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Abstract: This paper discusses the issues in modeling product life-cycle knowledge and 
data for an intelligent concurrent design system. Requirements for intelligent 
concurrent design are first outlined. Mathematical formulation for intelligent 
concurrent design is then introduced. Development and implementation of an 
intelligent concurrent design system and its applications are subsequently 
presented based upon the theoretical research results. A case study example is 
given at last to demonstrate the effectiveness of the introduced methods. This 
research focuses on the following four issues: (I) representation of various 
product life-cycle aspects, (2) automated generation of product life-cycle 
aspects, (3) maintenance of relations among product life-cycle aspects, and (4) 
identification of the optimal design considering relevant product life-cycle 
aspects. 

1. INTRODUCTION 

1.1 Product life-cycle and concurrent design 

A product changes from its birth to its death through a sequence of life­
cycle phases, including design, production process planning, manufacturing, 
inspection, distribution, operation/maintenance, and disposal/recycle. With 
the advances in computer technologies, many of the product development 
activities have been automated by introducing computer-based systems, such 
as Computer-Aided Design (CAD), Computer-Aided Process Planning 
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(CAPP), Computer-Aided Manufacturing (CAM), and so on (Chang, Wysk, 
and Wang, 1991; Singh, 1996). Many intelligent systems have also been 
developed for further improving the computer-based product development 
systems (Kusiak, 1992; Dong, 1994). Despite of the progress, information in 
most of these automated and intelligent systems still flows only in one 
direction - from design to other downstream product development phases. 
Since many re-designs have to be conducted to achieve good evaluation in 
these downstream product life-cycle aspects, the sequential product 
development process requires long product development lead time. 

Concurrent design is an approach to incorporate considerations in 
different downstream product development life-cycle aspects, including 
manufacturing, assembly, maintenance, disposal/recycle, etc., into design 
phase, thus generating the design with the best overall life-cycle 
performance (Kusiak, 1993; Prasad, 1996). Because evaluations to these 
downstream product development aspects are carried out simultaneously 
during the design phase, concurrent design approach can reduce the number 
of costly re-designs and shorten product development lead time. Many 
industrial companies have employed this approach for improving the 
competitiveness of their products (Kusiak, 1993; Prasad, 1996). 

The research on computer-aided concurrent design was initiated by the 
early work on feature recognition (Choi, Barash, and Anderson, 1984; 
Henderson, 1984). Feature recognition is an approach to automatically 
extract the geometric features, such as holes and slots, to be produced by 
certain manufacturing operations from the CAD database for planning 
production process and evaluating the design from manufacturing point of 
view. Due to the difficulty in feature extraction, another approach, called 
feature-based design that defines features as a library and uses the features 
to model a design, has been employed by many researchers (Pratt, 1984; 
Luby, Dixon, and Simmons, 1986; Shah and Rogers, 1988). Detailed review 
on feature recognition and feature-based design can be found in Reference 
(Shah and Mantyla, 1995). 

To improve design with good evaluation in downstream product 
development life-cycle aspects, research on design-for-X was started by 
incorporating considerations in these life-cycle aspects into the early design 
phase. Typical downstream life-cycle aspects considered in design-for-X 
methods include manufacturing (Bralla, 1986; Dong, 1993), assembly 
(Boothroyd and Dewhurst, 1983), maintenance (Makino, Barkan, and Pfaff, 
1989; Gershenson and Ishii, 1993), disposal/recycle (Zhang et al., 1997), etc. 
Many advanced computational techniques, including constraint-network 
(Young, Greef, and O'Grady, 1992), optimization (Dowlatshahi, 1992), etc., 
have been employed for automating concurrent design processes. 
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1.2 Knowledge intensive engineering 

As the result of market competition and technology advances, more 
products are manufactured nowadays to satisfy the increasing demand from 
customers. The current mass production paradigm brings tremendous 
advantages to us such as to improve the quality of living. Despite of these 
advantages, problems arose due to the mass production. These problems, 
called modem evils by Yoshikawa (Yoshikawa, 1993), are caused by natural 
constraints (e.g., materials, energy, and environmental capacity), social 
constraints (e.g., market and transportation), and human constraints (e.g., 
acceptance of high technology) (Tomiyama, 1997). 

To solve these problems in the current mass production paradigm, a new 
manufacturing paradigm, namely Post Mass Production Paradigm (PMPP), 
was proposed (Tomiyama, 1997). PMPP aims at reducing the volume of 
production and consumption to an adequate and manageable size considering 
the limitations of natural, social, and human resources, while improving our 
living quality. In PMPP, the economical growth is decoupled from the 
resource/energy consumption and waste creation. 

To reach the goal ofPMPP, the past evaluation of living quality in terms 
of quantitative sufficiency must be replaced by the future evaluation in terms 
of qualitative satisfaction. The economic development therefore relies on the 
creation of high value products using intellectual resources rather than 
natural resources. Knowledge plays a crucial role in developing the value­
added products. 

Since the development of a product involves a sequence of life-cycle 
phases, the concept of knowledge-intensive engineering, which aims at 
organizing the knowledge at different life-cycle stages in a flexible manner 
to generate more added-value to products, was proposed (Tomiyama, 1994). 

