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Abstract 

Multicast transmissions naturally raise the problem of the het­
erogeneity of receivers in terms of networking possibilities, host 
performances and user desires. Several solutions have been intro­
duced but none suits all the situations. This paper describes a 
scheduling algorithm that unifies some of these solutions, in par­
ticular in case of continuous data flows, and which is suited to a 
broad range of applications. An implementation of this algorithm 
is used to illustrate its behavior. 

1 INTRODUCTION: THE NEEDS 

Multicast transmissions naturally raise the problem of the heterogeneity 
of receivers. Several levels of heterogeneity can be identified: (1) the 
intrinsic performance of various parts of the network can be largely dif­
ferent; (2) the network performance can vary over the time because of 
congestion problems, of external factors (e.g. weather conditions in case 
of wireless communications), or a change of communication technology 
(e.g. switching from WaveLAN to GSM); (3) some privileged networks 
can take advantage of improved transmission services (e.g. using dif­
ferentiated services) ; while other ones will be at the mercy of router 
congestions. ( 4) some hosts can be limited by their processing power 
(e.g. palmtop); and (5) some users can be content with a medium qual­
ity data flow, while other ones will insist to have the highest possible 
quality. 

We believe that a large group will include several (all?) kinds of het­
erogeneity. Traditionally one restricts oneself to homogeneous multicast 
transmissions, sending data at a rate determined by the slowest receiver. 
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It implies defining a maximum rate either statically (compilation or ap­
plication parameter) or dynamically [8). Our proposal intends to fill this 
gap by providing a general purpose heterogeneous multicast scheme, i.e. 
the possibility to send any data flow to a group where each receiver 
chooses a reception rate according to its network quality, workstation 
power, and desires. 

This paper is organized as follows: section 2 introduces several ap­
proaches to support heterogeneous multicast transmissions. Our pro­
posal is detailed in section 3. Section 4 introduces some experimental 
results. Section 5 discusses additional properties, then we conclude. 

2 LIMITATIONS OF CURRENT SOLUTIONS 

Several directions have been proposed to address heterogeneity. Some of 
them rely on packet scheduling schemes (DSS/MMG/MCM), others on 
coding (e.g. the hierarchical coding of a video stream [5)), on transcoding 
(the information is tailored, e.g. an image definition is reduced, according 
to the needs of a particular client [ 9]), or on filtering [ 11] [ 19]. This section 
focuses on the scheduling schemes. 

Destination Set Splitting (DSS) 

This solution, also called Simulcast, achieves heterogeneity by using 
multiple uncoordinated streams at different rates on several multicast 
groups [1] [2). A receiver chooses the desired throughput and subscribes 
to the associated group. Here each receiver gets a copy of all the data. 

This solution has several limitations: 

• because data is sent on all the groups, it leads to a high load of the 
sender's network where traffic is concentrated. 

• a receiver that wants to change of group (e.g. if the selected 
throughput turns out to be too high) may loose many packets if it 
unsubscribes to the old group and then subscribes to the new one. 
If it does the contrary (i.e. subscribing before unsubscribing), the 
presence of two data flows in the meanwhile can also lead to losses. 

But this solution avoids any packet duplication at the receiver side 
(we'll see that it is not the case of our GMMG scheduling), and can be 
used with data flows generated on-the-fly. 
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Multiple Multicast Groups (MMG) 

The MMG [3] scheme is based on a cumulative layered scheduling. The 
idea is to let each multicast group take advantage of the previous groups. 
Here also everyone receives everything at a pace that depends on its 
possibilities. 

Let us consider a senderS that uses three multicast groups (figure 1). 
Data is first divided into four equal parts. On group 1, S sends parts 1 
to 4 at a rate compatible with that of the slowest receiver. On group 2 S 
sends parts 2 and 4, which enables a receiver having subscribed to both 
groups to receive data twice as fast, etc. 

Gl: part_l part_3 part_2 part_4 
G2: part_2 part_4 
G3: part_3 

part_4 

Figure 1: Scheduling in case of the MMG approach. 

