
13

Guiding Agent Learning in Design

Dan L. Grecu & David C. Brown
Worcester Polytechnic Institute, Worcester, MA 01609, USA

Key words: machine learning, multi-agent systems, expectations

Abstract: In this paper we discuss the need for learning in multi-agent design systems,
and the variety of forms it might take. We propose a particular method of
guiding learning in these systems, describe an architecture for its
implementation, and discuss how the learning should be evaluated.

1. INTRODUCTION

This paper is concerned with the use of Machine Learning techniques in
Multi-Agent Design Systems (MADS). It is clear that designers who are
attempting to solve large and complex design problems require
computational support, and that some aspects of these designs might be fully
automatable. MADS have been proposed as a viable approach to building
such design systems. They offer a variety of advantages, including
extensibility, the potential for parallel activity, and the capability of acting in
a distributed manner (Lander 1998).

In this paper we discuss the need for learning in MADS, and the variety
of forms it might take. We propose a particular method of guiding learning
in a MADS, and describe an architecture for its implementation.

S. Finger et al. (eds.), Knowledge Intensive Computer Aided Design
© Springer Science+Business Media New York 2000

276 Knowledge Intensive Computer Aided Design

2. LEARNING IN A MULTI-AGENT DESIGN
SYSTEM

2.1 Opportunities for learning

Multi-agent design systems (MADS) are similar to organisations: their
performance can be improved. Two characteristics of performance in
organisations are effectiveness and efficiency (Etzioni 1964). Effectiveness is
the degree to which the goals of the system are attained, i.e., the quality of
the solution. Efficiency refers to the amount of resources used to produce the
result.

In a MADS, effectiveness is affected by the amount, distribution and use
of the knowledge in the system, as well as by the accuracy and completeness
of information exchange. Efficiency is affected by the details of the process
used, including the number of conflicts, the amount of communication, the
reasoning approaches selected, and the quality of conflict resolution
strategies.

It would be nice if systems that were both highly efficient and highly
effective could be developed from scratch. However, this is rare. As design
systems move from addressing small and 'neat' design problems towards
real-world design tasks, it becomes harder at development time to address
the range of efficiency and effectiveness issues that the system will
encounter at run-time.

Ideally, we would like to have a system where design agents base their
decisions on all the knowledge that is available in the design system, and
where they know the possible consequences of every potential decision. The
utilities associated with these consequences would drive the decision
selection, and would allow agents to precisely respond to design goals.

The truth is that agents have only limited information about how other
agents operate, about their knowledge, and their internal reasoning strategies.
Within a multi-agent system, it is not possible to anticipate all possible
interactions between agents a priori. Furthermore, agents typically see only
the part of the design covered by their domain competence.

As a result, agents support their decisions based on the knowledge they
have, and not on the knowledge that is available in the system. Furthermore,
an agent may sometimes know some of the consequences of a decision it has
made, but it cannot know or compute all the consequences of its decisions.
Decisions can be made based on heuristic criteria, and consequences can be
evaluated. The difference between the ideal and the real setting opens
opportunities for improvement through learning.

Guiding Agent Learning in Design 277

Ideal World Real World

8 Other e Other
agents agents

Information Partial Information

...o..receives ...0.. receives

Knows consequences Has limited knowledge
DESIGN of every design decision DESIGN to support its decisions
AGENT in any design state and AGENT and limited knowledge ..

for any set of agents about their consequences

...0.. computes ...0.. computes

Design decision Design decision
selected based on selected based on
utility criteria heuristic criteria

...0.. analyzes

DESIGN
Evaluates decision
consequences and

AGENT updates knowledge

Figure I. Agent decision-making in design

2.2 Dimensions of learning

In a multi-agent design system there is no single place where learning
might occur, and no single time for it to occur. Such a system is complex,
with many types of knowledge and reasoning, many types of interaction, and
many roles for agents to play. This complexity provides a myriad of
opportunities for learning (Grecu and Brown 1998a).

