 8 (c).

4.4 Identifying the optimal concurrent design using a
multi-level optimization approach

In Section 3.4, an optimal concurrent design model was introduced to
identify the optimal design considering relevant product life-cycle aspects.
In the intelligent concurrent design system, this optimal concurrent design
model was implemented using a multi-level optimization approach, based
upon the optimization algorithms introduced in (Xue, 1997).

Modeling of Product Life-cycle Knowledge and Data

dll del drl
, \. I

DO
DD

~~~I-sl wll wrl wl2 wc2 wr2 

doorWindowl 

Attributes: 
h: height 
w: width 
x: x location 
y: y location 

dl: Door Left, dc: Door Center, dr: Door Right, s: Steps 
wi: Window Left, wc: Window Center, wr: Window Right 

(a) Two design alternatives 
.-------, 

(f8) x[wll]:=x[sl]+w[sl]+3 

(f9) y[wll]:=y[sl]+h[sl]+2 

(fl) x[dll]:=x[sl] 

(f3) x[del]:=x[dll]+w[dll] 

(f4) y[dcl]:=y[dll] 

(f5) x[drl]:=x[del]+w[dcl] 

(f6) y[drl]:=y[dcl] 

(t7) w[sl]:=5*h[sl] 

(b) A feature relation network 

(c) An attribute relation network 

Figure 8. Maintenance of data relations 

c=J Feature 

(fn) ... Function 

135 



136 Knowledge Intensive Computer Aided Design 

Since product realization process can be described by many alternatives, 
and each of these alternatives can be further described by attributes, the 
optimization is conducted at two different levels: attribute optimization level 
and alternative optimization level. First feasible design alternatives, which 
are described by instance features and relevant descriptions, are obtained 
from the AND/OR graph using the method introduced in Section 4.3. For 
each alternative, attribute optimization is carried out to identify the optimal 
attribute values using constrained optimization search. The optimal 
alternative is achieved from all the feasible alternatives at alternative 
optimization level. Many advanced optimization methods, including genetic 
algorithm and simulated annealing, were employed for improving the search 
efficiency and quality (Xue, 1997). 

The objective function selected for optimization is based upon the 
concurrent design requirements. In the previous research for improving 
manufacturability, three types of objective functions have been introduced 
(Xue, Rousseau, and Dong, 1996). They are: (1) production cost function, 
(2) production time function, and, (3) combined cost and time function. 
Suppose production cost and time regarding i-th alternative are represented 
by C;{Ail' Ai], ... , Ain) and T;(Ail' Ai2, ... , Ain) respectively, the objective 
functionj;(Ai/, Ai2, ... , Ain) in Eq. (18) can be represented by one of the three 
functions shown in Table 1. The a and f3 in this table are weighting factors 
between 0 and 1 for representing the importance of production cost and time 
in manufacturability evaluation. 

Table 1. Objective functions considering manufacturability 

Manufacturability Considerations 
Production cost only 
Production time only 
Both production cost and production time 

Objective Functions 

ClAiI, Ai2' ... , Ai,,) 
TlAii• Ail • ...• Ai") 
ai ClAii• Ai2' ... , Ai,,) + (3; TlAiI, Ai2 • ... , Ai,,) 

5. IMPLEMENTATION OF THE INTELLIGENT 
CONCURRENT DESIGN SYSTEM 

The intelligent concurrent design system was implemented using 
Smalltalk, an object oriented programming language (Goldberg and Robson, 
1983), based upon the methods introduced in Section 4. Figure 9 shows the 
architecture of this implemented system. Users of this system are classified 
into two types: knowledge modeling users and product modeling users. The 
knowledge modeling users use two interface windows, Class Feature 
Browser and Rule-Base Browser, to model knowledge libraries including 
class features and rule-bases. The product modeling users use Instance 



Modeling of Product Life-cycle Knowledge and Data 137 

Feature Browser to model product database by generating instance features. 
Instance features are created from class features either manually or through 
rule-based inference. The consistency of the database is maintained by the 
data relation maintenance module using qualitative relations among features 
and quantitative relations among attributes. The optimal design and its 
attribute values considering relevant life-cycle aspects are identified through 
optimization using the optimal design identification module. A snapshot of 
the implemented system is shown in Figure 10. 

Knowledge Base Databasc 

t': 
4) 

Class t': '" ~ 4) 

00 Feature '" .: ~ 
00 

"0 .: -0 
0 0 
:2 "0 

0 

~ :2 
"0 Rule- Relation 0 4) 

~ Base ::s 
Maintenance "0 

0 0 

:2 Browscr Module 
.... 