We see several limitations to the MMG approach as proposed in [3]: 

• the sender is supposed to know in advance the amount of data to 
send in order to partition it. This hypothesis is rather restrictive. 

• the sender is supposed to know in advance the available throughput 
of each receiver in order to define the features of each group. This 
is usually impossible since group membership is by nature dynamic 
and the network features highly variable. 

• our personal experience implementing our proposal suggests that 
the packet ordering within each group should be kept increasing. 

Multiple-Channel Multicast (MCM) 

This class of solutions is also based on a cumulative layered scheduling. 
It includes the Partition Organization channel scheduling (PO) [7] and 
the Session Organization (SO) channel scheduling [16]. Like MMG, these 
solutions require that the data stream is known in advance (in order to 
partition it) which restricts their use. On the other hand, an advantage 
of this hypothesis is that asynchronous starts are possible since packets 
are cyclically transmitted on each multicast group. 
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Discussion 

The previous analysis has highlighted that many hypotheses on the data 
flow nature are made. For instance hierarchical coding is restricted to 
data flows that can be organized in cumulative layers. It typically con­
cerns video streams. The MMG and MCM schemes require to know in 
advance the amount of data to send in order to find the optimal schedul­
ing. A typical example is a file transfer application. 

Unfortunately a broad range of applications that generate on-the­
fly data flows are not satisfied. A white board (e.g. wb [18]) or an 
application sharing environment (e.g. doing Xll message multiplexing 
like XTV [20]) are two typical examples. The amount of data exchanged 
can be rather low during a certain span of time and then, because of a 
participant action (e.g. he launches a new X Windows application under 
XTV's control), the tool generates "on the fly" large amounts of data. If 
the DSS approach can handle these applications, it has limitations as 
explained before. 

3 THE GMMG (GENERALIZED MMG) APPROACH 

This section introduces a hybrid solution that mixes some of the pre­
vious approaches. To be as general as possible, we consider that data 
is submitted by the application as a collection of messages, called ADU 
(Application Data Units) to the sending control layer. We make no hy­
pothesis on the nature of the ADU and whether or not the application 
follows the ALF paradigm [4]. Unlike MGM, we do not consider the 
possibility of receivers starting reception asynchronously. This feature is 
handled at user level with the kind of applications considered. 

The Case of an Isolated ADU 

We first consider an isolated ADU. GMMG is then very close to MMG. 
The ADU of figure 2 is first segmented into sixteen 512 byte packets (i.e. 
small enough to avoid IP fragmentation). Each ADU is identified by its 
constituting packets, noted as a range of packet sequence numbers (e.g. 
[1; 16] identifies the first ADU which is segmented in 16 packets). A little 
vertical arrow indicates that the application submits a new ADU to the 
control layer. In figure 2 the senderS uses four transmission layers and 
schedules packets in a cumulative way, so that a receiver subscribing 
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to an additional layer experiences a reception rate two times higher1 . 

Therefore on layer i we transmit the packets of all the previous layers 
delimited by the upper half of the packets sent on layer i-1 (dashed areas 
of figure 2). 

4 14 .d.····· 
11 15 

12 16 

Figure 2: GMMG scheduling of an isolated ADU. 

Because transmissions on each layer occur at a regular rate deter­
mined by layer 1, we use this rate as a virtual time scale. As we neglect 
the transmission and propagation times, it is regarded either as the send­
ing or receiving time scale. At time 1, S sends successively packet 1 on 
layer 1, packet 9 on layer 2, packets 5 and 6 on layer 3, etc. Then it 
waits. At time 2, S sends all the packets scheduled for time 2 and so on. 

Several evaluation criteria are considered: 

total reception time: Time required to receive all the packets of all 
the ADUs, expressed in terms of layer 1 packet times ("virtual 
time"). For instance, in figure 2, subscribing to layers 1 and 2 
allows the reception of all packets in 8 virtual time slots. 

spreading of the ADU reception times: The regular arrival of AD Us 
(i.e. the reception of all the packets of each ADU} enables there­
ceiver to process them regularly, as soon as possible, and limits 
buffer use. This spreading is represented by the list of reception 
times of each ADU. 

total number of packets transmitted: Number of packets transmit­
ted over all layers subscribed. In spite of the cumulative aspect of 
transmissions, certain packets are transmitted several times. Ob­
viously, the fewer, the better. This metric is also expressed as the 
ratio of the number of packets sent for a given number of layers to 
the number of packets sent on layer 1 (i.e. non-duplicated packets). 