This research focuses on improving the current data-centered CAD 
systems into the next generation CAD systems - the knowledge intensive 
CAD systems. In knowledge intensive CAD systems, different product life­
cycle knowledge is described in different modules. The relevant life-cycle 
knowledge is used when required to evaluate the design from a certain 
product life-cycle aspect. Since both the knowledge and data play important 
roles in the knowledge intensive CAD systems, modeling of product life­
cycle knowledge and data is addressed in this paper. 

1.3 Previous research on intelligent concurrent design 

During the past years, the author has devoted the efforts on the 
development of an intelligent concurrent design system that supports the 
activities in all product development life-cycle aspects (Xue and Dong, 
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1993; Dong, Hu, and Xue, 1994; Xue and Dong, 1994; Xue, Rousseau, and 
Dong, 1996; Xue, 1997; Xue and Dong, 1997). 

In this research, first modeling of product life-cycle aspects was studied 
(Xue and Dong, 1993). The three major life-cycle aspects, design, geometry, 
and manufacturing, are modeled by aspect primitives called features, 
including design features (mechanisms and components such as a gear and a 
shaft), geometry features (geometric primitives such as a box and a 
cylinder), and manufacturing features (geometric elements to be produced 
such as a hole and a slot). Representation of features follows the scheme of a 
product modeling language - Integrated Data Description Language (IDDL) 
(Tomiyama and ten Hagen, 1987; Xue et al., 1992), which was originally 
developed at University of Tokyo. A system combining knowledge-based 
reasoning and optimization was developed for generating aspect models 
automatically and identifying the optimal design (Xue and Dong, 1994). Due 
to the large size of feature library, a design-function based design feature 
coding system and a manufacturing-function based manufacturing feature 
coding system were introduced for organizing feature library and for 
automatically generating design candidates and planning production process 
(Xue and Dong, 1997). Since production cost is a key measure for evaluating 
design from manufacturing point of view, the cost models considering 
different production processes and tolerance requirements were then 
developed (Dong, Hu, and Xue, 1994). An optimization model was 
developed for achieving the design with the best tradeoff between functional 
performance and production cost (Xue, Rousseau, and Dong, 1996). A 
number of global optimization models were also introduced to identify the 
optimal design (Xue, 1997). 

The goal of the research presented in this paper is to further develop the 
intelligent concurrent design system and its applications with focus on 
modeling product life-cycle knowledge and data. The requirements for 
intelligent concurrent design are discussed first. The mathematical 
formulation for intelligent concurrent design is then introduced. The 
development and implementation of the intelligent concurrent design system 
and its applications are subsequently presented based upon the theoretical 
research results. Effectiveness of the introduced methods is illustrated using 
a case study example at the end of this paper. 
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The requirements for intelligent concurrent design were achieved based 
upon an extensive study on the activities in concurrent design. These 
requirements are summarized as follows: 
1. An efficient method for modeling product life-cycle aspects should be 

introduced 
The different product life-cycle aspects, including design, manufacturing, 
assembly, and so on, should be described as aspect models. Each aspect 
model is composed of aspect descriptions for representing .and evaluating 
the product from that life-cycle perspective. To improve the modeling 
efficiency, aspect models should be constructed using aspect building 
primitives. A building primitive is represented by a group of relevant 
descriptions for a particular purpose in the product development process. 
For instance, descriptions of a gear can be grouped as a building primitive 
for modeling a design candidate, and a hole can be described by a 
collection of geometric elements to be produced by a certain 
manufacturing operation. These building primitives also serve as the 
elements for evaluating the product aspect models. Descriptions in aspect 
models, including data and their relations, are classified into two 
categories: qualitative descriptions and quantitative descriptions. 
Different aspect models are associated by their relations. 

2. An automated product life-cycle aspect model generation mechanism 
should be achieved 
This mechanism aims at further improving the efficiency of constructing 
product life-cycle aspect models and their relations. Since the aspect 
models and their relations are built based upon relevant knowledge in 
product development process, a knowledge-based system is required to 
generate these aspect models and their relations automatically. In 
addition, because the development of a product undergoes a sequence of 
processes, including design candidate generation, design geometry 
modeling, manufacturing operation identification, and so on, this 
evolutionary nature of product realization process should also be 
represented. 

3. An integrated environment to maintain the relations among aspect models 
should be developed 
The aspect models are used for representing the same product from 
different life-cycle perspectives. Aspect models are associated by their 
relations. Because a concurrent design is carried out by considering these 
different life-cycle aspects simultaneously, a mechanism to maintain the 
relations among aspect models in an integrated environment is required. 
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The relations include qualitative relations and quantitative relations. Any 
change in one aspect model should be propagated to other aspect models 
automatically using these relations. 

