
FROM SIBS TO DISTRIBUTED OBJECTS:
A TRANSFORMATION APPROACH
FOR SERVICE CREATION!

Elie Najm, Frank Olsen, Sylvie Vignes
Ecole Nationale Superieure des Telecomunications

Elie.Najm@enst.fr,olsen@acm.org

Abstract This paper describes how to apply correctness-preserving transformations to
the problem of service creation using the IN CS-I sm (Service Independent
Block) concept. We show how sms can be represented by a UML class dia­
gram augmented with constructs from an action language and then automatically
translated into a Java like language. We also show how this transformation can
be implemented using a UML-based CASE-tool.

1 INTRODUCTION
This paper presents our work on service creation for telecommunications

networks. We position ourselves in a world where the predominant network
architecture is the Intelligent Network (IN). However, the IN has many well­
known limitations. In this paper we consider a major one: The use of a com­
pletely algorithmic approach to service creation and reuse of "components".
This problem has been acknowledged by most of the actors in the telecommu­
nications business and has led to interest in new and improved architectures
based on objects and distributed computing technologies. The major example
of these new architectures is TINA.

The starting point for this paper is our previous work on correctness­
preserving transformations for open object -based distributed systems [1]. There
we defined an automatic transformation between two languages: a source lan­
guage (SL) and a target language (TL). SL is based on the assumption of oper­
ation on a global state while TL is a representative of distributed object-based
languages.

Our main contribution in the present paper is to apply our transformation
for IN Service Features (SIB chains). In other words, we are interested in

lThis work has been partially supported by RNRT project PILOTE

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35581-8 35

T. Yongchareon et al. (eds.), Intelligence in Networks
© IFIP International Federation for Information Processing 2000

http://dx.doi.org/10.1007/978-0-387-35581-8_35

404 Elie Najrn, Frank Olsen, Sylvie Vignes

a top-down approach aided by automatic transformations. Since the result
of the transformation is an object-based language, our work also provides a
possible evolution path from IN-style service creation towards open object­
based distributed systems as exemplified by CORBA or TINA.

1.1 Outline of the paper
In section 2 we give an overview of the IN architecture and outline the

current process used for creating IN services. Next we introduce the main
results from our previous paper mentioned above that are used as a basis for the
current paper in section 3. Then comes the central part of the paper where we
provide a mapping of SIBs (and Service Feature) into distributed objects in a
Java-like language. Finally, we conclude in section 5 with a brief summary of
this contribution, a comparison with existing work, and an outlook for further
work.

2 IN SERVICE CREATION
In this section we give an overview of the Intelligent Network architecture

and with emphasis on the service creation aspect.

2.1 The Intelligent Network architecture

Work on the IN architecture (ITU-T Recommendation Series Q.12xy [3])
started in 1988 with the aim of making service creation more rapid than for the
existing telecommunications network. Before the IN, all the intelligence was
in the switches and service creation was performed by the switch (hardware)
providers (on demand from the telecommunications operators). The main
solution proposed by the IN was to separate the service logic from the call
and connection control. The latter were still performed in the switches, but
the former was separated out into a new piece of equipment called a Service
Control Point (SCP). The different functions of the network are performed
by Functional Entities (FEs); the main FEs defined by the IN are the CCF
(Call Control Function) which performs call and connection control, the SSF
(Service Switching Function), and the SCF (Service Control Function) which
contains the service logic. Typically, the SCF is located in the SCP and the
CCF and SSF in the switches (also called Service Switching Points (SSP».
The role of the SSF is to hand over control from the SSP to the SCP at specific
points in a call where service logic can be invoked. A typical example is that
a user dials a number which the SSF hands over to the SCF: the SCF can now
invoke a feature like Originating Call Screening (OCS) which verifies that the
dialed number is not on a list of screened numbers.