1For simplicity we only consider ratios of 2. This is not compulsory as explained 
in section 5 
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cumulative throughput ratio: The total transmission rate on the sender's 
network increases with the number of transmission layers. Theta-
bles give the ratio of the maximum throughput when subscribing 
a given number of layers to the throughput of layer 1. 

number of multicast groups: using a multicast group is costly, so the 
fewer the better. So far we have supposed that each layer corre­
sponds to a multicast group. Section 5 discusses this assumption. 

Table 1: Evaluation of the example of figure 2. 
layers end spreading nb of pktslratio throughput ratio 
Ll only 16 16 16 I 1.0 ratio 1.0 ratio 
L1+2 8 8 24 I 1.5 ratio 2.0 ratio 
L1+2+3 4 4 32 I 2.0 ratio 4.0 ratio 
Ll+2+3+4 2 2 40 I 2.5 ratio 8.0 ratio 

Table 1 applies these criteria to figure 2. Compared to layer 1, the 
presence of layers 2 and 3 reduces by a factor 4 the end of reception, at 
the expense of a maximum total throughput 4 times higher, but with 
only twice as many packets sent. With layer 4, data is received 8 times 
faster with only 2.5 as many packets sent. 

The Case of Close ADU Submissions 

We now consider the case of close ADU submissions. The transmission 
control layer does not know in advance the amount of data to send. 
Therefore, it must continuously decide when to send each packet, and 
whether or not to reconsider the planned transmissions when a new ADU 
arrives. Three strategies are possible: the first one consists in sending 
AD Us independently to one another. Another one, more drastic, consists 
in reconsidering the whole transmission planning each time a new ADU 
is received. None of these solutions is recommended as explained in 
annex A. Therefore we focus on the third intermediate solution. 

Description of the GMMG algorithm 

This solution takes into account a new ADU as soon as it is available 
without modifying the transmissions already planned. When the applica­
tion submits the new ADU, some packets from previous ADUs (possibly 
0) wait to be sent on each level. Let call them rem1, rem2 and rem3. 

We have: rem1 >= rem2 >= rem3 >= 0. Let part1, part2 and part3 
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Figure 3: GMMG scheduling algorithm. 

be the various packets belonging to the new ADU sent respectively on 
layer 1, 2 and 3. By definition, part1 includes all the packets of the new 
ADU. part2 is built as follows. We first calculate: 

delta2(in ticks)= tick2(rem2)- tickl(rem!) 

where the ticki () function gives the number of ticks required to trans­
mit the given number of packets on layer i2 • part2 includes all the packets 
of parh contained in the upper half, of duration halh ticks, of the set 
delta2 U part1. Therefore3 : 

halh(in ticks) = jloor[(delta2 + tickl(partl))/2] 

part2 = {upper halh packets of part!} 

Likewise part3 includes the packets of part1 U part2 delimited by the 
upper half, of duration halh, of the set delta3 U part2 (area within the 
dashed box of figure 3). part3 is bounded by the times start3 and end3: 

halh(in ticks) = jloor[(delta3 + tick2(part2))j2] 

end3 (in ticks)= tick2(rem2 U part2) 

start3 (in ticks) = end3- halh 

part3 = {pkts of new ADU sent between start3 and end3 on Ll U L2} 

2 tick;(l bytes)= ljnumber of bytes sent per tick on layer i 
3The floor() function returns the largest integral value not greater than x 
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This algorithm can be generalized. Figure 4 illustrates it with a 
simple scenario: two ADUs of six packets each are submitted at times 
0.5 and 2.5. At time 2.5 we have: delta2 = 4- 1 = 3 ticks. So the upper 
halh = floor((3 + 6)/2) = 4 packets of ADU 2 are sent on layer 2. 