There are several "dimensions" of learning in a design context. For
example, the triggers of learning might include failure, success, expectation
violations or a perceived need to improve some aspect of the system.
Different types of information may support learning. Some of it might be
available while designing (e.g., critiques), and some after a design is
produced (e.g., feedback about the design's quality). Some of it is
communicated directly to the learner (e.g., another agent's design decision),
while some is collected and available for retrieval (e.g., design traces).

278 Knowledge Intensive Computer Aided Design

Perhaps the most variety is found in what gets learned, i.e., the targets of
the learning process. These include constraints, dependencies between
design parameters, plans, preferences, and the consequences of design
decisions.

3. FLEXIBLE AGENT LEARNING

Human problem-solvers do not persist with the same learning task
forever. They start by identifying areas where they need to change their
approach to the problems they face. Then they use learning in an attempt to
acquire knowledge that will allow them to be better at the task. In time, the
acquired knowledge will lead the problem-solvers to different decisions in
situations similar to the ones that triggered the learning process in the first
place.

The temporary nature of the learning process is highlighted by two
observations: First, the improved results achieved by the problem solver will
presumably reduce the need for learning in a specific area, and other areas of
concern in the problem-solving process may become more important for
learning. Second, the learning environment changes, as the learned
knowledge is used. Therefore, the learner will only have a finite opportunity
to learn from a specific context. .

These observations establish several requirements and constraints for
learning design agents. We will refer to them interchangeably as learners and
agents, to stress their role as both design problem-solvers and adaptive
entities.

First, an agent should be able to determine on its own that a specific need
for learning has occurred. For instance, a design agent may decide that it
needs information about how particular design and manufacturing choices
influence the cost of a product, to reduce the number of times products are
rejected based on cost criteria. While the types of learning needs may be pre­
defined by the implementer of a MADS, for example, "The agent needs to
learn in response to conflicts", the occurrence of a learning need at run-time
has to be determined by the agent itself.

Second, given that the learning scenario is no longer pre-scripted, design
agents are themselves responsible for identifying the 'ingredients' of a
learning process: the learning target, e.g., the cost of a component; the
sources that will provide information to support the learning process, such
as design and design process parameters, dependencies, and constraints; and,
the learning strategy, e.g., inductive learning or explanation-based learning.

Finally, an agent needs to recognize when a learning process should be
stopped. This may be because no further improvements are achieved through

Guiding Agent Learning in Design 279

the learning process as it is, or because the information acquired through
learning does not produce reliable or desired results.

In summary, agents, like humans, have to display flexibility in learning if
they are to prove efficient in constantly changing environments. The ability
to determine the need for learning, the parameters of learning, where and
what to learn, and the possibility of refocusing on new learning tasks are
essential for multi-agent design systems. This is especially true when
attempting to scale up to new problems: sooner or later the system will have
to operate with knowledge and contexts that were not anticipated when the
design system was developed.

In the following we will propose to use expectations as a basis for
flexible learning in design. We will show how expectations can be acquired
dynamically, to respond precisely to the requirements we have enumerated
above. Before we focus on the learning process itself, let us first define
expectations in the particular context of design, and how expectations are
used in design.

4. EXPECTATIONS IN DESIGN

4.1 The observable world of a design agent

Design agents have knowledge about the problem domain in which they
operate and about the agent environment in which they find themselves. The
very idea of using agents in problem-solving suggests that agents are
specialized. In mechanical design, for example, an agent's domain can be
restricted to materials and their physical properties, to assembly operations,
or to product marketing. The agent's tasks can range from making decisions
about the design, to critiquing design aspects, or to evaluating design parts.

Within its 'society' an agent may know about the roles or specializations
of the agents with which it interacts, about when to act, how to communicate,
and how to solve conflicts with other agents. However, a realistic approach
which considers the resources available to an agent would not be able to
anticipate or to compute the behavior of all the other agents in the system
(Cherniak 1986; Russell and Wefald 1991).