Acknowledging that the telecommunications world is in constant evolution
with new technologies constantly appearing, the IN is defined in phases called

From SIBS to Distributed Objects 405

Capability Sets (CS). As ofrnid 1999, two CSs have been released and a third
one is due at the end of 1999. Simultaneously, work has already started on a
fourth capability set. In this paper we only take into account IN CS-l (Q.121x)
[5].

2.2 Intelligent Network Conceptual Model
The Intelligent Network Conceptual Model (INCM) provides a conceptual

framework for the provisioning of telecommunications services and service fea­
tures. It defines four different planes: The Service Plane (SP), the Global Func­
tional Plane (GFP), the Distributed Functional Plane (DFP), and the Physical
Plane (PP). These planes define different levels of abstraction of the telecom­
munications network and its services. In this paper we will not discuss the
Service Plane, since it is not defined for IN CS-l; suffice to say that the SP
deals with Services and its constituent Service Features.

In relation to service creation the main idea behind the INCM is to describe
Services and Service Features at different levels of abstraction thus enabling
people with different skills and detail of knowledge to be actors in the service
creation process. The skills range from business-related skills at the SP to
detailed knowledge of the network and its architecture at the PP where new
network functionality may need to be implemented to create a new service.

Global Functional Plane. The GFP provides a set of Service Independent
Building Blocks (SIB) which are used to create Service Features. A SIB is a
procedural building block that can be reused in several Service Features.

A Service Feature is a flow graph of SIBs (also called a SIB chain) with
the outputs from one SIB connected to the input of another. The starting point
for a service feature is a POI (Point Of Invocation) which corresponds to a
specific point in the BCM (Basic Call Model). The BCM is a state machine
representation of a telephone call. A service feature has one or more PORs
(Points Of Return) which return control to specific points in the BCM.

Distributed Functional Plane. In the Distributed Functional Plane (DFP),
the SIBs at the GFP are decomposed into Functional Entity Actions (FEA).
Each FEA belongs to a single Functional Entity (FE). A single SIB can be
distributed over several FEs: In this case there will be several FEAs for the
SIB and they will communicate using Information Flows (IF). The parameters
passed with the IFs are called Information Elements (IE).

Physical Plane. The basis for the Physical Plane (PP) of the IN architecture
is the Signalling System no. 7 (SS7) which is the protocol stack (up to the
Application Layer of the OSI seven-layer model) that supports the Intelligent

406 EUe Najm, Frank Olsen, Sylvie Vignes

Network Application Protocol (INAP). INAP uses the services provided by
Transaction Capabilities Application Part (TCAP).

At the center of ofTCAP (or more precisely of the Component Sub-layer) lies
the ISO Remote Operations Service (ROS) that provides support for distributed
objects. ROS describes interactions between distributed objects using the
Abstract Syntax Notation One (ASN.l) information object class (or ASN.I
macros in older versions of the ITU-T recommendations). The Transaction Sub­
layer is then used to provide a "skinny" end-to-end connection for transporting
operations between Functional Entities.

3 TRANSFORMATIONS FROM ACTIONS TO
DISTRIBUTED OBJECTS

As mentioned in the introduction, the present paper extends previous work
[I]. In this section we give a very brief overview of the previous paper in order
to make this contribution more or less self-contained 1.

Thus, in [I] we presented a correctness-preserving transformation from a
source language (SL) - capturing a centralised view of services - to a target
language (TL) where distribution is taken into account. Here we provide a
reminder of the two languages through an example.

The source language for our transformation is a simple imperative class­
based language with actions operating on a global state. The following simple
bank account example shows the main features of the language:

Account = class owner: string;
balance: integer;

endclass

(* the following action transfers a sum equal to amount from the *)
(* provider account to the recipient account *)

transfer(provider:Account; recipientAccount; amount positive) =
action
case provider. balance < amount return NACK;
case provider. balance >= amount:

provider. balance := provider. balance - amount;
recipient.balance := recipient.balance + amount; return ACK;

endaction

1 Please refer to the previous paper if more detail is needed: Notably there is an emphasis on the formal
aspects of the transformation, including the operational semantics of both the source and target languages.