4. An optimal design model considering all relevant product life-cycle 
aspects should be identified. 
Because the same design requirement can be reached by alternative 
design candidates and different design parameter values, a mechanism to 
identify the optimal design alternative and its parameter values 
considering relevant life-cycle aspects should be developed. The product 
life-cycle aspect performance measures, including manufacturability, 
assemblability, serviceability, disposalability/recyclability, etc., should be 
employed for evaluating the product from the different product life-cycle 
aspects. Optimization approach can be used to achieve this objective. 
The mathematical models and the intelligent concurrent design system 

were developed based upon the requirements summarized above. Details of 
these mathematical models and system implementation are presented in the 
following sections. 

3. MATHEMATICAL FORMULATION FOR 
INTELLIGENT CONCURRENT DESIGN 

A number of mathematical models have been developed for modeling 
intelligent concurrent design. The intelligent concurrent design system and 
its applications were implemented based on these mathematical models. 

3.1 A feature-based product life-cycle aspect 
representation model 

Models of different product life-cycle aspects are called aspect models, 
including design aspect model, MD), manufacturing aspect model, MM), and 
so on. These aspect models are built using aspect primitives, namely aspect 

(1') • (p)· features (Xue and Dong, 1993). An aspect feature, F; (1=1,2, ... ,n['), IS 

represented by a group of relevant descriptions in the aspect model for a 
particular product development purpose. The superscript (P) of F/") denotes 
the life-cycle aspect of the feature, such as design aspect, (D), manufacturing 
aspect, (M), and so on. For instance, a motor is a design feature for creating 
rotational motion, and a pocket is a manufacturing feature to be produced by 
a milling machining operation. A feature usually consists of quantitative 
descriptions called attributes. An attribute, A/I'} , of the feature, F/"J, is 
described by 
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A<'P) =A(P)(P(P» ;=12··· n(P>'J·=12 ••• n(P) 
y Y I' '" F' '" Ai 

(1) 

For instance, rotational speed and output power are two attributes of a motor. 
Features and attributes are associated by their qualitative relations, RF/(P), 

and quantitative relations, RAm(P), respectively. These relations are defined as 

R(P) = R(P) (F.(P) F(P) ••• F(P» 1=1 2 ... n(P) 
F, F, 1 , 2 , , nj!'l , '" RF (2) 

(3) 

For example, the connection relation between a gear and its shaft is a 
qualitative relation, while the relation between the speeds of the gear and the 
shaft is a quantitative one. 

An aspect model, MP), consists of aspect features, pP), attributes of these 
features, A(P), qualitative relations among features, R/P), and quantitative 
relations among attributes, RA(P), as defined by 

(4) 

where, 

F(P) - (F.(P) F(P) ... F(P)} 
- I '2 , 'nV} (5) 

(6) 

(7) 

(8) 

A product, P, is defined by all its life-cycle aspect models, M, and their 
relations, RF and RA , using 

(9) 

where, M is a collection of aspect models described by 
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M = (M(D) ,M(M) , ... } (10) 

3.2 A product realization process model 

The product aspect models are built gradually from design to other 
downstream life-cycle aspects. Usually design candidates are fIrst created 
based upon design requirements. Product geometry is then achieved to 
model design details. Manufacturing descriptions are subsequently obtained 
from the product geometry. In this research, a product realization. process 
model was introduced for representing this progressive nature of product 
development activities. This model is an extension of the General Design 
Theory (GDT), in which a design is considered as a process of mapping 
from function space to attribute space (Yoshikawa, 1981; Tomiyama and 
Yoshikawa, 1987). 

In the product realization process model, new product descriptions, Ai, at 
a certain product development stage are derived from the product 
descriptions, M, at an earlier product development stage using relevant 
knowledge, K, as described by 

M f"'IK~M' (11) 

In this equation, f"'I and ~ are logical symbols representing AND relation 
and description derivation relation respectively. The relations among the 
derived data are of two types: AND relations and OR relations. For instance, 
the two machining operation descriptions derived by 

internal thread f"'I K\ ~ drilling f"'I threading (12) 

have an AND relation, while the two design candidate descriptions generated 
by the following two equations 

rotational motion f"'I K 2 ~ electrical motor (13) 

rotation motion f"'I K 3 ~ gasoline engine (14) 

have an OR relation. 
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3.3 A data relation maintenance model 

Since different product life-cycle aspect models are used for representing 
different aspects of the same product, any change in one aspect model should 
be propagated to other aspect models to keep the consistency of the product 
database. In this research, the consistency of aspect models is maintained 
using the relations among these aspect models including qualitative relations 
among features and quantitative relations among attributes. 

In the process of product development, since a piece of product 
description is usually derived from other descriptions using relevant 
knowledge, change of an earlier created description should have influence on 
the derived descriptions. For instance, the two machining operation 
descriptions in Eq. (12) are derived from the internal-thread manufacturing 
feature. If the internal-thread manufacturing feature is removed from the 
database, the two derived machining operation descriptions should also be 
deleted. This dependency relation is described by 

(15) 

where, d; could be a feature, an attribute, a qualitative relation among 
features, or a quantitative relation among attributes. 

A quantitative relation among attributes can be further described by 

(16) 

where, Aj is calculated usingA" A2, ••• , An as input attributes. 