0.. 

Figure 9. Architecture ofthe intelligent concurrent design system 

~ : t 
_ 0 )( 

hhn:hanicaJ.. • .. Uributes .. x('lCen1er) t doo r~de919n " r .. aunbuteRel _ gndX • 
MDtionTrans WlndOYtCen x 7Left ~fr.~m~"~d.~S~' UI~~~~~~~~n~dY~j~1 ThreeOFe81 WindawCen s.ubfe.tures conslralnt'S 

.. WindowSld .. featu reRelall + xl?Topl (8iIturaRela Width 

. 1?R,ghll • helghl • 
=xl?.1fj + Wldlhl?Cent. r]12 5 

door· design 
frame·de!ll n 

Wln~owOU'9n 

Rul. th.n9.Le~GndV 

.. WtndO'M:8t1letOesi n 

W,ndow$ldeOeslgn 
WondowTopO."gn 

_OX 

IF ~.~. ?L) & (center. 7CJ & (0. gndYI?L(. glldY(?CD & 
(message, 'gndY values or lett and C8n18' .1r8 nol equ.1ll) 

& (confirm. "00 you wanllo chango 9"dY .(Ieft?) 

mEN C". gndYI?lI. gndY(?CO 

Rule thingeC.nlerGfldY 

Figure /0. A snapshot of the implemented system 

x 



138 Knowledge Intensive Computer Aided Design 

An industrial application for designing building products has also been 
developed for a local industrial company - Gienow Building Products Ltd., 
using the implemented system. 

6. A CASE STUDY EXAMPLE 

In this section, a case study example is given to show how a concurrent 
design is conducted to achieve the optimal design alternative and its attribute 
values using the introduced method. 

The problem is to design a window frame with 2 glass panels. The 
required dimensions for this window are 150 cm by 100 cm. Two design 
candidates, c1 and c2 as shown in Figure 11 (a) and (b), are created from the 
design requirements. The width of the frame material is 5 cm. Through 
strength analysis, the length x must be long enough to support the whole 
window frame based upon the following two constraints: (1) x must be at 
least 20 cm, and (2) x must be greater than 0.035L, where L is the total frame 
length in the 150 cm by 100 cm window area. 

(a) Design alternative: cl (b) Design alternative: c2 

r: requirement 
c: candidate 
mt: material 
a: assembly 
m: machine 
p: person 

(c) An AND/OR tree of product realization process 

Figure II. A case study example 



Modeling of Product Life-cycle Knowledge and Data 139 

Each of these design candidates is produced by processes of material 
ordering and assembly. The assembly process for candidate c1 can be 
conducted using machine mi or m2. Each of these machines can be operated 
by person pi or p2. The assembly process for candidate c2 can be conducted 
by machine m3, which is also operated by pi or p2. The AND/OR graph of 
the product realization process, which is generated through knowledge-based 
reasoning, is illustrated in Figure 11 (c). The nodes in the AND/OR graph 
are described by instance features, which are generated from class features. 
It requires 6 minutes for machine mi, or 3 minutes for machine m2 to 
produce the candidate c1. It requires 6 minutes for machine m3 to produce 
~andidate e2. The unit machine costs and labor costs are given in Table 2. 
The unit cost of material is $O.05/em. 

Table 2. Unit costs for different machines and persons 

Machines and Persons 

ml 
m2 
m3 
pi 
p2 

Unit Costs ($/hour) 

10 
30 
15 
25 
30 

From the ANDIOR tree, six manufacturing alternatives are generated, as 
shown in Table 3. For each alternative, the length attribute x of the frame is 
selected as the variable at the attribute optimization level. The total 
production cost is selected as the objective function to be minimized for this 
problem. Using the cost models introduced in Table 2, the total cost is a 
function of the selected variable attribute for each alternative. 

Table 3. Feasible alternatives and their optimal attribute values 

Alternatives 
1. rl, cl, mtl, ai, ml, pi 
2. rl, cl, mtl, ai, ml, p2 
3. rl, cl, mtl, ai, m2, pi 
4. rl, cl, mtl, ai, m2, p2 
5. rl. c2. mt2. a2. m3. pi 
6. rl, c2, mt2, a2, m3, p2 

Optimal Attribute Values (cm) 
x[clf=21.7 
x[cl]*=21.7 
x[cl]*=21.7 
x[c I ]*=21.7 
x[c21*=20.0 
x[c2f=20.0 

Costs ($) 
38.84 
39.34 
38.09 
38.34 
36.5 
37.0 

The optimal attribute value regarding one alternative is identified using 
constrained optimization. For instance, attribute optimization for the first 
alternative is formulated as: 



140 Knowledge Intensive Computer Aided Design 

Min cost[mtl}+cost[ml}+cost[pl} 
w.r.t. x[cl) 

= 0.05(620 + x[cJ] * 4) + 6 x 10/60 + 6 x 25/60 

subject to: 

x[cJ]?'20 

x[cJ] ? 0.035 x 620 

The optimal attribute value is achieved as: 

x*[cl] = 21. 7 (cm) 

and the total cost is calculated as $38.84. In the same way, the minimum 
costs for other alternatives are calculated as shown in Table 3. The optimal 
alternative is then identified from all the feasible alternatives. 