[1 ;6] [7; 12] 
I I 

L1 V 1 
L2 4 

2V3 4 5 617 8 9 10 11 12 
5 6 I 9 10 11 12 

Figure 4: GMMG scheduling applied to a simple scenario. 

Table 2: Evaluation of the example of figure 4. 
layers end spreading nb of pktslratio throughput ratio 
L1 only 12 6, 12 12 I 1.0 ratio 1.0 ratio 
L1+2 8 3, 8 19 I 1.6 ratio 2.0 ratio 

Compared to the two other solutions of annex A, this solution (1) 
improves the spreading of the end of ADU reception, and (2) reduces 
the total reception time for 11+12. This is made possible by the precise 
knowledge of remaining packets on the various layers. 

A Necessary Improvement: the Notion of Credit 

This algorithm has limitations. Suppose we are building parti. On the 
previous levels (i.e. 1 to i - 1), between starti and endi there can be 
packets that do not belong to the new ADU. These packets are ignored 
and the corresponding number of transmission slots of parti are lost. 
This is the "lost cycle phenomenon". It happens in figure 3 when building 
part3. A transmission slot is lost because the first packet of layer 1 within 
the dashed area (time 9) belongs to rem1 , not to Part1• 

If ADUs are submitted too rapidly, packets progressively accumulate 
on the lowest levels and "lost cycles" are more and more numerous. 
Higher layers are seriously affected and may even become useless. To 
avoid it we consider that each lost cycle creates "credit". Let tot_credit 
be the sum of these credits for all layers. We calculate the possible 
anticipation: 

anticipation ( in_ticks) = floor ( ticki ( tot_credit) /2); 

that we subtract to the starti variable: 
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starti = starti - anticipation 

By extending the area considered when building parti, we make up 
for the lost cycles. Note that the implementation of GMMG described 
in [15] completely avoids this problem. 

One Step Further: the Case of Continuous Data Flows 

In the previous section we considered close ADU submissions. We now go 
further and consider the case of continuous data flows. This is (partially) 
illustrated in figure 5. 

[1; 12] [13; 16] [17; 28] 
I I I 

Ll V 1 V 2 V 3 4 5 6 7 8 9 10 11 121 13 14 15 161 17 18 ... 
L2 7 8 9 10 11 121 13 14 15 161 20 21 22 23 25 26 27 281 
L3 4 6 111 13 151 17 19 21 23 25 271 

5 10 121 14 161 18 20 22 24 26 281 
L4 31 131 17 21 251 

91 141 18 22 261 
111 151 19 23 271 
121 161 20 24 281 

Figure 5: Continuous data flows (extract). 

If the ADU submission rate is superior to the packet transmission 
rate of level1, then deltai and halfi increase. It means that parti tends 
to be identical to parh. If the end of reception time of the ADUs is 
still improved, this is to the detriment of the total number of packets 
sent, and GMMG tends to DSS where data is sent on each layer. Our 
approach is thus a balance between the MMG {sparse ADU submission) 
and the simulcast {continuous ADU submission) flow controls. 

Because data cannot indefinitely accumulate at the sender waiting 
to be transmitted on the lower layers, the application will eventually be 
blocked. Lower layers will take advantage of this pause to keep up with 
higher layers. Therefore, a limitation not solved by this approach is that 
the transmission of truly continuous data flows, on the long range, take 
place at the rhythm of the lowest transmission level because of limited 
buffer capabilities. A partial solution is introduced in section 5. 
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Defining Several Transmission Subflows 

Up to now we have supposed that ADUs had to be sent to all there­
ceivers. In fact an application may identify several subftows and leave 
each receiver choose what to receive (as with a hierarchical coding). 

[1; 16] subflow 1 
[a;1] subf1ow 2 

I 
L1 v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
L2 9 10 11 12 13 14 15 16 
L3 a b c d e f g h i j k 1 
L4 g h i j k 1 

Figure 6: Scheduling of two ADUs belonging to two subftows. 

