
J. D. Touch et al. (eds.), Protocols for High-Speed Networks VI
©IFIP International Federation for Information Processing 2000

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

PACKET SCHEDULING FOR
HETEROGENEOUS MULTICAST

TRANSMISSIONS

Vincent Roca
Universite Pierre et Marie Curie

LIP6 - CNRS, theme Reseaux et Performances
8, rue capitaine Scott; 75015 Paris; FRANCE

phone: (+33) 1.44.21. 75.14; fax: (+33) 1.44.27.87.32
vincent.roca@lip6.fr; http://www-rp.lip6.fr/,...,roca

Abstract

Multicast transmissions naturally raise the problem of the het­
erogeneity of receivers in terms of networking possibilities, host
performances and user desires. Several solutions have been intro­
duced but none suits all the situations. This paper describes a
scheduling algorithm that unifies some of these solutions, in par­
ticular in case of continuous data flows, and which is suited to a
broad range of applications. An implementation of this algorithm
is used to illustrate its behavior.

1 INTRODUCTION: THE NEEDS

Multicast transmissions naturally raise the problem of the heterogeneity
of receivers. Several levels of heterogeneity can be identified: (1) the
intrinsic performance of various parts of the network can be largely dif­
ferent; (2) the network performance can vary over the time because of
congestion problems, of external factors (e.g. weather conditions in case
of wireless communications), or a change of communication technology
(e.g. switching from WaveLAN to GSM); (3) some privileged networks
can take advantage of improved transmission services (e.g. using dif­
ferentiated services) ; while other ones will be at the mercy of router
congestions. (4) some hosts can be limited by their processing power
(e.g. palmtop); and (5) some users can be content with a medium qual­
ity data flow, while other ones will insist to have the highest possible
quality.

We believe that a large group will include several (all?) kinds of het­
erogeneity. Traditionally one restricts oneself to homogeneous multicast
transmissions, sending data at a rate determined by the slowest receiver.

10.1007/978-0-387-35580-L16

http://dx.doi.org/10.1007/978-0-387-35580-1_16

102 Part 4: Quality of Service

It implies defining a maximum rate either statically (compilation or ap­
plication parameter) or dynamically [8). Our proposal intends to fill this
gap by providing a general purpose heterogeneous multicast scheme, i.e.
the possibility to send any data flow to a group where each receiver
chooses a reception rate according to its network quality, workstation
power, and desires.

This paper is organized as follows: section 2 introduces several ap­
proaches to support heterogeneous multicast transmissions. Our pro­
posal is detailed in section 3. Section 4 introduces some experimental
results. Section 5 discusses additional properties, then we conclude.

2 LIMITATIONS OF CURRENT SOLUTIONS

Several directions have been proposed to address heterogeneity. Some of
them rely on packet scheduling schemes (DSS/MMG/MCM), others on
coding (e.g. the hierarchical coding of a video stream [5)), on transcoding
(the information is tailored, e.g. an image definition is reduced, according
to the needs of a particular client [9]), or on filtering [11] [19]. This section
focuses on the scheduling schemes.

Destination Set Splitting (DSS)

This solution, also called Simulcast, achieves heterogeneity by using
multiple uncoordinated streams at different rates on several multicast
groups [1] [2). A receiver chooses the desired throughput and subscribes
to the associated group. Here each receiver gets a copy of all the data.

This solution has several limitations:

• because data is sent on all the groups, it leads to a high load of the
sender's network where traffic is concentrated.

• a receiver that wants to change of group (e.g. if the selected
throughput turns out to be too high) may loose many packets if it
unsubscribes to the old group and then subscribes to the new one.
If it does the contrary (i.e. subscribing before unsubscribing), the
presence of two data flows in the meanwhile can also lead to losses.

But this solution avoids any packet duplication at the receiver side
(we'll see that it is not the case of our GMMG scheduling), and can be
used with data flows generated on-the-fly.

Packet Scheduling for Heterogeneous Multicast Transmissions 103

Multiple Multicast Groups (MMG)

The MMG [3] scheme is based on a cumulative layered scheduling. The
idea is to let each multicast group take advantage of the previous groups.
Here also everyone receives everything at a pace that depends on its
possibilities.

