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Abstract: In this paper we discuss the need for learning in multi-agent design systems, 
and the variety of forms it might take. We propose a particular method of 
guiding learning in these systems, describe an architecture for its 
implementation, and discuss how the learning should be evaluated. 

1. INTRODUCTION 

This paper is concerned with the use of Machine Learning techniques in 
Multi-Agent Design Systems (MADS). It is clear that designers who are 
attempting to solve large and complex design problems require 
computational support, and that some aspects of these designs might be fully 
automatable. MADS have been proposed as a viable approach to building 
such design systems. They offer a variety of advantages, including 
extensibility, the potential for parallel activity, and the capability of acting in 
a distributed manner (Lander 1998). 

In this paper we discuss the need for learning in MADS, and the variety 
of forms it might take. We propose a particular method of guiding learning 
in a MADS, and describe an architecture for its implementation. 
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2. LEARNING IN A MULTI-AGENT DESIGN 
SYSTEM 

2.1 Opportunities for learning 

Multi-agent design systems (MADS) are similar to organisations: their 
performance can be improved. Two characteristics of performance in 
organisations are effectiveness and efficiency (Etzioni 1964). Effectiveness is 
the degree to which the goals of the system are attained, i.e., the quality of 
the solution. Efficiency refers to the amount of resources used to produce the 
result. 

In a MADS, effectiveness is affected by the amount, distribution and use 
of the knowledge in the system, as well as by the accuracy and completeness 
of information exchange. Efficiency is affected by the details of the process 
used, including the number of conflicts, the amount of communication, the 
reasoning approaches selected, and the quality of conflict resolution 
strategies. 

It would be nice if systems that were both highly efficient and highly 
effective could be developed from scratch. However, this is rare. As design 
systems move from addressing small and 'neat' design problems towards 
real-world design tasks, it becomes harder at development time to address 
the range of efficiency and effectiveness issues that the system will 
encounter at run-time. 

Ideally, we would like to have a system where design agents base their 
decisions on all the knowledge that is available in the design system, and 
where they know the possible consequences of every potential decision. The 
utilities associated with these consequences would drive the decision 
selection, and would allow agents to precisely respond to design goals. 

The truth is that agents have only limited information about how other 
agents operate, about their knowledge, and their internal reasoning strategies. 
Within a multi-agent system, it is not possible to anticipate all possible 
interactions between agents a priori. Furthermore, agents typically see only 
the part of the design covered by their domain competence. 

As a result, agents support their decisions based on the knowledge they 
have, and not on the knowledge that is available in the system. Furthermore, 
an agent may sometimes know some of the consequences of a decision it has 
made, but it cannot know or compute all the consequences of its decisions. 
Decisions can be made based on heuristic criteria, and consequences can be 
evaluated. The difference between the ideal and the real setting opens 
opportunities for improvement through learning. 
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Figure I. Agent decision-making in design 

2.2 Dimensions of learning 

In a multi-agent design system there is no single place where learning 
might occur, and no single time for it to occur. Such a system is complex, 
with many types of knowledge and reasoning, many types of interaction, and 
many roles for agents to play. This complexity provides a myriad of 
opportunities for learning (Grecu and Brown 1998a). 

There are several "dimensions" of learning in a design context. For 
example, the triggers of learning might include failure, success, expectation 
violations or a perceived need to improve some aspect of the system. 
Different types of information may support learning. Some of it might be 
available while designing (e.g., critiques), and some after a design is 
produced (e.g., feedback about the design's quality). Some of it is 
communicated directly to the learner (e.g., another agent's design decision), 
while some is collected and available for retrieval (e.g., design traces). 
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Perhaps the most variety is found in what gets learned, i.e., the targets of 
the learning process. These include constraints, dependencies between 
design parameters, plans, preferences, and the consequences of design 
decisions. 

3. FLEXIBLE AGENT LEARNING 

Human problem-solvers do not persist with the same learning task 
forever. They start by identifying areas where they need to change their 
approach to the problems they face. Then they use learning in an attempt to 
acquire knowledge that will allow them to be better at the task. In time, the 
acquired knowledge will lead the problem-solvers to different decisions in 
situations similar to the ones that triggered the learning process in the first 
place. 