We define the observable world of an agent as the collection of features,
in the design domain and in the agent environment, that the agent can
'perceive'. The observable world of an agent is delimited epistemologically
and by the physical nature of the access to information.

Epistemologically, the observable world of an agent is constrained by the
agent's specialization and by its limited ability to infer new knowledge. An
agent that is specialized in material selection may have no use for

280 Knowledge Intensive Computer Aided Design

information about the impact of color on product aesthetics or on marketing.
Therefore, color aspects of the designed product may not be part of the set of
concepts used by the material selection agent. Alternatively, even if the
agent may have the knowledge to reason about how colour impacts aesthetic
aspects, it may be time constrained in executing a task that has a relatively
low priority, or requires extensive processing.

Physical access to information depends on two main factors. If the design
agents are physically distributed over a network, relevant design or process
information, such as agent behavior, that may be typically monitored if the
agents were co-located, may become available only through communication
with other agents. Second, even if the agents are located on the same
machine, the notion of agency implies an encapsulation of information that
makes it invisible outside of an agent, unless deliberately exposed through
posting or communication.

4.2 Defining expectations

Expectations express the belief that an event will happen. More precisely,
not only that an event might happen, but also the circumstances or
conditions under which the event will happen.

Expectations are typically created because limited resources prevent the
holder of the expectation from establishing a proven causal relationship
between the set of conditions and the ensuing situation. The considerations
outlined in discussing the observable world of the agent - time, the factual
information about the conditions that predict the situation of interest, or the
knowledge needed to establish the causal connection between the conditions
and the situation to which the expectation refers - provide the reasons for
these limited resources. If agents were omniscient and had unlimited
computational power, expectations would not be needed, since events,
values and outcomes would be computable in advance.

In our multi-agent design paradigm, expectations represent the
knowledge of agents that events will occur in a pre-defined way: design
parameters will be within specific ranges, responses from other agents will
arrive within a given amount of time, or decisions will lead to given
outcomes. Figure 2 shows an example of an expectation, expressed as a rule.
The conditions for the cost expectation include conditions related to the
design and to the design agents.

Guiding Agent Learning in Design

conditions
design information

IF,-__________ ~ ________ ~'-~
The material is hi h carbon steel
Manufacturing is at a remote site (> 100 km)
There is no cost a ent present

281

THEN design agent information
The component price will exceed $4.50

""assertion

Figure 2. Design expectation example

Expectations have an empirical character, in that often there is no
deductive connection between the conditions that are observed and the
situation that is asserted. The absence of the deductive connection is either
due to the absence of the knowledge that allows to make the necessary
inferences, or to the unavailability of the resources to carry out the
computation.

Expectations are a tentative form of knowledge, which has to be acquired
dynamically. Consequently, they have to be set up based on the learning
requirements described in section 3, they have to be monitored and updated,
and eventually they have to be validated or rejected.

4.3 Expectation-based design decision making

In our approach to multi-agent design, expectations are used when a
design decision is being proposed, and when its consequences are evaluated
(figure 3).

Using an expectation while taking a design decision is necessary when a
piece of information that is a precondition for that decision cannot be or has
not been inferred. For example, an agent may need to know whether the
material that will be used in a component is resistant to corrosion. However,
it may be the case that the agent holds an expectation that provides the
required information, such as:

IF
The material is steel
The component is chrome plated during manufacturing

THEN
The component is corrosion resistant

282 Knowledge intensive Computer Aided Design

If the conditions for the expectation hold, then the agent can use the
assertion as a basis for the decision it is about to take.

Once a decision has been selected, the design agent will evaluate its
consequences. Again, expectations will bridge the gap of unavailable
knowledge. An agent may have expectations about the cost range of its
solutions, and use them to verify that at that point the solution it is about to
propose will not drive the overall cost above a given limit. If the expectation
indicates that the constraint will not be satisfied the agent will revise its
design decision, to prevent a later constraint violation or a conflict.

modifies

Design Agent

influences

O design
">'-+-.... decision

Figure 3. Using expectations in design decision-making

5. EXPECTATIONS AS A BASIS FOR AGENT
LEARNING

In this section we will describe how agents acquire expectations. An
agent initiates an expectation learning process when it determines that it
needs information about a design or a design process element. As described
in the previous section, the need may occur when the agent tries to determine
whether the conditions for a specific decision are met, or when it tries to
evaluate the consequences of a decision. The need for information defines
the assertion of the future expectation, that is the event or parameter that the
expectation wi II predict.