Let us consider a senderS that uses three multicast groups (figure 1).
Data is first divided into four equal parts. On group 1, S sends parts 1
to 4 at a rate compatible with that of the slowest receiver. On group 2 S
sends parts 2 and 4, which enables a receiver having subscribed to both
groups to receive data twice as fast, etc.

Gl: part_l part_3 part_2 part_4
G2: part_2 part_4
G3: part_3

part_4

Figure 1: Scheduling in case of the MMG approach.

We see several limitations to the MMG approach as proposed in [3]:

• the sender is supposed to know in advance the amount of data to
send in order to partition it. This hypothesis is rather restrictive.

• the sender is supposed to know in advance the available throughput
of each receiver in order to define the features of each group. This
is usually impossible since group membership is by nature dynamic
and the network features highly variable.

• our personal experience implementing our proposal suggests that
the packet ordering within each group should be kept increasing.

Multiple-Channel Multicast (MCM)

This class of solutions is also based on a cumulative layered scheduling.
It includes the Partition Organization channel scheduling (PO) [7] and
the Session Organization (SO) channel scheduling [16]. Like MMG, these
solutions require that the data stream is known in advance (in order to
partition it) which restricts their use. On the other hand, an advantage
of this hypothesis is that asynchronous starts are possible since packets
are cyclically transmitted on each multicast group.

104 Part 4: Quality of Service

Discussion

The previous analysis has highlighted that many hypotheses on the data
flow nature are made. For instance hierarchical coding is restricted to
data flows that can be organized in cumulative layers. It typically con­
cerns video streams. The MMG and MCM schemes require to know in
advance the amount of data to send in order to find the optimal schedul­
ing. A typical example is a file transfer application.

Unfortunately a broad range of applications that generate on-the­
fly data flows are not satisfied. A white board (e.g. wb [18]) or an
application sharing environment (e.g. doing Xll message multiplexing
like XTV [20]) are two typical examples. The amount of data exchanged
can be rather low during a certain span of time and then, because of a
participant action (e.g. he launches a new X Windows application under
XTV's control), the tool generates "on the fly" large amounts of data. If
the DSS approach can handle these applications, it has limitations as
explained before.

3 THE GMMG (GENERALIZED MMG) APPROACH

This section introduces a hybrid solution that mixes some of the pre­
vious approaches. To be as general as possible, we consider that data
is submitted by the application as a collection of messages, called ADU
(Application Data Units) to the sending control layer. We make no hy­
pothesis on the nature of the ADU and whether or not the application
follows the ALF paradigm [4]. Unlike MGM, we do not consider the
possibility of receivers starting reception asynchronously. This feature is
handled at user level with the kind of applications considered.

The Case of an Isolated ADU

We first consider an isolated ADU. GMMG is then very close to MMG.
The ADU of figure 2 is first segmented into sixteen 512 byte packets (i.e.
small enough to avoid IP fragmentation). Each ADU is identified by its
constituting packets, noted as a range of packet sequence numbers (e.g.
[1; 16] identifies the first ADU which is segmented in 16 packets). A little
vertical arrow indicates that the application submits a new ADU to the
control layer. In figure 2 the senderS uses four transmission layers and
schedules packets in a cumulative way, so that a receiver subscribing

Packet Scheduling for Heterogeneous Multicast Transmissions 105

to an additional layer experiences a reception rate two times higher1 .

Therefore on layer i we transmit the packets of all the previous layers
delimited by the upper half of the packets sent on layer i-1 (dashed areas
of figure 2).

4 14 .d.·····
11 15

12 16

Figure 2: GMMG scheduling of an isolated ADU.

Because transmissions on each layer occur at a regular rate deter­
mined by layer 1, we use this rate as a virtual time scale. As we neglect
the transmission and propagation times, it is regarded either as the send­
ing or receiving time scale. At time 1, S sends successively packet 1 on
layer 1, packet 9 on layer 2, packets 5 and 6 on layer 3, etc. Then it
waits. At time 2, S sends all the packets scheduled for time 2 and so on.