The temporary nature of the learning process is highlighted by two 
observations: First, the improved results achieved by the problem solver will 
presumably reduce the need for learning in a specific area, and other areas of 
concern in the problem-solving process may become more important for 
learning. Second, the learning environment changes, as the learned 
knowledge is used. Therefore, the learner will only have a finite opportunity 
to learn from a specific context. . 

These observations establish several requirements and constraints for 
learning design agents. We will refer to them interchangeably as learners and 
agents, to stress their role as both design problem-solvers and adaptive 
entities. 

First, an agent should be able to determine on its own that a specific need 
for learning has occurred. For instance, a design agent may decide that it 
needs information about how particular design and manufacturing choices 
influence the cost of a product, to reduce the number of times products are 
rejected based on cost criteria. While the types of learning needs may be pre­
defined by the implementer of a MADS, for example, "The agent needs to 
learn in response to conflicts", the occurrence of a learning need at run-time 
has to be determined by the agent itself. 

Second, given that the learning scenario is no longer pre-scripted, design 
agents are themselves responsible for identifying the 'ingredients' of a 
learning process: the learning target, e.g., the cost of a component; the 
sources that will provide information to support the learning process, such 
as design and design process parameters, dependencies, and constraints; and, 
the learning strategy, e.g., inductive learning or explanation-based learning. 

Finally, an agent needs to recognize when a learning process should be 
stopped. This may be because no further improvements are achieved through 
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the learning process as it is, or because the information acquired through 
learning does not produce reliable or desired results. 

In summary, agents, like humans, have to display flexibility in learning if 
they are to prove efficient in constantly changing environments. The ability 
to determine the need for learning, the parameters of learning, where and 
what to learn, and the possibility of refocusing on new learning tasks are 
essential for multi-agent design systems. This is especially true when 
attempting to scale up to new problems: sooner or later the system will have 
to operate with knowledge and contexts that were not anticipated when the 
design system was developed. 

In the following we will propose to use expectations as a basis for 
flexible learning in design. We will show how expectations can be acquired 
dynamically, to respond precisely to the requirements we have enumerated 
above. Before we focus on the learning process itself, let us first define 
expectations in the particular context of design, and how expectations are 
used in design. 

4. EXPECTATIONS IN DESIGN 

4.1 The observable world of a design agent 

Design agents have knowledge about the problem domain in which they 
operate and about the agent environment in which they find themselves. The 
very idea of using agents in problem-solving suggests that agents are 
specialized. In mechanical design, for example, an agent's domain can be 
restricted to materials and their physical properties, to assembly operations, 
or to product marketing. The agent's tasks can range from making decisions 
about the design, to critiquing design aspects, or to evaluating design parts. 

Within its 'society' an agent may know about the roles or specializations 
of the agents with which it interacts, about when to act, how to communicate, 
and how to solve conflicts with other agents. However, a realistic approach 
which considers the resources available to an agent would not be able to 
anticipate or to compute the behavior of all the other agents in the system 
(Cherniak 1986; Russell and Wefald 1991). 

We define the observable world of an agent as the collection of features, 
in the design domain and in the agent environment, that the agent can 
'perceive'. The observable world of an agent is delimited epistemologically 
and by the physical nature of the access to information. 

Epistemologically, the observable world of an agent is constrained by the 
agent's specialization and by its limited ability to infer new knowledge. An 
agent that is specialized in material selection may have no use for 
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information about the impact of color on product aesthetics or on marketing. 
Therefore, color aspects of the designed product may not be part of the set of 
concepts used by the material selection agent. Alternatively, even if the 
agent may have the knowledge to reason about how colour impacts aesthetic 
aspects, it may be time constrained in executing a task that has a relatively 
low priority, or requires extensive processing. 