Guiding Agent Learning in Design 283

Once the agent decides to acquire an expectation, it proceeds through two
major phases: learning an initial expectation and monitoring/updating the
expectation.

5.1 Learning expectations

5.1.1 The learning process

To learn an expectation an agent identifies the conditions that predict the
event on which the expectation focuses, i.e., the assertion of the expectation.
This amounts to a causal reasoning process, in which the design agent
searches its observable world for conditions that might influence the
assertion. Recent research in understanding the mechanisms that underlie
causal reasoning has identified two major stages within this process: the use
of causal mechanisms to delimit a set of candidate of conditions, and the use
of covariational principles to extract from the candidate conditions the subset
that is relevant for predicting the assertion (Koslowski 1996).

Observable
World

Other
agents

o

Design Agent

candidate
conditions

covariationa l
analysis

determines
relevant

conditions and
their values

expectation o I+-"'="co=n'"="':;'t,o""'n;""s -------'

o

Figure 4. Learning expectations

Accordingly, a design agent implements a two-stage expectation learning
(figure 4). In a first stage, the agent uses causal mechanisms to select from
the external world and from its own domain specific knowledge candidate
conditions that, in some combination, might affect the expectation assertion.
Subsequently, these conditions are submitted to a covariational analysis to

284 Knowledge Intensive Computer Aided Design

construct a subset of relevant conditions that are the ones that indeed impact
the assertion.

To illustrate this process, figure 5 provides an example of a spring design
agent that, in the context of deciding the diameter of a spring, needs to
anticipate the range of the cost of this component. This knowledge need
triggers the learning of an expectation, which will make an assertion on the
cost of the component. The agent's causal mechanisms will first set-up a list
of possible factors (the expectation's conditions) that may impact the cost. In
doing so, the agent selects its own choice of material - an internal design
condition, the range of stress and the manufacturing site - external design
conditions determined by other agents, and the presence of a cost critique
agent - an external condition that refers to other agents.

Spring design agent
(- Selects diameter = 15 mm

- Needs to know cost of component

~riggers

Causal mechanisms

Select candidate features for expectation:

aVailabl~
- choice of material (internal condition)
- range of stress (external design condition)
- manufacturing site (external design condition)
- presence of cost critique agent (external agent condition)

2 of training data
~itiates collection

Expectation in rule form Covariational analysis
IF

material = high carbon steel generates Determines that cost is influenced by

distance to manufacturing site> 100 km ¢ - choice of material

critique agent not present - manufacturing site

THEN - presence of critique agent

cost> $4.50

Figure 5. Expectation learning example

Once the candidate conditions are selected, the agent will collect training
data for the covariational analysis. The training data is obtained from
subsequent design sessions in which the design agent records values for the
expectation conditions, as well as for the expectation assertion, i.e., the cost.
Based on the training data, the agent eliminates redundant and irrelevant

Guiding Agent Learning in Design 285

conditions, and generates an expectation in rule form, that now becomes
available to the design agent.

5.1.2 Causal mechanisms and covariational analysis

The causal mechanisms involved in the first stage of the expectation
learning process playa fundamental role in focusing the learning process. A
pure covariational process would be simply overwhelmed by the number of
influence factors it would have to consider. It has been argued that people
rely only on statistical associations to identify causes and explain events, and
deviations from this behavior were regarded as cognitive biases (Tversky
and Kahneman 1974). A significant body of evidence indicates that this is
the case only when any other evidence or information is lacking. However,
domain experts tend to go through a causal attribution stage in which they
use domain specific knowledge to reason about possible causes for an event
(Hilton 1990; Koslowski 1996; Shultz et al. 1986).