Several evaluation criteria are considered:

total reception time: Time required to receive all the packets of all
the ADUs, expressed in terms of layer 1 packet times ("virtual
time"). For instance, in figure 2, subscribing to layers 1 and 2
allows the reception of all packets in 8 virtual time slots.

spreading of the ADU reception times: The regular arrival of AD Us
(i.e. the reception of all the packets of each ADU} enables there­
ceiver to process them regularly, as soon as possible, and limits
buffer use. This spreading is represented by the list of reception
times of each ADU.

total number of packets transmitted: Number of packets transmit­
ted over all layers subscribed. In spite of the cumulative aspect of
transmissions, certain packets are transmitted several times. Ob­
viously, the fewer, the better. This metric is also expressed as the
ratio of the number of packets sent for a given number of layers to
the number of packets sent on layer 1 (i.e. non-duplicated packets).

1For simplicity we only consider ratios of 2. This is not compulsory as explained
in section 5

106 Part 4: Quality of Service

cumulative throughput ratio: The total transmission rate on the sender's
network increases with the number of transmission layers. Theta-
bles give the ratio of the maximum throughput when subscribing
a given number of layers to the throughput of layer 1.

number of multicast groups: using a multicast group is costly, so the
fewer the better. So far we have supposed that each layer corre­
sponds to a multicast group. Section 5 discusses this assumption.

Table 1: Evaluation of the example of figure 2.
layers end spreading nb of pktslratio throughput ratio
Ll only 16 16 16 I 1.0 ratio 1.0 ratio
L1+2 8 8 24 I 1.5 ratio 2.0 ratio
L1+2+3 4 4 32 I 2.0 ratio 4.0 ratio
Ll+2+3+4 2 2 40 I 2.5 ratio 8.0 ratio

Table 1 applies these criteria to figure 2. Compared to layer 1, the
presence of layers 2 and 3 reduces by a factor 4 the end of reception, at
the expense of a maximum total throughput 4 times higher, but with
only twice as many packets sent. With layer 4, data is received 8 times
faster with only 2.5 as many packets sent.

The Case of Close ADU Submissions

We now consider the case of close ADU submissions. The transmission
control layer does not know in advance the amount of data to send.
Therefore, it must continuously decide when to send each packet, and
whether or not to reconsider the planned transmissions when a new ADU
arrives. Three strategies are possible: the first one consists in sending
AD Us independently to one another. Another one, more drastic, consists
in reconsidering the whole transmission planning each time a new ADU
is received. None of these solutions is recommended as explained in
annex A. Therefore we focus on the third intermediate solution.

Description of the GMMG algorithm

This solution takes into account a new ADU as soon as it is available
without modifying the transmissions already planned. When the applica­
tion submits the new ADU, some packets from previous ADUs (possibly
0) wait to be sent on each level. Let call them rem1, rem2 and rem3.

We have: rem1 >= rem2 >= rem3 >= 0. Let part1, part2 and part3

Packet Scheduling for Heterogeneous Multicast Transmissions

newADU
submission 10 IS 20

vinual lime

(ill ticks}

107

__ .. 7.
delta2

Lvl 2 t
·half2 = +Pan! in ticks) /2]

I /um:jlocif(6+ 16)12J=II ticks Part 2 < ·· . . .
· ,

rem2 j
: I

: delta3:
H;re: 4.2=2 ticks half3 = + Pan2 in ticks) I 2)

Lvl 3 ---<'--,· J ... i. 1)12/=6 ticks

H unused transmi ssion tick due
to rounding to lower integer

Figure 3: GMMG scheduling algorithm.

be the various packets belonging to the new ADU sent respectively on
layer 1, 2 and 3. By definition, part1 includes all the packets of the new
ADU. part2 is built as follows. We first calculate:

delta2(in ticks)= tick2(rem2)- tickl(rem!)