From SIBS to Distributed Objects 407

The main features of SL is that there are two kinds of classes: data classes
containing only attributes (represented by the Account class in the example,
and action classes providing the behaviour (represented by the transfer action).
The most prominent feature of the transformation itself is that assignments are
mapped into remote method invocations thereby introducing a distribution
aspect. The target language is a distributed object-based language which can
be compared to Corba compliant languages or to Java enhanced with RMI. To
understand the target language and the transformation we now return to the
example given in SL above after having run it through the transformation. This
gives the following program in TL:

Act...Account(owner, balance) =
[geLowner(ret) ->

ret.value(owner);
become Act...Account(owner, balance),

geLbalance(ret) ->
ret. value(balance);
become Act...Account(owner, balance),

seLowner(new_owner) ->
become Act...Account(new_owner, balance),

seLbalance(new_balance) ->
become AcLAccount(owner, new_balance)

]
AcLTransferO =

[transfer(provider, recipient, amount, return) ->
provider.geLbalance(self);
[value(p_balance) ->

if p_balance < amount then return.value(NACK)
else recipient.geLbalance(self);

[value(Lbalance) ->
provider.seLbalance(p_ balance-amount);
recipient.seLbalance(r _ balance+amount);
return.value(ACK)

The target language considers active objects (called actors - thus the prefix
AcL). The data class has become an object Act...Account where the attributes
have been transformed into accessor functions prefixed by geL and seL The
action class has been transformed into another object AcLTransfer. We will

408 Elie Najrn, Frank Olsen, Sylvie Vignes

not go into any more detail about TL, since the language used in this paper,
although inspired from TL, has a syntax closer to Java.

4 TRANSFORMING SIBS INTO DISTRIBUTED
OBJECTS

This section forms the central part the paper. It presents a translation from
IN Service Features and SIBs to distributed objects.

4.1 Translating individual SIBs
We have already given an overview of SIBs in section 2.2 where we discussed

the GFP of the INCM. Although SIBs appear on several of the INCM planes
with differing levels of abstraction we concentrate on the GFP since our contri­
bution is on a top-down approach to service creation where distribution aspects
is provided by the transformation. So, let us now remind ourselves of the SIB
model as presented in the ITU-T CS-l Recommendations [5] (Q.1213)2.

Logical
start

cm input
paraemeters

SSD

I
SSD Parameter

V

SIBName

I

V cm

cm output
I parameters
V

Figure 1 sm model for the GFP.

Logical
ends

Figure 1 shows the graphical representation of CS-l SIBs. The em (Call
Instance Data) parameters describe the dynamic input and output of values to
and from the SIB at run-time. To make SIBs usable in several contexts (i.e., in
several Service Features) the SSD (Service Support Data) are used to specialise
a SIB for use in a specific Service Feature.

2Later we may extend our work to take into account CS-2 and later capability sets.

From SIBS to Distributed Objects 409

So far we have given the impression that only the GFP is used for modelling
SIBs. However, to implement SIBs we also need information from the OFP
(see section 2.2). The reason is that the SIB concept has been conceived by
studying the existing telecommunications network; i.e., it has been created in a
bottom-up fashion. It thus is dependent on the underlying network architecture
provided by the OFP and PP, notably in that it is implemented using INAP
operations between Functional Entities (see section 2.2). Note that so far we
have only taken into account the SCF, SOF, and SRF. Also we do not model
the BCSM in any way.

Although SIBs could be modeled directly in SL, we prefer instead to capture
them using UML. As we explain before, UML allows us to easily implement
the transformation using the Objectee ring UML CASE-tool. However, the
UML is augmented with constructs from SL to provide an implementation for
the SIB functionality using the action classes described in an earlier section.