Physical access to information depends on two main factors. If the design 
agents are physically distributed over a network, relevant design or process 
information, such as agent behavior, that may be typically monitored if the 
agents were co-located, may become available only through communication 
with other agents. Second, even if the agents are located on the same 
machine, the notion of agency implies an encapsulation of information that 
makes it invisible outside of an agent, unless deliberately exposed through 
posting or communication. 

4.2 Defining expectations 

Expectations express the belief that an event will happen. More precisely, 
not only that an event might happen, but also the circumstances or 
conditions under which the event will happen. 

Expectations are typically created because limited resources prevent the 
holder of the expectation from establishing a proven causal relationship 
between the set of conditions and the ensuing situation. The considerations 
outlined in discussing the observable world of the agent - time, the factual 
information about the conditions that predict the situation of interest, or the 
knowledge needed to establish the causal connection between the conditions 
and the situation to which the expectation refers - provide the reasons for 
these limited resources. If agents were omniscient and had unlimited 
computational power, expectations would not be needed, since events, 
values and outcomes would be computable in advance. 

In our multi-agent design paradigm, expectations represent the 
knowledge of agents that events will occur in a pre-defined way: design 
parameters will be within specific ranges, responses from other agents will 
arrive within a given amount of time, or decisions will lead to given 
outcomes. Figure 2 shows an example of an expectation, expressed as a rule. 
The conditions for the cost expectation include conditions related to the 
design and to the design agents. 
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The material is hi h carbon steel 
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THEN design agent information 
The component price will exceed $4.50 

""assertion 

Figure 2. Design expectation example 

Expectations have an empirical character, in that often there is no 
deductive connection between the conditions that are observed and the 
situation that is asserted. The absence of the deductive connection is either 
due to the absence of the knowledge that allows to make the necessary 
inferences, or to the unavailability of the resources to carry out the 
computation. 

Expectations are a tentative form of knowledge, which has to be acquired 
dynamically. Consequently, they have to be set up based on the learning 
requirements described in section 3, they have to be monitored and updated, 
and eventually they have to be validated or rejected. 

4.3 Expectation-based design decision making 

In our approach to multi-agent design, expectations are used when a 
design decision is being proposed, and when its consequences are evaluated 
(figure 3). 

Using an expectation while taking a design decision is necessary when a 
piece of information that is a precondition for that decision cannot be or has 
not been inferred. For example, an agent may need to know whether the 
material that will be used in a component is resistant to corrosion. However, 
it may be the case that the agent holds an expectation that provides the 
required information, such as: 

IF 
The material is steel 
The component is chrome plated during manufacturing 

THEN 
The component is corrosion resistant 
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If the conditions for the expectation hold, then the agent can use the 
assertion as a basis for the decision it is about to take. 

Once a decision has been selected, the design agent will evaluate its 
consequences. Again, expectations will bridge the gap of unavailable 
knowledge. An agent may have expectations about the cost range of its 
solutions, and use them to verify that at that point the solution it is about to 
propose will not drive the overall cost above a given limit. If the expectation 
indicates that the constraint will not be satisfied the agent will revise its 
design decision, to prevent a later constraint violation or a conflict. 

modifies 

Design Agent 

influences 

O design 
">'-+-.... decision 

Figure 3. Using expectations in design decision-making 

5. EXPECTATIONS AS A BASIS FOR AGENT 
LEARNING 

In this section we will describe how agents acquire expectations. An 
agent initiates an expectation learning process when it determines that it 
needs information about a design or a design process element. As described 
in the previous section, the need may occur when the agent tries to determine 
whether the conditions for a specific decision are met, or when it tries to 
evaluate the consequences of a decision. The need for information defines 
the assertion of the future expectation, that is the event or parameter that the 
expectation wi II predict. 
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Once the agent decides to acquire an expectation, it proceeds through two 
major phases: learning an initial expectation and monitoring/updating the 
expectation. 