where the ticki () function gives the number of ticks required to trans­
mit the given number of packets on layer i2 • part2 includes all the packets
of parh contained in the upper half, of duration halh ticks, of the set
delta2 U part1. Therefore3 :

halh(in ticks) = jloor[(delta2 + tickl(partl))/2]

part2 = {upper halh packets of part!}

Likewise part3 includes the packets of part1 U part2 delimited by the
upper half, of duration halh, of the set delta3 U part2 (area within the
dashed box of figure 3). part3 is bounded by the times start3 and end3:

halh(in ticks) = jloor[(delta3 + tick2(part2))j2]

end3 (in ticks)= tick2(rem2 U part2)

start3 (in ticks) = end3- halh

part3 = {pkts of new ADU sent between start3 and end3 on Ll U L2}

2 tick;(l bytes)= ljnumber of bytes sent per tick on layer i
3The floor() function returns the largest integral value not greater than x

108 Part 4: Quality of Service

This algorithm can be generalized. Figure 4 illustrates it with a
simple scenario: two ADUs of six packets each are submitted at times
0.5 and 2.5. At time 2.5 we have: delta2 = 4- 1 = 3 ticks. So the upper
halh = floor((3 + 6)/2) = 4 packets of ADU 2 are sent on layer 2.

[1 ;6] [7; 12]
I I

L1 V 1
L2 4

2V3 4 5 617 8 9 10 11 12
5 6 I 9 10 11 12

Figure 4: GMMG scheduling applied to a simple scenario.

Table 2: Evaluation of the example of figure 4.
layers end spreading nb of pktslratio throughput ratio
L1 only 12 6, 12 12 I 1.0 ratio 1.0 ratio
L1+2 8 3, 8 19 I 1.6 ratio 2.0 ratio

Compared to the two other solutions of annex A, this solution (1)
improves the spreading of the end of ADU reception, and (2) reduces
the total reception time for 11+12. This is made possible by the precise
knowledge of remaining packets on the various layers.

A Necessary Improvement: the Notion of Credit

This algorithm has limitations. Suppose we are building parti. On the
previous levels (i.e. 1 to i - 1), between starti and endi there can be
packets that do not belong to the new ADU. These packets are ignored
and the corresponding number of transmission slots of parti are lost.
This is the "lost cycle phenomenon". It happens in figure 3 when building
part3. A transmission slot is lost because the first packet of layer 1 within
the dashed area (time 9) belongs to rem1 , not to Part1•

If ADUs are submitted too rapidly, packets progressively accumulate
on the lowest levels and "lost cycles" are more and more numerous.
Higher layers are seriously affected and may even become useless. To
avoid it we consider that each lost cycle creates "credit". Let tot_credit
be the sum of these credits for all layers. We calculate the possible
anticipation:

anticipation (in_ticks) = floor (ticki (tot_credit) /2);

that we subtract to the starti variable:

Packet Scheduling for Heterogeneous Multicast Transmissions 109

starti = starti - anticipation

By extending the area considered when building parti, we make up
for the lost cycles. Note that the implementation of GMMG described
in [15] completely avoids this problem.

One Step Further: the Case of Continuous Data Flows

In the previous section we considered close ADU submissions. We now go
further and consider the case of continuous data flows. This is (partially)
illustrated in figure 5.

[1; 12] [13; 16] [17; 28]
I I I

Ll V 1 V 2 V 3 4 5 6 7 8 9 10 11 121 13 14 15 161 17 18 ...
L2 7 8 9 10 11 121 13 14 15 161 20 21 22 23 25 26 27 281
L3 4 6 111 13 151 17 19 21 23 25 271

5 10 121 14 161 18 20 22 24 26 281
L4 31 131 17 21 251

91 141 18 22 261
111 151 19 23 271
121 161 20 24 281

Figure 5: Continuous data flows (extract).

If the ADU submission rate is superior to the packet transmission
rate of level1, then deltai and halfi increase. It means that parti tends
to be identical to parh. If the end of reception time of the ADUs is
still improved, this is to the detriment of the total number of packets
sent, and GMMG tends to DSS where data is sent on each layer. Our
approach is thus a balance between the MMG {sparse ADU submission)
and the simulcast {continuous ADU submission) flow controls.