3.4 An optimal concurrent design model 

Since design requirements can be satisfied by alternative design 
candidates, each of these candidates is further described by attributes with 
different values, in this research an optimal concurrent design model was 
introduced to identify the optimal design alternative and its attribute values 
considering relevant life-cycle aspects. The optimization is conducted at two 
different levels: alternative optimization level and attribute optimization 
level. 

A feasible design alternative is modeled by a number of features and their 
attributes. Since the qualitative descriptions of features remain the same for a 
design alternative, a feasible alternative, Pi, can therefore be described by a 
collection of attributes: 
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(17) 

The optimal attribute values regarding one design alternative are obtained 
using constrained optimization approach: 

subject to: 

hi} (Ail' Ai2 , .. " Aini ) = 0, j = 1,2, ... , ki 

(18) 

The objective function,J;(Aj}, Ai], ... , Am), is an evaluation measure of the 
design from a certain product life-cycle perspective, such as manufacturing. 

The optimal objective function evaluation measure is described as J;(Pi ). 

The optimal alternative is identified from all possible alternatives using 

Min. /; (Pi·) 
w.r.t. Pi 

(19) 

where Pi· is iterated among the feasible alternatives with the optimal 
attribute values. 

4. DEVELOPMENT OF AN INTELLIGENT 
CONCURRENT DESIGN SYSTEM AND ITS 
APPLICATIONS 

Based upon the mathematical formulation introduced in the previous 
section, an intelligent concurrent design system was developed for 
automating concurrent design activities. In this system, product life-cycle 
aspects are described by aspect models, as shown in Figure 1. The 
mathematical models introduced in the previous section were implemented 
as follows: (1) The product life-cycle aspects are modeled using a feature 
representation language. (2) The product realization process model is 
automated through knowledge-based inference. (3) The data relations among 
aspect models are maintained through data relation networks. (4) The 
optimal concurrent design is identified using a multi-level optimization 
approach. The system was implemented using Smalltalk, an object oriented 
programming language (Goldberg and Robson, 1983). 



Modeling of Product Life-cycle Knowledge and Data 

Design 
Aspect Model 

Assembly 
Aspect Model 

Manufacturing 
Aspect Model 

Maintenance 
Aspect Model 

Figure I. Aspect models of a product 
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Many industrial applications were also developed using the intelligent 
concurrent design system. One of these applications is used for designing 
building products for a local manufacturing company - Gienow Building 
Products Ltd. Many examples used in this paper were implemented for this 
application. 

4.1 Modeling product life-cycle aspects using a feature 
representation language 

In the feature-based product life-cycle aspect representation model 
introduced in Section 3.1, features are primitives for modeling product life­
cycle aspects including design, manufacturing, and so on. In the intelligent 
concurrent design system, a feature representation language was introduced 
for modeling these aspect features. 

In the feature representation language, features are described at two 
different levels, class level and instance level, corresponding to generic 
feature libraries and specific data for modeling particular products, 
respectively. Class features are used as templates for creating instance 
features. Object-oriented programming approach IS employed for 
implementing class features and instance features. 

Class features are used for modeling product libraries. All class features 
are organized in a hierarchical data structure. A new class feature is defined 
as a sub-class of an existing class feature. All the descriptions in a super­
class feature are inherited by its sub-class features automatically. The top 
level class feature is a built-in class feature called Feature. Examples of 
class feature definitions used for the building product design application are 
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shown in Figure 2. A class feature has 4 types of major components: (1) 
element-features, (2) attributes, (3) qualitative relations among features, and 
(4) quantitative relations among attributes. 

Class Feature: Window r&J2\ Element-features: 
?Top: WindowTop, mllm ?Left: WindowS ide, 
?Right: WindowSide, 
?Center: WindowCenter 

Attributes: 
(x,y) 

width[?selt], height[?self] 
Feature-relations: . 

(above, ?Top, ?Center), (under, ?Center, ?Top), ...... 
Attribute-relations: 

x[?Right] := x[?self] + width[?Center]l2, 
y[?Right] := y[?self], 
...... 

Class Feature: WindowTop ~ 
Attributes: 

V grid[?self], spoke[?self], radius[?self] 

Class Feature: 
...... (x,y) 

BuildingProduct 

--- Attributes: 

\\ 
Class Feature: WindowSide 

(x,y) m x[?selt], y[?selt] Attributes: 
...... gridX[?selt], gridY[?selt], 

width[?selt], height[?selt] 
...... 

Class Feature: WindowCenter 

II Element-features: 
?Left: WindowCenterHalf, 

~ ?Right: WindowCenterHalf 
Attributes: 

(x,y) gridX[?self], gridY[?selt], 
width[?selt], height[?selt] 
...... 

Class Feature: WindowCenterHalf 

(x,y) I Attributes: 
gridX[?selt], gridY[?selt], 
width[?selt], height[?selt] 
...... 