Design agents being domain experts have access to knowledge that
allows them to hypothesize possible causes for an event. Dependencies
between design parameters, either explicitly represented, or represented
implicitly as constraints represent one source of causal attribution. Actions
or attributes of agents that include in their domain of expertise the parameter
to which the expectation assertion refers are another important source. A
task that computes the parameter present in an expectation assertion can also
provide causal information, and even more so when the task was divided into
sub-tasks.

The covariation analysis is an inductive learning stage in which
expectations are seen as concepts. The expectation conditions are the
concept features, while the ranges for the expectation assertion, such as the
component cost in the previous example, represent the concept classes. The
inductive learning algorithm attempts to learn a representation for the
concept. The features of the resulting concept description are the relevant
conditions that the agent has identified as influencing the occurrence of
specific assertion ranges, i.e., classes.

To achieve this learning goal, agents use wrappers for relevant condition
selection (figure 6). Wrappers (Kohavi and John 1998; Liu and Setiono
1998) apply an induction algorithm to a training data set. The experiments
are run by eliminating different sets of features from the training data
instances. Specifically, wrappers eliminate conditions from the candidate
condition set. The wrapper method proposes a subset of features that are
relevant for the identification of a given class. Features are considered
relevant if their "values vary systemically with category membership"
(Gennari, Langley, and Fisher 1989).

286 Knowledge Intensive Computer Aided Design

The learner performs a search in the space of subsets of features to
identify one subset that allows for both a reduced description and good
prediction of the new expectation that is being learned. The wrapper
maintains several subsets of candidate features. An accuracy testing
component determines the performance of each subset, and eliminates or
adds new subsets offeatures, by providing information to a feature selector.

Wrappers have the major advantage of being able to work with different
learning algorithms, as long as the algorithms have the same interface.
Therefore, the approach provides flexibility in choosing and testing different
learning algorithms without affecting the agent or the multi-agent system.
They have also been proven to be effective in pruning large initial sets of
features (Kohavi and John 1998). Therefore, even if the agent does not have
a strong set of causal mechanisms for setting up a new expectation, and
producing a small set of candidate conditions, the wrapper technique can
partially compensate for this weakness.

Candidate
conditions

0
I§I

0

Ell ~

0

II

lD

Covariational analysis

Wrapper

Inductive learning
algorithm

i ~
Feature Relevance

selection .- testing
heuristics

Figure 6. Selection of relevant expectation conditions

5.2 Monitoring expectation validity

Expectation
conditions

Given the fact that expectations are set up empirically, design agents
need to validate them before using them (figure 7). During the validation
process an expectation is used to make predictions wherever the expectation
assertion is needed. The value that was predicted by the expectation is then
compared with the final value resulting from the design process. If the
expectation is violated, that is, if the resulting value does not match the
predicted assertion, the agent needs to review the expectation.

Guiding Agent Learning in Design 287

Reviewing an expectation implies that the agent will re-initiate the
training stage of the learning process. It is assumed that the new data will not
enable the agent to change its causal mechanisms, although the new
evidence might allow an agent to use knowledge based reasoning to pinpoint
a particular condition that needs to be changed. For retraining, the agent will
start to collect additional training instances about the use of the expectation.
Whenever the expectation is supposed to be used the values of the conditions
will be recorded together with the value of the assertion resulting from the
design. The retraining will generate an updated expectation.

The overall review process is can be repeated for a pre-defined number of
times. If the expectation does not reach a stable status the agent will drop the
expectation.

Detect
expectation

violation

Validate
expectation

Collect additional
instances of

expectation use
Retrain

Figure 7. Monitoring expectation validity

Eliminate
expectation

Several causes can prevent an expectation from being accepted. The
causal mechanisms can lack sufficient coverage to include important
discriminating conditions in the candidate set. Another possibility stems
from the fact that several expectation learning processes can proceed
simultaneously in several of the agents, thus changing their decisions and
their behavior. If one of the changing elements associated with an agent is
included among the conditions of an expectation that is developed by
another agent, it is likely that this expectations will take a longer time to
'stabilize', or may lead to it being eliminated.