The capture of SIBs is into two classes: One action class containing the
SSO together with a method that implements the SIB from the SCF point of
view, and another data class that contains the CIO. A relation between these
two classes links the static part of the SIB with the dynamic (CID) part. Thus
a SIB is represented by a UML class diagram as shown in figure 2.

SIB_cm SIB Class SDP

cm references SSD needs
Data

runSIBO

usedBy

uses

VocalBox

Message!

Message2 Example SRF

runVBO

Figure 2 SIB mapped into a UML class diagram.

Figure 2 only shows the pure UML part of our mapping: For the implemen­
tation of the SIB functionality (the runSIB method in the SIB_Class) we

410 Elie Najm, Frank Olsen, Sylvie Vignes

use SL as comments attached to the SIB_Class. We model Service Features
as a UML class with a single method called main whose implementation is
given in SL. Since Service Features are modelled as SIB chains, there is a need
for a SIB to return a value corresponding to its logical end. We do this by adding
an attribute called returnSIB (of an enumerated type) to the SIB_Class.

4.2 Transformation to distributed objects
So far we have shown how SIBs and Service Features are represented in

UML class diagrams annotated with SL constructs in comments. In this section
we show how this new source representation (UML + SL) is transformed into
a variant of TL based on the transformation from [1]. The transformation has
been slightly modified to add a pri va te section to the transformed class: All
the attributes of the UML class are placed in the private section to preserve
encapsulation. The accessor methods for these attributes are retained from
the original transformation. We also add a constructor with no arguments (for
classes without any attributes), as well as a constructor with all attributes as
parameters for classes containing data. Thus, the follwing data class containing
attributes:

classjd

is transformed into the class below:

class class_id
{

//--------------
//ATTRIBUTES
//--------------
private T[Type_i] att_ii

//--------------
//CONSTRUCTORS
//--------------
public class_id () {}i

public class_id (... , T[Type_i] att_i, ...)
{

From SIBS to Distributed Objects

}

//--------------
/ / ACCESSORS
//--------------
public T[Type_iJ get_att_i ()
{

}

public set_att_i (T[Type_iJ att_i
{

411

It is important to note that the notation T [Type_i J does not represent a
construct in the target language: It is the notation we use to show the mapping
of types. The same is true for all the transformation rules. It is due to the fact
that the transformation is done in stages.

For the remainder of the transformation rules we refer to the appendix.
Instead we now go on to show a practical example of what we can do.

4.3 An example: Tele Vote

We now tum to an example to give a more intuitive impression of what we
can do with our transformations. We use the Tele Vote Service Feature given in
[6] (see the conclusion for a comparison with this work).

Definition. After dialing the service access number for Te 1 e Vo t e the voting
user receives a vocal message telling himlher to choose between two or more
possible choices, each corresponding to a number on the telephone handset.
Finally, a new message confirms that the choice has been taken into account.

GFP description. Figure 3 shows how TeleVote can be modelled on the
GFP of IN CS-l.

User Interaction SIB. Figure 4 shows the UML model for the SIB User­
In terac t i on according to our previous description in section 4.1. We do not
show the other two SIBs involved in the TeleVote Service Feature since they
are simpler than the UserInteraction SIB (they are purely algorithmic
and do not communicate with any other Functional Entitie). For the original

412 Elie Najrn, Frank Olsen, Sylvie Vignes

BCP

Figure 3 GFP model of TeleVote Service Feature.

description of the SIB we refer to the relevant ITU-T recommendation Q.1213
(the GFP) and Q.1214 (the DFP).

Userlnteraction Vocal Box

AnnouncementlD:integer played plays Message 1 :string

collect:boolean 1 1
Message2:string
CollectedData:integer

runUserinteractionO

UserlnteractionCID
ErrorType:string

Data:integer

CallID:integer

Figure 4 UML class diagram for User Interaction SIB.

The most interesting part of this diagram is the VocalBox which is part of
the SRF interface. Note that due to limitations in the datatypes provided by SL,
we do not model all the SSD of the SIB, since we do now have types to handle
for instance dates and times used in the INAP operations that implement the
communications part of this SIB.