Figure 2. Class feature definitions 
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An element feature is a component that composes the feature being 
defined. For instance, the Window class feature, shown in Figure 2, is 
composed of four element features. An element feature is defined by a 
variable and its class feature type. A variable is described by a string starting 
with "?". In the class feature Window, the four element features are 
associated with four variables: ?Top, ?Left, ?Right, and ?Center. When an 
instance feature is generated using this class feature as the template, the 
element features should also be created according to their class feature types 
defined in the class feature. The variables that are associated with element 
features can be used in other parts of the class feature definition. For 
instance, the four variables in class feature Window are used for defining 
feature relations and attribute relations of this class feature. The feature itself 
is associate with a built-in variable ?self. When a class feature is used for 
generating an instance feature, all the variables, representing element 
features, should be replaced by the actual element instance feature names in 
the created instance feature. 

An attribute is a piece of quantitative description of a feature. An 
attribute is described by an attribute name and an attribute value. In a class 
feature definition, an attribute can be associated with a default value. 
Attributes ar:e used in the form of attribute[feature] in other parts of the 
feature definition. For instance, width[?Center] in Figure 2 represents the 
attribute width of the feature ?Center. 

A qualitative relation among features is described by a predicate, in the 
form of (X1,X2, ... , xn), where X1,X2, ... , Xn are terms of this predicate 
represented by strings (e.g., above, under), integers (e.g., 25, -14), floats 
(e.g., 2.5, 1.2e-25), variables (e.g., ?Left, ?Center), and attributes (e.g., 
width[?self], height[?self)). A predicate without variable terms is called a 
fact. 

A quantitative relation among attributes is defined by a function with a 
number of input attributes and one output attribute, as shown in Figure 2. 
Syntax of functions follows the syntax of Smalltalk. Element feature 
variables and attributes are also allowed in function definitions. 

Instance features are generated from class features and used for modeling 
actual products. When a class feature is selected as the template for 
generating an instance feature, the element features defined in this class 
feature should also be created as instance features. All the descriptions 
defined in the class feature and its super-class features are inherited by the 
generated instance feature automatically. Figure 3 shows the instance 
features that are generated from the class features given in Figure 2 for 
representing a window product. In an instance feature, the variables in its 
class feature definition, representing element features, are replaced by the 
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names of the actually created element instance features. Descriptions of 
instance features can be modified, added, and deleted. 

Instance Feature: w 
Class-type: Window 0ffiS\ Element-features: 
?Top: t, ?Left: I, ?Right: r, ?Center: c mill Attributes: 
x[w]=O, y[w]=O, width[w]=lO, height[w]=8 

Feature-relations: 
(above, t, c), (under, c, t), ...... (x,y) 

Attribute-relations: 
x[r] := x[w] + width[c]/2, y[r] := y[w], 
...... 

~/ ~~ 
Instance Feature: t Instance Feature: I Instance Feature: c Instance Feature: r 
Class-type: Class-type: Class-type: Class-type: 

WindowTop WindowS ide WindowCenter WindowS ide 
Attributes: Attributes: Element-features: Attributes: 

x[t]=O, y[t]=5, x[I]=-5, y[I]=O, ?Left: c\, x[r]=3, y[r]=O, 
grid[t]=3, gridX[I]=2, ?Right: cr gridX[r]=2, 
spoke[t]=3, gridY[I]=5, Attributes: gridY[r]=5, 
radius[t]=3 width[I]=2, x[c]=O, ...... width[r]=2, 

W 
height[I]=5 II 

height[r]=5 
...... 

(x,y) I ···(x,y) I 
(x,y) (x,y) 

~~ ~ 
Instance Feature: c\ In"anoe F,,'areo " I 
Cl"Hyp'o WindowC"",,,H,lf I Class-type: WindowCenterHalf 
Attributes: Attributes: 

x[c\]=-3, y[c\]=O, gridX[c\]=3, x[cr]=O, y[cr]=O, gridX[c\]=3, 
gridY[c\]=5, width[cl]=3, gridY[c\]=5, width[cl]=3, 

(x,y) height[ cl]=5, ...... (x,y) height[c\]=5, ...... 

Figure 3. Instance feature definitions 

4.2 Automating product realization process through 
knowledge-based inference 

In Section 3.2, product realization process is modeled by mapping 
among different product development life-cycle aspects. In the intelligent 
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concurrent design system, the mapping process is described by an AND/OR 
graph, as shown in Figure 4. In this graph, product descriptions, including 
features, attributes, qualitative relations among features, and quantitative 
relations among attributes, are described by nodes. The AND and OR 
relations among sub-nodes are achieved using the knowledge as described in 
Eqs. (12), (13) and (14). 

< AND Relation 

F: Design Function 
D: Design Candidate 
G: Product Geometry 
M: Manufacturing Feature 
P: Production Operation 

< OR Relation 

Figure 4. An AND/OR graph of product realization process 

To automate the product realization process, a knowledge base system 
has been developed for generating the AND/OR graph through kriowledge­
based reasoning. In this system, product development knowledge is 
described by rules. Rules are grouped as rule-bases. The idea for organizing 
rules in groups follows the concept introduced for the Intelligent Integrated 
Interactive CAD (IIICAD) system (Tomiyama and ten Hagen, 1987; Xue et 
ai., 1992). 