7. CONCLUSIONS 

In this research, modeling of knowledge and data for an intelligent 
concurrent design system is discussed. 

The different product life-cycle aspects, including design, manufacturing, 
etc., are modeled by aspect primitives called features. A feature is a 
collection of qualitative and quantitative descriptions and their relations. 
Features are described at two levels, class level and instance level, 
representing product modeling libraries and actual product data, 
respectively. Instance features are generated using class features as their 
templates. The product realization process is modeled by an AND/OR tree. 
Generation of product models is carried out either manually or through 
knowledge-based inference. Rules are used for representing the product 
modeling knowledge and are organized in rule-bases. The qualitative and 
quantitative relations among product life-cycle aspects are maintained by 
two associated networks, the feature relation network and the attribute 
relation network. Any change can be propagated to other parts through these 
two associated networks. The optimal design alternative and its attribute 
values are identified by a multi-level optimization approach. 

The introduced method has greatly improved the product modeling 
efficiency. This approach also provides a platform for developing the next 
generation CAD systems with intelligent concurrent design capabilities. 



Modeling of Product Life-cycle Knowledge and Data 141 

ACKNOWLEDGEMENTS 

I would like to give my thanks to my graduate student, S. Yadav, at 
University of Calgary for his work on improving and implementing the 
intelligent concurrent design system, and Prof. D. H. Norrie at University of 
Calgary for his collaboration on developing the industrial application. I 
would also like to thank Prof. H. Yoshikawa and Prof. T. Tomiyama at 
University of Tokyo, and Prof. Z. Dong at University of Victoria for their 
support in developing the product description language and the early version 
of the intelligent concurrent design system. Financial support from the grant 
of Natural Sciences and Engineering Research Council (NSERC) of Canada 
and Gienow Building Products Ltd. is also acknowledged. 

REFERENCES 

Boothroyd, G. and Dewhurst, P. (1983) Design for Assembly: A Designer's Handbook, 
Boothroyd Dewhurst Inc., Wakerfield, RI. 

Bralla, J. G. (ed.) (1986) Handbook of Product Design for Manufacturing, McGraw-Hill. 
Chang, T. C., Wysk, R. A., and Wang, H. P. (1991) Computer-Aided Manufacturing, Prentice 

Hall. 
Choi, K., Barash, M., and Anderson, D. (1984) "Automatic Recognition of Machined 

Surfaces from a 3-D Solid Model," Computer-Aided Design, Vol. 16, No.2, pp. 81-86. 
Dong, Z. (1993) "Design for Automated Manufacturing," Concurrent Engineering: 

Automation, Tools, and Techniques, Kusiak, A. (ed.), John Wiley & Sons, pp. 207-234. 
Dong, Z. (ed.) (1994) Artificial Intelligence in Optimal Design and Manufacturing, Prentice 

Hall. 
Dong, Z., Hu, W., and Xue, D. (1994) "New Production Cost-tolerance Models for Tolerance 

Synthesis," Journal of Engineering for Industry, Transaction of ASME, Vol. 116, pp 199-
206. 

Dowlatshahi, S. (1992) "Product Design in a Concurrent Engineering Environment: An 
Optimization Approach," International Journal of Production Research, Vol. 30, No.8, 
pp. 1803-1818. 

Gershenson, J. and Ishii, K. (1993) "Life-cycle Serviceability Design," Concurrent 
Engineering: Automation, Tools, and Techniques, Kusiak, A. (ed.), John Wiley & Sons, 
pp. 363-384. 

Goldberg, A. and Robson, D. (1983) Smal/talk-8(): The Language and Its Implementation. 
Addison-Wesley. 

Henderson, M. R. (1984) "Extraction of Feature Information from Three Dimensional CAD 
Data," Ph.D. Dissertation, Purdue University. 

Kusiak, A. (ed.) (1992) Intelligent Design and Manufacturing, John Wiley & Sons. 