From SIBS to Distributed Objects 413

4.4 Implementing the transformation
The translation has been implemented using a UML-tool called Objecteer­

ing3. The tool, in its current version, provides a language (called H4) that
allows UML-models to be easily mapped into an implementation language.

As shown above, SIBs and Service Features are modelled in UML aug­
mented with structures from the SL language. In fact, SL constructs appear
as comments attached to the UML classes representing SIBs in UML class
diagrams. These comments are taken into account by H to allow our previ­
ously defined transformation to be used to map SIB classes into TL. A trial
implementation was conducted by a student project at ENST [4].

5 CONCLUSION
We have shown one possible way to evolve from the world of IN service

creation to the one of open object-based distributed computing. This was done
by mapping IN CS-I Service Features and sms into a language resembling
Java. The transformation is based on previous work on correctness-preserving
transformations [I].

The work most closely related to ours is that of Nasreddine et al. [6]. They
also map sms into classes, but instead of making the SSD a class attribute they
provide it as a parameter to each call of the method implementing the sm.
Also, at least in the paper, they do not show how the SIBs are implemented.
The biggest advantage of our work is that we provide a transformation from
Service Features and sms to a language based on distributed objects that have
been implemented. Unlike us, they have implemented their work using CORBA
(although without taking into account the existing SS7 -based network). Finally,
a very notable feature of their work is that they aim for methodology for
evolving existing algorithmic-based service creation towards object-oriented
service creation, taking into account the various actors (with differing skills)
that are involved in the service creation process. Instead, we have concentrated
on a key issue: how to automate the passage from distribution transparent
service specifications to distribution aware implementations.

Clearly, the work presented here is still in its early stages. Our current
research focuses on comparing and integrating it with other research efforts
on the evolution of the IN architecture. Notably, we want to make it possible
for our sms to communicate with existing SS7-based Functional Entities. It
is important to preserve the existing investment in SSPs; thus, we need a way
for call events in the SSPs to trigger Service Features located in a CORBA

30bjecteering is a trademark from Softeam.
4Tbe name of this language will soon be changed into J because it is moving towards something close to
Java.

414 Elie Najm, Frank Olsen, Sylvie Vignes

environment. There are many open questions in this exiting area of research.
Both EURESCOM, the OMG and TINA-C have effected interesting work in
this area, either through projects (like EURESCOM P508 and P847-GI) or
RFIs and RFPs by OMG and TINA-C. Clearly, a pure CORBA environment
is not currently suited to the real-time, high-reliability demands of telephony
services, although recent extensions to CORBA will alleviate these problems:
In particular, CORBA 3 supports Asynchronous Messaging (all INAP operations
are asynchronous), Real-TIme, Components, and Firewalls (to allow callbacks
through firewalls).

Appendix

Transformation rules from SIBs to distributed objects

Relations between classes are transformed as follows (showing only the
mapping for one of the two classes in the relation).

class Classl
{

//-----------
//ATTRIBUTES
//-----------
private Class2 role2Class2i

//-----------
//ACCESSORS
//-----------
public get_role2Class2 ()
{

return role2Class2i
}

public set_role2Class2 (Class2 role2Class2)
{

}

Note that we use the names of roles played by each class in the relation
together with the class name to construct a unique name for the reference to
the other class.

Finally, the transformation of actions given below closely follows the one in
[1]. (We do not give an explanation for the cases where the transformation is
straightforward.)

From SIBS to Distributed Objects

Action header.

T [Action (... , Parameter_i
->

public T [Type]

415

Type]

Action (... , T [Type_i] Parameter_i , ...)]

Unlike our original transformation we do not create a new thread to handle
message execution. The reason is that Service Features are based on the
sequential execution of SIBs. Synchronising the resulting system if threads
were used would be very complex indeed.