In figure 6 we consider the subftow 1 sent to everybody, and the sub­
flow 2 providing optional details. For each subflow we offer the possibility 
to receive data at different rates. A receiver now has two complemen­
tary levels of choice: (1) what detail he needs (i.e. how many subflows), 
and (2) how fast data should be received (i.e. how many layers for 
each subflow). Depending on the application some combinations can be 
meaningless, but this is an application decision that does not concern 
the transmission control layer. 

4 PRELIMINARY SIMULATION RESULTS 

We have implemented this algorithm as a C library and linked it to a 
traffic generator. This section illustrates the algorithm behavior with a 
data stream that we believe is significant of that of a white-board (for a 
detailed performance evaluation see [15]). There is no packet loss. The 
scenario consists of three bursts separated by inactivity periods: 

step 1: send two ADUs of ten packets each ([1;10] and [11;20]), at one 
time tick interval (i.e. at times 1 and 2) 

step 2: wait 10 ticks 

step 3: send again two more ADUs ([21;30] and [31;40]), at one tick 
interval (i.e. at times 12 and 13) 

step 4: wait 28 ticks (so that Ievell finishes to send all the packets left) 
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Figure 7: End of ADU reception while varying the number of layers. 

step 5: send five ADUs ([41;50] to [81;90]) at one time tick interval (i.e. 
at times 41 to 46). Wait until the sender has received all of them, 
even if the ADU has already been completed4 . 

Figure 7 shows the ADU reception times according to the number 
of layers subscribed, and figure 8 the packets sent on each layer. The 
horizontal steps in figure 7 at sequence numbers 20, 40 and 90 indicate 
that all the ADUs of steps 1, 3, and 5 respectively have been received. 
Subscribing to more layers leads to a faster reception of ADUs. Yet the 
gains are not always a power of two. This is due to the delay experienced 
on lower levels. For instance, during step 5, packet scheduling on layer 2 
can only take advantage of layer 1 transmissions for the ADU [41; 50]. 
Then ADUs are received at the same rhythm no matter whether one has 
subscribed to layer 1 only or to both layers. This is different with layers 
3 to 5. Their higher transmission rate is sufficient to process the packet 
burst of step 5 and each level takes advantage of transmissions on (some 
of) the previous levels. 

The final duplication ratio is given in table 3. If this ratio is 3.6 when 
receiving all the layers, the five ADUs of step 5 have been received in 
8 time ticks instead of 47, namely 5.8 times faster! These experiments 
show that our cumulative transmission organization can handle bursty 

4It means that extra duplicated packets will be received. Another possibility would 
be for the receiver to close the socket once all the ADUs have been received. In that 
case the duplication ratio would be largely improved. 
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Figure 8: Packet sent on each layer when subscribing all of them. 

data flows efficiently while minimizing the number of packets sent. 

5 ADDITIONAL ASPECTS AND RELATED WORK 

We now discuss some additional aspects related to the use of our schedul­
ing algorithm. Many items (e.g. congestion control, reliability, how many 
layers to use, etc.) are not covered by this paper even if they are required. 

Storing ADUs on the Disk to Limit the Continuous Data 
Flow Problem 

The problem with (pseudo) continuous data flows is not so serious be­
cause our transmission scheme is implemented as a user-level library [15]. 
The process image (code+data) is naturally swappable and using a large 
transmission buffer will only result in a large area in the swapping parti­
tion. The sender can cope with "reasonably long" continuous data flows 
since data is in fact stored on the disk rather than in physical memory5 . 

5 A common rule of thumb is to define a swapping area 2 to 3 times larger than the 
available physical memory. 
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If not sufficient, it is possible to go further and to explicitly store 
data on the disk rather than in memory buffers. The scheduling module 
only keeps a small memory buffer which is used as a cache to store 
data read from the disk archive. Because transmissions are planned in 
advance, the disk access latency can be easily hidden. This technique 
enables very large transmission archives without competing with other 
processes. 

This approach is more general than just its application to our schedul­
ing algorithm. In particular it could be of benefits for reliable multicast 
transmissions. Data buffering is a problem because the sender must be 
able to cope with any delayed retransmission request, (even in case of a 
receiver-initiated approach [13]) which requires to keep data in memory 
for long (infinite?) periods. 