A rule-base is defined by a rule-base name and a collection of rules, as 
shown in Figure 5. Each rule description consists of a rule name and the rule 
itself in the form of IF-THEN data structure representing a piece of cause­
result knowledge. Both the IF part and the THEN part of a rule are described 
by a number of patterns linked with logical-and (&). A pattern is described 
by a predicate in the form of (Xl, X2, ••• , xn), where Xl, X2, ••. , Xn are terms 
described by strings, numbers, variables, and attributes. The condition part 
and result part of a rule are used for matching, creating, deleting, and 
modifying the data in product models, including features, attributes, 
qualitative relations among features, and quantitative relations among 
attributes, through knowledge-based inference. 

To improve the efficiency of reasoning, only partial database and partial 
knowledge base are considered during product development process. Since 
an instance feature is composed of element features, attributes, qualitative 
relations among features, and quantitative relations among attributes, an 
instance feature is such a database unit selected for inference. The partial 
knowledge base used in inference is a collection of selected rule-bases. 
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Therefore, each instance feature is associated with a number of rule-bases. 
This idea is illustrated in Figure 6. 

Design 1 

Rule-base: WindowDesign 

Rule: changeLeftGridY 
IF (left, ?L) & (center, ?C) & (oO, gridY[?L], gridY[?C]) & 

(message, 'gridY values ofleft and center are not equal!') & 
(confirm, 'Do you want to change gridY ofleft?') 

THEN (=, gridY[?L], gridY[?C]) 

Rule: changeCenterGridY 
IF (left, ?L) & (center, ?C) & (oO, gridY[?L], gridY[?C]) & 

(message, 'gridY values ofleft and center are not equal!') & 
(confirm, 'Do you want to change gridY of center?') 

THEN (=, gridY[?C], gridY[?L]) 

Figure 5. A rule-base definition 

Knowledge Base 

Instance Features Rule-base: 
WindowTopDesign ~ 

&-top 
r-.... Rule-base: 

...... WindowTopDesign 

• center 
Rule-base: _ ...... 

WindowCenterDesign 
...... 

Rule-base: 
Design 2 V WindowSideDesign 

...... 
Instance Features Rule-base: 

" ~ Rule-base: 

WindowSideDesign 

111m ...... 

Rule-base: ..... I- WindowCenterDesign 

WindowCenterDesign ...... 
left center right ...... 

Figure 6. Selection of partial knowledge base and database in product design 

During the process of knowledge-based product modeling, first an 
instance feature is selected as the partial database to be considered in 
inference. A number of rule-bases are then selected as the partial knowledge 
for this instance feature. All the rules in these rule-bases should be registered 
in this instance feature. The inference is conducted first by matching the 
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condition parts of all the registered rules with the instance feature database. 
If multiple rules are matched, the best rule is then selected and the result part 
of this rule is executed. In this research, the first matched rule is considered 
as the best rule to be fired. 

The AND/OR graph of product realization process is also generated by 
rule-based reasoning. When condition part of a rule matches with the 
database, the data created by executing the result part of this rule should 
have an AND relation. If several rules match with the same data, the data 
generated by executing these rules have an OR relation. Figure 7 shows the 
AND/OR graphs generated through rule-based reasoning. 

electricalMotorl 

internal Thread I rotationalMotion 1 

gasolineEngine 1 

(a) An AND relation (b) An OR relation 

Rule: rl 
IF (featureType, ?X, InternalThread) 
THEN (assertFeature, ?YI, Drilling) & (assertFeature, ?Y2, Threading). 

Rule: r2 
IF (featureType, ?X, RotationalMotion) 
THEN (assertFeature, ?Y, ElectricaIMotor). 

Rule: r3 
IF (featureType, ?X, RotationalMotion) 
THEN (assertFeature, ?Y, GasolineEngine). 

(c) Rules used for generating AND/OR relations 

Figure 7. Generation of AND/OR graphs through rule-based reasoning 

4.3 Maintaining data relations among aspect models 
through data relation networks 

In Section 3.3, a data relation maintenance model was introduced for 
keeping the consistency of the product database using qualitative 
dependency relations among features and quantitative relations among 
attributes. In the intelligent concurrent design system, these two types of 
relations among product data are described by two associated networks, 
feature relation network and attribute relation network. The consistency of 
the product life-cycle aspect models is maintained using these two data 
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relation networks. Any change in one life-cycle aspect is propagated 
automatically to other aspects through the data relation networks. 

The feature relation network is described by an AND/OR tree of the 
product realization process. This network is composed of instance features 
and their dependency relations, which are generated either manually or 
through knowledge-based system. Other feature descriptions, including 
element features, attributes, qualitative relations among element features, 
and quantitative relations among attributes, are associated with these 
instance features. A feature relation network, representing two design 
alternatives shown in Figure 8 (a), is given in Figure 8 (b). 