5.1 Learning expectations 

5.1.1 The learning process 

To learn an expectation an agent identifies the conditions that predict the 
event on which the expectation focuses, i.e., the assertion of the expectation. 
This amounts to a causal reasoning process, in which the design agent 
searches its observable world for conditions that might influence the 
assertion. Recent research in understanding the mechanisms that underlie 
causal reasoning has identified two major stages within this process: the use 
of causal mechanisms to delimit a set of candidate of conditions, and the use 
of covariational principles to extract from the candidate conditions the subset 
that is relevant for predicting the assertion (Koslowski 1996). 

Observable 
World 

Other 
agents 

o 

Design Agent 

candidate 
conditions 

covariationa l 
analysis 

determines 
relevant 

conditions and 
their values 

expectation o I+-"'="co=n'"="':;'t,o""'n;""s -------' 

o 

Figure 4. Learning expectations 

Accordingly, a design agent implements a two-stage expectation learning 
(figure 4). In a first stage, the agent uses causal mechanisms to select from 
the external world and from its own domain specific knowledge candidate 
conditions that, in some combination, might affect the expectation assertion. 
Subsequently, these conditions are submitted to a covariational analysis to 
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construct a subset of relevant conditions that are the ones that indeed impact 
the assertion. 

To illustrate this process, figure 5 provides an example of a spring design 
agent that, in the context of deciding the diameter of a spring, needs to 
anticipate the range of the cost of this component. This knowledge need 
triggers the learning of an expectation, which will make an assertion on the 
cost of the component. The agent's causal mechanisms will first set-up a list 
of possible factors (the expectation's conditions) that may impact the cost. In 
doing so, the agent selects its own choice of material - an internal design 
condition, the range of stress and the manufacturing site - external design 
conditions determined by other agents, and the presence of a cost critique 
agent - an external condition that refers to other agents. 

Spring design agent 
( - Selects diameter = 15 mm 

- Needs to know cost of component 

~riggers 

Causal mechanisms 

Select candidate features for expectation: 

aVailabl~ 
- choice of material (internal condition) 
- range of stress (external design condition) 
- manufacturing site (external design condition) 
- presence of cost critique agent (external agent condition) 

2 of training data 
~itiates collection 

Expectation in rule form Covariational analysis 
IF 

material = high carbon steel generates Determines that cost is influenced by 

distance to manufacturing site> 100 km ¢ - choice of material 

critique agent not present - manufacturing site 

THEN - presence of critique agent 

cost> $4.50 

Figure 5. Expectation learning example 

Once the candidate conditions are selected, the agent will collect training 
data for the covariational analysis. The training data is obtained from 
subsequent design sessions in which the design agent records values for the 
expectation conditions, as well as for the expectation assertion, i.e., the cost. 
Based on the training data, the agent eliminates redundant and irrelevant 
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conditions, and generates an expectation in rule form, that now becomes 
available to the design agent. 

5.1.2 Causal mechanisms and covariational analysis 

The causal mechanisms involved in the first stage of the expectation 
learning process playa fundamental role in focusing the learning process. A 
pure covariational process would be simply overwhelmed by the number of 
influence factors it would have to consider. It has been argued that people 
rely only on statistical associations to identify causes and explain events, and 
deviations from this behavior were regarded as cognitive biases (Tversky 
and Kahneman 1974). A significant body of evidence indicates that this is 
the case only when any other evidence or information is lacking. However, 
domain experts tend to go through a causal attribution stage in which they 
use domain specific knowledge to reason about possible causes for an event 
(Hilton 1990; Koslowski 1996; Shultz et al. 1986). 

Design agents being domain experts have access to knowledge that 
allows them to hypothesize possible causes for an event. Dependencies 
between design parameters, either explicitly represented, or represented 
implicitly as constraints represent one source of causal attribution. Actions 
or attributes of agents that include in their domain of expertise the parameter 
to which the expectation assertion refers are another important source. A 
task that computes the parameter present in an expectation assertion can also 
provide causal information, and even more so when the task was divided into 
sub-tasks. 