Because data cannot indefinitely accumulate at the sender waiting
to be transmitted on the lower layers, the application will eventually be
blocked. Lower layers will take advantage of this pause to keep up with
higher layers. Therefore, a limitation not solved by this approach is that
the transmission of truly continuous data flows, on the long range, take
place at the rhythm of the lowest transmission level because of limited
buffer capabilities. A partial solution is introduced in section 5.

110 Part 4: Quality of Service

Defining Several Transmission Subflows

Up to now we have supposed that ADUs had to be sent to all there­
ceivers. In fact an application may identify several subftows and leave
each receiver choose what to receive (as with a hierarchical coding).

[1; 16] subflow 1
[a;1] subf1ow 2

I
L1 v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
L2 9 10 11 12 13 14 15 16
L3 a b c d e f g h i j k 1
L4 g h i j k 1

Figure 6: Scheduling of two ADUs belonging to two subftows.

In figure 6 we consider the subftow 1 sent to everybody, and the sub­
flow 2 providing optional details. For each subflow we offer the possibility
to receive data at different rates. A receiver now has two complemen­
tary levels of choice: (1) what detail he needs (i.e. how many subflows),
and (2) how fast data should be received (i.e. how many layers for
each subflow). Depending on the application some combinations can be
meaningless, but this is an application decision that does not concern
the transmission control layer.

4 PRELIMINARY SIMULATION RESULTS

We have implemented this algorithm as a C library and linked it to a
traffic generator. This section illustrates the algorithm behavior with a
data stream that we believe is significant of that of a white-board (for a
detailed performance evaluation see [15]). There is no packet loss. The
scenario consists of three bursts separated by inactivity periods:

step 1: send two ADUs of ten packets each ([1;10] and [11;20]), at one
time tick interval (i.e. at times 1 and 2)

step 2: wait 10 ticks

step 3: send again two more ADUs ([21;30] and [31;40]), at one tick
interval (i.e. at times 12 and 13)

step 4: wait 28 ticks (so that Ievell finishes to send all the packets left)

Packet Scheduling for Heterogeneous Multicast Transmissions 111

ADU Complet•on Time
90

80

I. :

70 r-------
• ! :

.li 60

:
50

i 40

]!

30 -t+------+
' :

20

10
oi:
,::

!
0

.;:
0 10 20 30 40 50 60 70 80 90 100

virtualttme

Figure 7: End of ADU reception while varying the number of layers.

step 5: send five ADUs ([41;50] to [81;90]) at one time tick interval (i.e.
at times 41 to 46). Wait until the sender has received all of them,
even if the ADU has already been completed4 .

Figure 7 shows the ADU reception times according to the number
of layers subscribed, and figure 8 the packets sent on each layer. The
horizontal steps in figure 7 at sequence numbers 20, 40 and 90 indicate
that all the ADUs of steps 1, 3, and 5 respectively have been received.
Subscribing to more layers leads to a faster reception of ADUs. Yet the
gains are not always a power of two. This is due to the delay experienced
on lower levels. For instance, during step 5, packet scheduling on layer 2
can only take advantage of layer 1 transmissions for the ADU [41; 50].
Then ADUs are received at the same rhythm no matter whether one has
subscribed to layer 1 only or to both layers. This is different with layers
3 to 5. Their higher transmission rate is sufficient to process the packet
burst of step 5 and each level takes advantage of transmissions on (some
of) the previous levels.

The final duplication ratio is given in table 3. If this ratio is 3.6 when
receiving all the layers, the five ADUs of step 5 have been received in
8 time ticks instead of 47, namely 5.8 times faster! These experiments
show that our cumulative transmission organization can handle bursty

4It means that extra duplicated packets will be received. Another possibility would
be for the receiver to close the socket once all the ADUs have been received. In that
case the duplication ratio would be largely improved.

112

i
i
i

Part 4: Quality of Service

0 10 20 30 40 50 60 70 80 90 100
vll1ualt1me

Figure 8: Packet sent on each layer when subscribing all of them.

data flows efficiently while minimizing the number of packets sent.