Product realization process alternatives, such as design alternatives or 
production process alternatives, can be achieved from the AND/OR tree of a 
feature relation network. An alternative is described by a collection of 
instance features. The process to identify product realization process 
alternatives is formulated in the following steps: 
1. From the AND/OR tree, select the instance feature that needs alternative 

subsequent product realization processes. 
2. If a selected instance feature has descendant instance features with an 

AND relation, all these descendant instance features should be selected. 
3. If a selected instance feature has descendant instance features with an OR 

relation, only one of these descendant instance feature should be selected. 
Steps 2 and 3 are conducted continuously until no selection is required. 
In the example shown in Figure 8, two alternatives, described by instance 

features of (1) doorWindow1, door1, window1, win2Frame1, d11, dc1, 
dr1, s1, w11, and wr1, and (2) doorWindow1, door1, window1, 
win3Frame1, d11, dc1, dr1, s1, w12, wc2, and wr2, are obtained from the 
AND/OR tree. 

For each product realization process alternative, the quantitative relations 
among attributes then form another network, called attribute relation 
network. An attribute relation network is composed of two types of nodes: 
attribute nodes and function nodes. A function node is linked with a number 
of input attribute nodes and one output attribute node. The attribute relation 
network for the first design alternative is shown in Figure 8 (c). 

4.4 Identifying the optimal concurrent design using a 
multi-level optimization approach 

In Section 3.4, an optimal concurrent design model was introduced to 
identify the optimal design considering relevant product life-cycle aspects. 
In the intelligent concurrent design system, this optimal concurrent design 
model was implemented using a multi-level optimization approach, based 
upon the optimization algorithms introduced in (Xue, 1997). 
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dll del drl 
, \. I 