The covariation analysis is an inductive learning stage in which 
expectations are seen as concepts. The expectation conditions are the 
concept features, while the ranges for the expectation assertion, such as the 
component cost in the previous example, represent the concept classes. The 
inductive learning algorithm attempts to learn a representation for the 
concept. The features of the resulting concept description are the relevant 
conditions that the agent has identified as influencing the occurrence of 
specific assertion ranges, i.e., classes. 

To achieve this learning goal, agents use wrappers for relevant condition 
selection (figure 6). Wrappers (Kohavi and John 1998; Liu and Setiono 
1998) apply an induction algorithm to a training data set. The experiments 
are run by eliminating different sets of features from the training data 
instances. Specifically, wrappers eliminate conditions from the candidate 
condition set. The wrapper method proposes a subset of features that are 
relevant for the identification of a given class. Features are considered 
relevant if their "values vary systemically with category membership" 
(Gennari, Langley, and Fisher 1989). 
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The learner performs a search in the space of subsets of features to 
identify one subset that allows for both a reduced description and good 
prediction of the new expectation that is being learned. The wrapper 
maintains several subsets of candidate features. An accuracy testing 
component determines the performance of each subset, and eliminates or 
adds new subsets offeatures, by providing information to a feature selector. 

Wrappers have the major advantage of being able to work with different 
learning algorithms, as long as the algorithms have the same interface. 
Therefore, the approach provides flexibility in choosing and testing different 
learning algorithms without affecting the agent or the multi-agent system. 
They have also been proven to be effective in pruning large initial sets of 
features (Kohavi and John 1998). Therefore, even if the agent does not have 
a strong set of causal mechanisms for setting up a new expectation, and 
producing a small set of candidate conditions, the wrapper technique can 
partially compensate for this weakness. 
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Feature Relevance 
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Figure 6. Selection of relevant expectation conditions 

5.2 Monitoring expectation validity 

Expectation 
conditions 

Given the fact that expectations are set up empirically, design agents 
need to validate them before using them (figure 7). During the validation 
process an expectation is used to make predictions wherever the expectation 
assertion is needed. The value that was predicted by the expectation is then 
compared with the final value resulting from the design process. If the 
expectation is violated, that is, if the resulting value does not match the 
predicted assertion, the agent needs to review the expectation. 
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Reviewing an expectation implies that the agent will re-initiate the 
training stage of the learning process. It is assumed that the new data will not 
enable the agent to change its causal mechanisms, although the new 
evidence might allow an agent to use knowledge based reasoning to pinpoint 
a particular condition that needs to be changed. For retraining, the agent will 
start to collect additional training instances about the use of the expectation. 
Whenever the expectation is supposed to be used the values of the conditions 
will be recorded together with the value of the assertion resulting from the 
design. The retraining will generate an updated expectation. 

The overall review process is can be repeated for a pre-defined number of 
times. If the expectation does not reach a stable status the agent will drop the 
expectation. 

Detect 
expectation 

violation 

Validate 
expectation 

Collect additional 
instances of 

expectation use 
Retrain 

Figure 7. Monitoring expectation validity 

Eliminate 
expectation 

Several causes can prevent an expectation from being accepted. The 
causal mechanisms can lack sufficient coverage to include important 
discriminating conditions in the candidate set. Another possibility stems 
from the fact that several expectation learning processes can proceed 
simultaneously in several of the agents, thus changing their decisions and 
their behavior. If one of the changing elements associated with an agent is 
included among the conditions of an expectation that is developed by 
another agent, it is likely that this expectations will take a longer time to 
'stabilize', or may lead to it being eliminated. 

6. THE AGENT ARCHITECTURE 

The multi-agent architecture that we use models a group of designers. 
Agents act as design specialists and as group members. There are no agent 
hierarchies or relations between the agents that create rigid 'links' between 
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them. However, the types of interactions between agents are predetermined, 
and they essentially represent the rules that create the group behavior. The 
interactions result dynamically, at run-time, and originate in the problem the 
system attempts to solve. The agents have complete autonomy in organizing 
their actions, with regard to the decisions they take as design specialists, or 
to their interactions with the rest of the group. 