6. THE AGENT ARCHITECTURE

The multi-agent architecture that we use models a group of designers.
Agents act as design specialists and as group members. There are no agent
hierarchies or relations between the agents that create rigid 'links' between

288 Knowledge Intensive Computer Aided Design

them. However, the types of interactions between agents are predetermined,
and they essentially represent the rules that create the group behavior. The
interactions result dynamically, at run-time, and originate in the problem the
system attempts to solve. The agents have complete autonomy in organizing
their actions, with regard to the decisions they take as design specialists, or
to their interactions with the rest of the group.

The agent model evolved from the Single Function Agent (SiF A)
paradigm (Dunskus et al. 1995), and includes specialized, knowledge-based
design agents with precise functionality. Each agent has a predefined
function in the design process. The agent types we see as most important are:

Designers - agents that are responsible for taking design decisions, such
as selecting values for design parameters, or creating links between
design components in a configuration process.
Critics - agents that criticize design aspects, such as design parameter
values, or weak properties of component configurations. Beyond
revealing undesirable properties of the design, critics may point out
constraints or quality requirements that are not met by the design aspect
on which they focus.
Praisers - are meant to praise design aspects that rate particularly highly
from a given point of view. Positive evaluations are important when
designers have to decide which parts of the design need to be revised and
which ones should preferably remain unchanged.
Estimators - produce estimates of design aspects, such as parameters, or
component types, that are needed in design decisions, but are unavailable
at that point in the design process. The unavailability is often caused by
cyclic dependencies and design constraints, where computations cannot
be ordered such that all the needed elements are computed in previous
design steps.
The agent function types are not necessarily limited to the ones

previously described. The final application domain and the scale of the
multi-agent system are the factors that ultimately decide the agent types to
be included in the system.

All design agents have a restricted area of influence called a "target". The
target represents the design elements that are the object of an agent's
functionality. In parametric design problems an agent's target can be as
narrow as a single design parameter. Several agents, of various
functionalities, can have overlapping targets. For example, a component
material can be decided by a designer agent, and can be criticized by two
different critics.

Design agents can be classified on a third dimension - their domain of
specialization. Agents typically group knowledge and heuristics that allow
them to reason in a particular domain. For example, two critics that target the

Guiding Agent Learning in Design 289

material of a component can have different domains of specialization, such
as cost or reliability.

Design agent

" / C..;:;:==D=e=S=i g=n=b=oa=r=d===~;;...

Figure 8. High-level representation ofthe multi-agent design system architecture

The description given so far covers one of the two main components that
make up a design agent - the design layer. The knowledge incorporated at
this level gives the agent the ability to function as an independent design
specialist. A second layer - the interaction layer - allows the agent to be part
of the design group. The interaction layer includes the knowledge that is
necessary to communicate, coordinate and reach agreements with other
group members (figure 8):

Coordination: Agents act on a task-centered basis. An agent takes on, or
'assumes' a task if it decides it can achieve the requirements of the task.
Once an agent has acquired a task, the scheduling of the task and its
execution are entirely decided by that agent. An agent can delay the
execution of a task if it does not have the necessary resources to proceed
(parameter values, critiques of a given decision, etc.). Agent coordination
is generated by the computational needs that arise during task execution.
The coordination module searches for and acquires the information
needed for the agent's computations. The availability of such information
can be determined from the current design state or by querying other
agents.
Conflict resolution: Conflicts occur mainly due to constraint violations.
Previous design decisions may have left no choices for subsequent design
aspects that depend on these decisions. The agents that have over-