Non Bijective "Transmission Level" to "Multicast Group" 
Mapping 

GMMG (like other layered schemes) uses several transmission levels (or 
levels), and for simplicity we considered so far that they were mapped 
to several multicast groups. But several problems arise: 

• resources are kept by multicast routers for each group, 

• DVMRP [14) leads to periodical flooding and pruning stages for 
each group, and finally 

• several multicast addresses must be allocated and announced. 

A first way to limit the problems consists in mapping several trans­
mission levels on a multicast group. For instance group 1 can be used 
for level 1 which provides an elementary transmission service. Group 2 
can be used both for levels 2 and 3 for an intermediate transmission 
service. Finally group 3 can be used for levels 4 and 5, providing a high 
throughput service. 

Another approach to provide a large range of throughputs with a 
limited number of multicast groups is to define a throughput scale that 
is not necessarily a power of2 [3). This is also possible with GMMG using 
the efficient implementation described in [15). This latter accommodates 
any scale of throughputs since the number of packets sent on each level 
at each time tick can be freely set. 
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6 CONCLUSIONS 

We have introduced a new scheduling algorithm (GMMG) for heteroge­
neous multicast transmissions unifying the MMG and DSS approaches. 
This algorithm can be used with a broad range of applications like CSCW 
("Computer Supported Collaborative Work") tools that generate on-the­
fly data flows. It has also been implemented in a general purpose library 
which is freely distributed (with source code) in the author's home page. 
A companion paper [15] discusses the design of this library and compares 
various scheduling algorithms including GMMG. 
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A Two SUBOPTIMAL ALGORITHMS 

This section explains why the first two algorithms mentioned in section 3 
have not be selected. 

Send ADUs Independently to One Another 

[1;6] [7;12] 
I I 

L1 V 1 
L2 4 

2 v 3 4 5 6 
5 6 10 11 12 

7 8 9 10 11 12 

Figure 9: Scheduling with ADUs sent independently to one another. 

Figure 9 illustrates the first strategy using a simple scenario: two 
AD Us, each of them segmented into six packets, are submitted at times 
0.5 and 2.5. Here, S sends the packets 1 to 6 (first ADU) without taking 
into account the availability of packets 7 to 12 (second ADU). Then S 
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send the upper half of the packets of the second ADU on level 2 as if 
it was an isolated ADU. Because transmissions are performed blindly, 
reception only finishes at time 9 with both layers. 

Table 4: Evaluation of solution 1. 
I layers I end spreading I nb of pkts/ratio throughput ratio I 
I L1 only I 12 6, 12 I 12 / 1.0 ratio 1.0 ratio I 

L1+2 9 3, 9 18 /1.5 ratio 2.0 ratio 

Renegotiate Packet 'fransmission at Each ADU Submission 

[1;6) [7;12) 
I I 

L1 V 1 
L2 4 

2 v 3 
5 8 

4 5 6 I 7 8 9 10 11 12 
9 10 11 I 12 

Figure 10: Scheduling when reconsidering transmission at each ADU. 

An opposite solution is possible, taking into account the availability 
of the second ADU immediately (figure 10). Here, the whole transmission 
planning is reconsidered at time 3 and the transmission of packet 6 on 
layer 2 is given up. As packets 3 to 12 remain to be sent, S continues 
with the transmission of the upper half of the remaining packets on layer 
2. It is packet: 3 + floor((12- 2)/2) = 8. The reception is faster than 
with solution 1, but the first ADU is only available at time 6. Besides, 
the total number of packets is higher because packets 4 and 5 have been 
sent pointlessly on layer 2. The problem is that this solution does not 
take the ADU boundaries into account. 

Table 5· Evaluation of solution 2 
layers end spreading nb of pkts/ratio throughput ratio 
L1 only 12 6, 12 12 /1.0 ratio 1.0 ratio 
L1+2 7 6,7 19 /1.6 ratio 2.0 ratio 
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