The agent model evolved from the Single Function Agent (SiF A) 
paradigm (Dunskus et al. 1995), and includes specialized, knowledge-based 
design agents with precise functionality. Each agent has a predefined 
function in the design process. The agent types we see as most important are: 

Designers - agents that are responsible for taking design decisions, such 
as selecting values for design parameters, or creating links between 
design components in a configuration process. 
Critics - agents that criticize design aspects, such as design parameter 
values, or weak properties of component configurations. Beyond 
revealing undesirable properties of the design, critics may point out 
constraints or quality requirements that are not met by the design aspect 
on which they focus. 
Praisers - are meant to praise design aspects that rate particularly highly 
from a given point of view. Positive evaluations are important when 
designers have to decide which parts of the design need to be revised and 
which ones should preferably remain unchanged. 
Estimators - produce estimates of design aspects, such as parameters, or 
component types, that are needed in design decisions, but are unavailable 
at that point in the design process. The unavailability is often caused by 
cyclic dependencies and design constraints, where computations cannot 
be ordered such that all the needed elements are computed in previous 
design steps. 
The agent function types are not necessarily limited to the ones 

previously described. The final application domain and the scale of the 
multi-agent system are the factors that ultimately decide the agent types to 
be included in the system. 

All design agents have a restricted area of influence called a "target". The 
target represents the design elements that are the object of an agent's 
functionality. In parametric design problems an agent's target can be as 
narrow as a single design parameter. Several agents, of various 
functionalities, can have overlapping targets. For example, a component 
material can be decided by a designer agent, and can be criticized by two 
different critics. 

Design agents can be classified on a third dimension - their domain of 
specialization. Agents typically group knowledge and heuristics that allow 
them to reason in a particular domain. For example, two critics that target the 
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material of a component can have different domains of specialization, such 
as cost or reliability. 

Design agent 

" / C..;:;:==D=e=S=i g=n=b=oa=r=d===~;;... 

Figure 8. High-level representation ofthe multi-agent design system architecture 

The description given so far covers one of the two main components that 
make up a design agent - the design layer. The knowledge incorporated at 
this level gives the agent the ability to function as an independent design 
specialist. A second layer - the interaction layer - allows the agent to be part 
of the design group. The interaction layer includes the knowledge that is 
necessary to communicate, coordinate and reach agreements with other 
group members (figure 8): 

Coordination: Agents act on a task-centered basis. An agent takes on, or 
'assumes' a task if it decides it can achieve the requirements of the task. 
Once an agent has acquired a task, the scheduling of the task and its 
execution are entirely decided by that agent. An agent can delay the 
execution of a task if it does not have the necessary resources to proceed 
(parameter values, critiques of a given decision, etc.). Agent coordination 
is generated by the computational needs that arise during task execution. 
The coordination module searches for and acquires the information 
needed for the agent's computations. The availability of such information 
can be determined from the current design state or by querying other 
agents. 
Conflict resolution: Conflicts occur mainly due to constraint violations. 
Previous design decisions may have left no choices for subsequent design 
aspects that depend on these decisions. The agents that have over-
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constrained the design and the agent that cannot proceed as a result of 
these constraints have to agree on a set of values that allows them all to 
accomplish their respective tasks. Previous work on single function 
agents has looked extensively into conflict classification (Dunskus et al. 
1995), conflict detection (Berker and Brown 1996), and conflict 
resolution (Brown, Dunskus, and Grecu 1994). The conflict resolution 
strategies that were successfully tested in the SiF A environment are 
reimplemented in the current agent model. 
Communication is implemented using a speech act framework with 
KQML (Finin et al. 1992). Messages include performatives defining the 
permissible actions that an agent can attempt in communicating with 
another agent (e.g., 'ask', 'evaluate', 'reply' etc.). The communication is 
direct, Le., it doesn't use any intermediary facilitation or mediation 
agents. 
The multi-agent design system is implemented in the CLIPS rule-based 

environment (Giarratano and Riley 1998). The machine-learning 
components are based on source code for wrapper techniques and inductive 
learning included in the MLC++ machine learning library (SGI 1996). 