290 Knowledge Intensive Computer Aided Design

constrained the design and the agent that cannot proceed as a result of
these constraints have to agree on a set of values that allows them all to
accomplish their respective tasks. Previous work on single function
agents has looked extensively into conflict classification (Dunskus et al.
1995), conflict detection (Berker and Brown 1996), and conflict
resolution (Brown, Dunskus, and Grecu 1994). The conflict resolution
strategies that were successfully tested in the SiF A environment are
reimplemented in the current agent model.
Communication is implemented using a speech act framework with
KQML (Finin et al. 1992). Messages include performatives defining the
permissible actions that an agent can attempt in communicating with
another agent (e.g., 'ask', 'evaluate', 'reply' etc.). The communication is
direct, Le., it doesn't use any intermediary facilitation or mediation
agents.
The multi-agent design system is implemented in the CLIPS rule-based

environment (Giarratano and Riley 1998). The machine-learning
components are based on source code for wrapper techniques and inductive
learning included in the MLC++ machine learning library (SGI 1996).

7. THE EVALUATION METHODOLOGY

Given the flexibility in learning that is made possible in our approach,
and the potential complexity of the MADS, it is clear that careful attention
needs to be given to the evaluation of the impact of learning on the design
system (Grecu and Brown 1998b). A number of issues need to be considered
for the evaluation.

The first issue focuses on the sets of features in the design environment
that are 'perceived' by the agents, that is, the observable world of each agent.
The learning result will significantly depend on the features available to the
agents. The features in the design environment that are visible to an agent
will determine the subset that eventually gets selected by the learning
component to represent new expectations.

The causal mechanisms for selecting candidate conditions represent a
second major validation topic. Causal mechanisms strongly bias the learning
process. A large set of initial candidate conditions will transfer part of the
learning bias toward the covariational analysis, and relies on the latter's
ability to filter out conditions in a domain-independent way. On the other
hand, a restrictive, low-level set of causal mechanisms, that cope with very
narrow situations, may forfeit the chance to develop an expectation, given
that critical information may be omitted from the very beginning.

Guiding Agent Learning in Design 291

The covariational analysis has three factors that influence the final
definition of the expectation. The learning algorithm used has to suit the
types of features selected by the causal mechanisms, and its selection
depends of the size of the training set that is being provided. Second, the
candidate conditions can be generated and refined using several techniques,
such as hill-climbing. And, finally, various criteria of relevance can be used,
including the accuracy and the size of the feature subset. All of the three
factors need an estimate and an analysis of adequacy for the class of design
problems that are being approached.

The expectation validation process itself has several parameters open to
validation. The amount of training instances that are acquired before the
expectation is revised determines the 'granularity' of the expectation
revision. It has to be coordinated with the number of times expectation
revisions are accepted, such that the decision to eliminate an expectation
corresponds to the learning limits of the agent with respect to the design
environment, and not to weak stabilization criteria.

Although not directly included in the learning process itself, but
nevertheless of considerable impact, are the criteria that determine whether
and when an agent decides to acquire an expectation. This directly
influences the number of learning processes that will be active. It is also
critical in preventing an agent from acquiring irrelevant knowledge that
would impede on its decision making rather than enhancing it.

A problem directly related to the number of expectations that are
simultaneously learned is the potential interference between learning
processes, as described in section 5.3. The focus here lies on the differences
between a set of expectations learned and revised sequentially, and the same
set of expectations learned concurrently, with a lower rate of stabilization.

Finally, learning needs to be evaluated with respect to the objectives of
the design problem. The evaluation has to answer whether design aspects
have been improved, and/or whether the design process has become more
efficient, for example, by generating fewer conflicts, or less backtracking
cases.

8. CONCLUSIONS

There are several important aspects of the approach to guiding learning in
MADS that have been presented here. The first, and most general idea, is
that learning is distributed throughout the MADS, and that learning can
occur independently and concurrently.

292 Knowledge Intensive Computer Aided Design

The second is that the learning activity is temporary, in the sense that
learning is active at a particular location in the MADS until the learning
result has been validated or eliminated.

The third important aspect is that learning processes shift around the
system at run time in response to the agents' information needs. These
patterns of activating learning processes are affected by the design problems
approached and by their requirements. In addition, given the same design
problems, it is clear that the learned expectations will be different depending
on the agents that are present in the system.