DO 
DD 

~~~I-sl wll wrl wl2 wc2 wr2 

doorWindowl 

Attributes: 
h: height 
w: width 
x: x location 
y: y location 

dl: Door Left, dc: Door Center, dr: Door Right, s: Steps 
wi: Window Left, wc: Window Center, wr: Window Right 

(a) Two design alternatives 
.-------, 

(f8) x[wll]:=x[sl]+w[sl]+3 

(f9) y[wll]:=y[sl]+h[sl]+2 

(fl) x[dll]:=x[sl] 

(f3) x[del]:=x[dll]+w[dll] 

(f4) y[dcl]:=y[dll] 

(f5) x[drl]:=x[del]+w[dcl] 

(f6) y[drl]:=y[dcl] 

(t7) w[sl]:=5*h[sl] 

(b) A feature relation network 

(c) An attribute relation network 

Figure 8. Maintenance of data relations 

c=J Feature 

(fn) ... Function 
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Since product realization process can be described by many alternatives, 
and each of these alternatives can be further described by attributes, the 
optimization is conducted at two different levels: attribute optimization level 
and alternative optimization level. First feasible design alternatives, which 
are described by instance features and relevant descriptions, are obtained 
from the AND/OR graph using the method introduced in Section 4.3. For 
each alternative, attribute optimization is carried out to identify the optimal 
attribute values using constrained optimization search. The optimal 
alternative is achieved from all the feasible alternatives at alternative 
optimization level. Many advanced optimization methods, including genetic 
algorithm and simulated annealing, were employed for improving the search 
efficiency and quality (Xue, 1997). 

The objective function selected for optimization is based upon the 
concurrent design requirements. In the previous research for improving 
manufacturability, three types of objective functions have been introduced 
(Xue, Rousseau, and Dong, 1996). They are: (1) production cost function, 
(2) production time function, and, (3) combined cost and time function. 
Suppose production cost and time regarding i-th alternative are represented 
by C;{Ail' Ai], ... , Ain) and T;(Ail' Ai2, ... , Ain) respectively, the objective 
functionj;(Ai/, Ai2, ... , Ain) in Eq. (18) can be represented by one of the three 
functions shown in Table 1. The a and f3 in this table are weighting factors 
between 0 and 1 for representing the importance of production cost and time 
in manufacturability evaluation. 

Table 1. Objective functions considering manufacturability 

Manufacturability Considerations 
Production cost only 
Production time only 
Both production cost and production time 

Objective Functions 

ClAiI, Ai2' ... , Ai,,) 
TlAii• Ail • ...• Ai") 
ai ClAii• Ai2' ... , Ai,,) + (3; TlAiI, Ai2 • ... , Ai,,) 

5. IMPLEMENTATION OF THE INTELLIGENT 
CONCURRENT DESIGN SYSTEM 

The intelligent concurrent design system was implemented using 
Smalltalk, an object oriented programming language (Goldberg and Robson, 
1983), based upon the methods introduced in Section 4. Figure 9 shows the 
architecture of this implemented system. Users of this system are classified 
into two types: knowledge modeling users and product modeling users. The 
knowledge modeling users use two interface windows, Class Feature 
Browser and Rule-Base Browser, to model knowledge libraries including 
class features and rule-bases. The product modeling users use Instance 
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Feature Browser to model product database by generating instance features. 
Instance features are created from class features either manually or through 
rule-based inference. The consistency of the database is maintained by the 
data relation maintenance module using qualitative relations among features 
and quantitative relations among attributes. The optimal design and its 
attribute values considering relevant life-cycle aspects are identified through 
optimization using the optimal design identification module. A snapshot of 
the implemented system is shown in Figure 10. 

Knowledge Base Databasc 

t': 
4) 

Class t': '" ~ 4) 

00 Feature '" .: ~ 
00 

"0 .: -0 
0 0 
:2 "0 

0 

~ :2 
"0 Rule- Relation 0 4) 

~ Base ::s 
Maintenance "0 

0 0 

:2 Browscr Module 
.... 

0.. 

Figure 9. Architecture ofthe intelligent concurrent design system 
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An industrial application for designing building products has also been 
developed for a local industrial company - Gienow Building Products Ltd., 
using the implemented system. 

6. A CASE STUDY EXAMPLE 

In this section, a case study example is given to show how a concurrent 
design is conducted to achieve the optimal design alternative and its attribute 
values using the introduced method. 

The problem is to design a window frame with 2 glass panels. The 
required dimensions for this window are 150 cm by 100 cm. Two design 
candidates, c1 and c2 as shown in Figure 11 (a) and (b), are created from the 
design requirements. The width of the frame material is 5 cm. Through 
strength analysis, the length x must be long enough to support the whole 
window frame based upon the following two constraints: (1) x must be at 
least 20 cm, and (2) x must be greater than 0.035L, where L is the total frame 
length in the 150 cm by 100 cm window area. 

(a) Design alternative: cl (b) Design alternative: c2 

r: requirement 
c: candidate 
mt: material 
a: assembly 
m: machine 
p: person 

(c) An AND/OR tree of product realization process 

Figure II. A case study example 
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Each of these design candidates is produced by processes of material 
ordering and assembly. The assembly process for candidate c1 can be 
conducted using machine mi or m2. Each of these machines can be operated 
by person pi or p2. The assembly process for candidate c2 can be conducted 
by machine m3, which is also operated by pi or p2. The AND/OR graph of 
the product realization process, which is generated through knowledge-based 
reasoning, is illustrated in Figure 11 (c). The nodes in the AND/OR graph 
are described by instance features, which are generated from class features. 
It requires 6 minutes for machine mi, or 3 minutes for machine m2 to 
produce the candidate c1. It requires 6 minutes for machine m3 to produce 
~andidate e2. The unit machine costs and labor costs are given in Table 2. 
The unit cost of material is $O.05/em. 

Table 2. Unit costs for different machines and persons 

Machines and Persons 

ml 
m2 
m3 
pi 
p2 

Unit Costs ($/hour) 

10 
30 
15 
25 
30 

From the ANDIOR tree, six manufacturing alternatives are generated, as 
shown in Table 3. For each alternative, the length attribute x of the frame is 
selected as the variable at the attribute optimization level. The total 
production cost is selected as the objective function to be minimized for this 
problem. Using the cost models introduced in Table 2, the total cost is a 
function of the selected variable attribute for each alternative. 

Table 3. Feasible alternatives and their optimal attribute values 

Alternatives 
1. rl, cl, mtl, ai, ml, pi 
2. rl, cl, mtl, ai, ml, p2 
3. rl, cl, mtl, ai, m2, pi 
4. rl, cl, mtl, ai, m2, p2 
5. rl. c2. mt2. a2. m3. pi 
6. rl, c2, mt2, a2, m3, p2 

Optimal Attribute Values (cm) 
x[clf=21.7 
x[cl]*=21.7 
x[cl]*=21.7 
x[c I ]*=21.7 
x[c21*=20.0 
x[c2f=20.0 

Costs ($) 
38.84 
39.34 
38.09 
38.34 
36.5 
37.0 

The optimal attribute value regarding one alternative is identified using 
constrained optimization. For instance, attribute optimization for the first 
alternative is formulated as: 
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Min cost[mtl}+cost[ml}+cost[pl} 
w.r.t. x[cl) 

= 0.05(620 + x[cJ] * 4) + 6 x 10/60 + 6 x 25/60 

subject to: 

x[cJ]?'20 

x[cJ] ? 0.035 x 620 

The optimal attribute value is achieved as: 

x*[cl] = 21. 7 (cm) 

and the total cost is calculated as $38.84. In the same way, the minimum 
costs for other alternatives are calculated as shown in Table 3. The optimal 
alternative is then identified from all the feasible alternatives. 

7. CONCLUSIONS 

In this research, modeling of knowledge and data for an intelligent 
concurrent design system is discussed. 

The different product life-cycle aspects, including design, manufacturing, 
etc., are modeled by aspect primitives called features. A feature is a 
collection of qualitative and quantitative descriptions and their relations. 
Features are described at two levels, class level and instance level, 
representing product modeling libraries and actual product data, 
respectively. Instance features are generated using class features as their 
templates. The product realization process is modeled by an AND/OR tree. 
Generation of product models is carried out either manually or through 
knowledge-based inference. Rules are used for representing the product 
modeling knowledge and are organized in rule-bases. The qualitative and 
quantitative relations among product life-cycle aspects are maintained by 
two associated networks, the feature relation network and the attribute 
relation network. Any change can be propagated to other parts through these 
two associated networks. The optimal design alternative and its attribute 
values are identified by a multi-level optimization approach. 

The introduced method has greatly improved the product modeling 
efficiency. This approach also provides a platform for developing the next 
generation CAD systems with intelligent concurrent design capabilities. 
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