7. THE EVALUATION METHODOLOGY 

Given the flexibility in learning that is made possible in our approach, 
and the potential complexity of the MADS, it is clear that careful attention 
needs to be given to the evaluation of the impact of learning on the design 
system (Grecu and Brown 1998b). A number of issues need to be considered 
for the evaluation. 

The first issue focuses on the sets of features in the design environment 
that are 'perceived' by the agents, that is, the observable world of each agent. 
The learning result will significantly depend on the features available to the 
agents. The features in the design environment that are visible to an agent 
will determine the subset that eventually gets selected by the learning 
component to represent new expectations. 

The causal mechanisms for selecting candidate conditions represent a 
second major validation topic. Causal mechanisms strongly bias the learning 
process. A large set of initial candidate conditions will transfer part of the 
learning bias toward the covariational analysis, and relies on the latter's 
ability to filter out conditions in a domain-independent way. On the other 
hand, a restrictive, low-level set of causal mechanisms, that cope with very 
narrow situations, may forfeit the chance to develop an expectation, given 
that critical information may be omitted from the very beginning. 
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The covariational analysis has three factors that influence the final 
definition of the expectation. The learning algorithm used has to suit the 
types of features selected by the causal mechanisms, and its selection 
depends of the size of the training set that is being provided. Second, the 
candidate conditions can be generated and refined using several techniques, 
such as hill-climbing. And, finally, various criteria of relevance can be used, 
including the accuracy and the size of the feature subset. All of the three 
factors need an estimate and an analysis of adequacy for the class of design 
problems that are being approached. 

The expectation validation process itself has several parameters open to 
validation. The amount of training instances that are acquired before the 
expectation is revised determines the 'granularity' of the expectation 
revision. It has to be coordinated with the number of times expectation 
revisions are accepted, such that the decision to eliminate an expectation 
corresponds to the learning limits of the agent with respect to the design 
environment, and not to weak stabilization criteria. 

Although not directly included in the learning process itself, but 
nevertheless of considerable impact, are the criteria that determine whether 
and when an agent decides to acquire an expectation. This directly 
influences the number of learning processes that will be active. It is also 
critical in preventing an agent from acquiring irrelevant knowledge that 
would impede on its decision making rather than enhancing it. 

A problem directly related to the number of expectations that are 
simultaneously learned is the potential interference between learning 
processes, as described in section 5.3. The focus here lies on the differences 
between a set of expectations learned and revised sequentially, and the same 
set of expectations learned concurrently, with a lower rate of stabilization. 

Finally, learning needs to be evaluated with respect to the objectives of 
the design problem. The evaluation has to answer whether design aspects 
have been improved, and/or whether the design process has become more 
efficient, for example, by generating fewer conflicts, or less backtracking 
cases. 

8. CONCLUSIONS 

There are several important aspects of the approach to guiding learning in 
MADS that have been presented here. The first, and most general idea, is 
that learning is distributed throughout the MADS, and that learning can 
occur independently and concurrently. 
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The second is that the learning activity is temporary, in the sense that 
learning is active at a particular location in the MADS until the learning 
result has been validated or eliminated. 

The third important aspect is that learning processes shift around the 
system at run time in response to the agents' information needs. These 
patterns of activating learning processes are affected by the design problems 
approached and by their requirements. In addition, given the same design 
problems, it is clear that the learned expectations will be different depending 
on the agents that are present in the system. 

The manipulation of the expectation learning parameters discussed in the 
last two sections offers the possibility of experimentation with learning in a 
MADS. The use of wrappers strongly supports the flexibility of the learning 
methodology, and allows Machine Learning experiments to be carried out to 
determine the effect of different algorithms. 

We believe that learning in MADS is an important and necessary area of 
investigation that will ensure the effectiveness and efficiency of future 
design systems. The approach we have described for guiding learning in 
multi-agent design systems provides the flexibility needed to take advantage 
of the power of learning and to dynamically target it to areas that need it in 
the MADS. We are experimenting with our approach and details of its 
performance will be described in future articles. 
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