Action body.

T [Declaration -> T Declaration
beginaction T Statement]

Statements
endaction]

The transformation is direct.

Variable declarations.

T [DecllDec12] -> T Decl1
T Dec12

T[var : Type] -> T Type] vari

The transformation is direct.

Statements. For statements we consider the cases separately.

T var:= EXPi] -> var = T [Exp] i
T var.att := EXPi -> var.set_att(T [Exp]) i
T if Exp then -> ifT [Exp]

Sl {

else S2 T Sl]

endifi] }

else
{

T [S2]

T [return EXPi] -> returnClassName = T [Exp] i
T [SlS2] -> T [Sl] T [S2]

We note that for assignments to an attribute we must use the generated
accessor methods.

416 Elie Najrn, Frank Olsen, Sylvie Vignes

In the case of FunctionCall we get the following transformation.

T [Object.Method (... , Exp, ...);)
-> Object.Method (... , T [Exp), ...)

T [print(... , Exp, ...);)
-> Systern.out.println (+ T [Exp) ,) ;

T [var := read())
->

var = Integer.parselnt((new java.io.BufferedReader
(new java.io.lnputStrearnReader(Systern.in))) .readLine());

Expressions.

T[c) -> c;
T[var) -> var;
T[var.att) -> var.get_att;
T [nil) -> null;

T [new class - id (••• I Exp_sirnple, ...))

-> new class_id(T [Exp_sirnple) , ...) ;

T [operation_id (Exp_sirnple, ...))

-> operation_id(T [Exp_sirnple), ...) ;

T [action_ id (Exp_sirnple, ...))

-> action_id(••• I T [Exp_sirnple) , ...) ;

Types. Class names are conserved.

For the base types we obtain the following mapping.

I SL I TL

I integer I long

I real I double

I boolean I boolean

I string I String

References

[I] Cinzia Bemardeschi, Joubine Dustzadeh, Alessandro Fantechi, Elie N ajm,
Abdelkrim Nimour, and Frank Olsen. Consistent semantics and correct

From SIBS to Distributed Objects 417

transformations for the ODP information and computational models. In
Proceedings of Second IFIP conference on Formal Methods for Open
Object-based Distributed Systems - FMOODS'97. Canterbury UK, Chap­
man & Hall, July 1997.

[2] I. G. Dufour, editor. Network Intelligence, volume 10 of BT Telecommu­
nications Series. Chapman & Hall, first edition, 1997.

[3] ITU-T. Intelligent Network: Q.1200-Series Intelligent Network Recom­
mendation. Number Q.1200. International Telecommunication Union
Standardization Sector, Geneva, October 1995.

[4] J. Gastaud. Conception de SIB (Service Independent Blocks) pour les
Reseaux Intelligents. Memoire de fin d'etudes - ENST - Juillet 1999.

[5] ITU-T. Intelligent Network: Q.12lD-Series Intelligent Network Recom­
mendation Structure. Number Q.121O. International Telecommunication
Union Standardization Sector, Geneva, October 1995.

[6] Hassan Nasreddine, Anisse Idir, and Simon Znaty. Moore: Methode
et outils oriente-objet pour la creation de service reseau intelligent. In
GRES'99, 1999.

	FROM SIBS TO DISTRIBUTED OBJECTS:A TRANSFORMATION APPROACHFOR SERVICE CREATION!
	1 INTRODUCTION
	1.1 Outline of the paper

	2 IN SERVICE CREATION
	2.1 The Intelligent Network architecture
	2.2 Intelligent Network Conceptual Model

	3 TRANSFORMATIONS FROM ACTIONS TODISTRIBUTED OBJECTS
	4 TRANSFORMING SIBS INTO DISTRIBUTEDOBJECTS
	4.1 Translating individual SIBs
	4.2 Transformation to distributed objects
	4.3 An example: Tele Vote
	4.4 Implementing the transformation

	5 CONCLUSION
	References