The manipulation of the expectation learning parameters discussed in the
last two sections offers the possibility of experimentation with learning in a
MADS. The use of wrappers strongly supports the flexibility of the learning
methodology, and allows Machine Learning experiments to be carried out to
determine the effect of different algorithms.

We believe that learning in MADS is an important and necessary area of
investigation that will ensure the effectiveness and efficiency of future
design systems. The approach we have described for guiding learning in
multi-agent design systems provides the flexibility needed to take advantage
of the power of learning and to dynamically target it to areas that need it in
the MADS. We are experimenting with our approach and details of its
performance will be described in future articles.

REFERENCES

Berker, I., and D.C. Brown (1996). Conflict and negotiations in single
function agent based design systems. Concurrent Engineering:
Research and Applications. Special issue on Multi-Agent Systems in
Concurrent Engineering, D.C. Brown, S. Lander, and C. Petrie (eds.)
(1):17-3.

Brown, D.C., B. Dunskus, and D. Grecu (1994). Using Single Function
Agents to Investigate Negotiations. AAAI-94 Workshop on Models of
Conflict Management in Cooperative Problem Solving, Seattle, W A.

Cherniak, C. (1986). Minimal Rationality. Cambridge, MA: The MIT
Press.

Dunskus, B.V., D.L. Grecu, D.C. Brown, and I. Berker (1995). Using
Single Function Agents to Investigate Conflict. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing. Special issue on
Conflict Management in Design, I. Smith (ed.). 9:299-312.

Etzioni, A. (1964). Modern Organizations. Englewood Cliffs, NJ:
Prentice Hall.

Guiding Agent Learning in Design 293

Finin, T., J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, J.
McGuire, D. McKay, C. Shapiro, W. Pelavin, and S. Beck. (1992).
Specification of the KQML Agent Communication Language:
Enterprise Integratrion Technologies, Inc.

Gennari, J.H., P. Langley, and D. Fisher. (1989). Models of incremental
concept formation. Artificial Intelligence 40: 11-61.

Giarratano, J.C., and G. Riley. 1998. CLIPS Reference Manual: PWS
Publishing Co.

Grecu, D.L., and D.C. Brown (1998). Dimensions of Learning in Design.
Artificial Intelligence for Engineering Design, Analysis and
Manufacturing. Special issue on Machine Learning in Design, A.H.B.
Duffy, D.C. Brown, and A.K. Goel (eds.) 12 (April):117-122.

Grecu, D.L., and D.C. Brown (1998). Evaluating the Impact of
Distributed Learning in Real-World Design Problems. Workshop on
Machine Learning in Design (5th International Conference on
Artificial Intelligence in Design), Lisbon, Portugal.

Hilton, DJ. (1990). Conversational Processes and Causal Explanation.
Psychological Bulletin 107 (1):65-81.

Kohavi, R., and G.H. John (1998). Wrappers for Feature Subset Selection.
ArtifiCial Intelligence 97 (1-2):273-324.

Koslowski, B. (1996). Theory and Evidence: The Development of
Scientific Reasoning. Edited by L. Gleitman, S. Carey, E. Newport and
E. Spelke, Learning, Development, and Conceptual Change.
Cambridge, MA and London, UK: The MIT Press.

Lander, S. (1998). Issues in Multiagent Design Systems. IEEE Expert: 18-
26.

Liu, H., and R. Setiono (1998). Incremental Feature Selection. Applied
Intelligence.

Russell, S., and E. Wefald (1991). Do the Right Thing - Studies in
Limited Rationality. Cambridge, MA: The MIT Press.

SGI (1996). MLC++ Utilities: Silicon Graphics.
Shultz, T.R., G.W. Fisher, C.C. Pratt, and S. Rulf (1986). Selection of

Causal Rules. Child Development 57:143-152.
Tversky, A., and D. Kahneman (1974). Judgment under uncertainty:

heuristics and biases. Science 185: 1124-1131.