Kusiak, A. (ed.) (1993) Concurrent Engineering: Automation, Tools, and Techniques, John 

Wiley & Sons. 
Luby, S. C., Dixon, J. R., and Simmons, M. K. (1986) "Creating and Using a Feature 

Databases," Computers in Mechanical Engineering, Vol. 5, No.3, pp. 25-33. 
Makino, A., Barkan, P., and Pfaff, R. (1989) "Design for Serviceability," Proceedings of the 

1989 ASME Winter Annual Meeting, San Francisco, CA. 



142 Knowledge Intensive Computer Aided Design 

Prasad, B. (1996) Concurrent Engineering Fundamentals: Volume I, Prentice Hall. 
Pratt, M. J. (1984) "Solid Modeling and the Interface between Design and Manufacturing," 

IEEE Computer Graphics and Application Magazine, pp. 52-59. 
Shah, J. J. and Mantyla, M. (1995) Parametric and Feature-Based CAD/CAM, John Wiley & 

Sons. 
Shah, J. J. and Rogers, M. T. (1988) "Functional Requirements and Conceptual Design of the 

Feature-based Modeling System," Computer-Aided Engineering Journal, Vol. 5, No.1, 
pp.9-15. 

Singh, N. (1996) Systems Approach to Computer-Integrated Design and Manufacturing, John 
Wiley & Sons. 

Tomiyama, T. (1994) "From General Design Theory to Knowledge-Intensive Engineering," 
Artificial Intelligencefor Engineering Design, Analysis, and Manufacturing, Vol. 8, No.4, 
pp.319-333. 

Tomiyama, T. (1997) "A Manufacturing Paradigm towards the 21st Century," Integrated 
Computer Aided Engineering, Vol. 4, pp. 159-178. 

Tomiyama, T. and ten Hagen, P. J. W. (1987) "The Concept of Intelligent Integrated 
Interactive CAD Systems," CWI Report No. CS-R8717, Centre for Mathematics and 
Computer Science, Amsterdam, The Netherlands. 

Tomiyama, T. and Yoshikawa, H. (1987) "Extended General Design Theory," Design Theory 
for CAD, Proceedings of the IFfP Working Group 5.2 Working Conference 1985 (Tokyo), 
Yoshikawa, H. and Warman, E. A. (eds.), North-Holland, Amsterdam, pp. 95-130. 

Xue, D. (1997) "A Multilevel Optimization Approach Considering Product Realization 
Process Alternatives and Parameters for Improving Manufacturability," Journal of 
Manufacturing Systems, Vol. 16, No.5, pp. 337-351. 

Xue, D. and Dong, Z. (1993) "Feature Modeling Incorporating Tolerance and Production 
Process for Concurrent Design," Concurrent Engineering: Research and Applications, 
Vol. 1, pp. 107-116. 

Xue, D. and Dong, Z. (1994) "Developing a Quantitative Intelligent System for Implementing 
Concurrent Engineering Design," Journal of Intelligent Manufacturing, Vol. 5, pp. 251-
267. 

Xue, D. and Dong, Z. (1997) "Coding and Clustering of Design and Manufacturing Features 
for Concurrent Design," Computers in Industry, Vol. 34, pp. 139-153. 

Xue, D., Rousseau, J. H., and Dong, Z. (1996) "Joint Optimization of Performance and Costs 
in Integrated Concurrent Design: Tolerance Synthesis Part," Engineering Design and 
Automation, Vol. 2, No. I, pp. 73-89. 

Xue, D., Takeda, H., Kiriyama, T., Tomiyama, T., and Yoshikawa, H. (1992) "An Intelligent 
Integrated Interactive CAD - A Preliminary Report," Intelligent Computer Aided Design, 
Waldron M. B., Brown, D., and Yoshikawa, H. (eds.), North-Holland, Amsterdam, pp. 
163-192. 

Yoshikawa. H. (1981) "General Design Theory and CAD Systems," Alan-machine 
Communication in CAD/CAM, Sata, T. and Warman, E. (eds.), North-Holland, 
Amsterdam, pp. 35-58. 

Yoshikawa, H. (1993) Techno-Globe, Sangyo Chosa-kai, Tokyo. 
Young, R. E., Greef, A., and O'Grady, P. (1992) "An Artificial Intelligence-based Constraint 

Network System for Concurrent Engineering," International Journal of Production 
Research, Vol. 30, No.7, pp. 1715-1735. 

Zhang, H. c., Kuo, T. c., Lu, H., and Huang, S. H. (1997) "Environmentally Conscious 
Design and Manufacturing: A State-of-the-Art Survey," Journal of Manufacturing 
Systems, Vol. 16, No.5, pp. 352-371. 