5 ADDITIONAL ASPECTS AND RELATED WORK

We now discuss some additional aspects related to the use of our schedul­
ing algorithm. Many items (e.g. congestion control, reliability, how many
layers to use, etc.) are not covered by this paper even if they are required.

Storing ADUs on the Disk to Limit the Continuous Data
Flow Problem

The problem with (pseudo) continuous data flows is not so serious be­
cause our transmission scheme is implemented as a user-level library [15].
The process image (code+data) is naturally swappable and using a large
transmission buffer will only result in a large area in the swapping parti­
tion. The sender can cope with "reasonably long" continuous data flows
since data is in fact stored on the disk rather than in physical memory5 .

5 A common rule of thumb is to define a swapping area 2 to 3 times larger than the
available physical memory.

Packet Scheduling for Heterogeneous Multicast Transmissions 113

If not sufficient, it is possible to go further and to explicitly store
data on the disk rather than in memory buffers. The scheduling module
only keeps a small memory buffer which is used as a cache to store
data read from the disk archive. Because transmissions are planned in
advance, the disk access latency can be easily hidden. This technique
enables very large transmission archives without competing with other
processes.

This approach is more general than just its application to our schedul­
ing algorithm. In particular it could be of benefits for reliable multicast
transmissions. Data buffering is a problem because the sender must be
able to cope with any delayed retransmission request, (even in case of a
receiver-initiated approach [13]) which requires to keep data in memory
for long (infinite?) periods.

Non Bijective "Transmission Level" to "Multicast Group"
Mapping

GMMG (like other layered schemes) uses several transmission levels (or
levels), and for simplicity we considered so far that they were mapped
to several multicast groups. But several problems arise:

• resources are kept by multicast routers for each group,

• DVMRP [14) leads to periodical flooding and pruning stages for
each group, and finally

• several multicast addresses must be allocated and announced.

A first way to limit the problems consists in mapping several trans­
mission levels on a multicast group. For instance group 1 can be used
for level 1 which provides an elementary transmission service. Group 2
can be used both for levels 2 and 3 for an intermediate transmission
service. Finally group 3 can be used for levels 4 and 5, providing a high
throughput service.

Another approach to provide a large range of throughputs with a
limited number of multicast groups is to define a throughput scale that
is not necessarily a power of2 [3). This is also possible with GMMG using
the efficient implementation described in [15). This latter accommodates
any scale of throughputs since the number of packets sent on each level
at each time tick can be freely set.

114 Part 4: Quality of Service

6 CONCLUSIONS

We have introduced a new scheduling algorithm (GMMG) for heteroge­
neous multicast transmissions unifying the MMG and DSS approaches.
This algorithm can be used with a broad range of applications like CSCW
("Computer Supported Collaborative Work") tools that generate on-the­
fly data flows. It has also been implemented in a general purpose library
which is freely distributed (with source code) in the author's home page.
A companion paper [15] discusses the design of this library and compares
various scheduling algorithms including GMMG.

Acknowledgments

The author thanks S. Fdida, his colleagues from LIP6 and the anonymous
reviewers who contributed to improve the quality of this paper.

References

[1] M. Ammar, L. Wu, "Improving the Performance of Point to Multi-Point ARQ Protocols
through Destination Set Splitting", Proceedings of IEEE INFOCOM'g2, May 1gg2.

[2] M. Ammar, D. Towsley, "Flow control for multicast applications", Multicast tutorial
during SIGCOMM'97, September 1997.

[3] S. Bhattacharyya, J. Kurose, D. Towsley, R. Nagarajan, "Efficient multicast flow control
using multiple multicast groups", Proceedings of IEEE INFOCOM'98, February 1998.

[4] D. Clark, D. Tennenhouse, "Architectural considerations for a new generation of pro­
tocols", Proc. ACM SIGCOMM'90, September 1990.

[5] J. Bolot, T. Turletti, "Scalable feedback control for multicast video distribution in the
Internet", Proceedings SIGCOMM'94, September 1994.

[6] C. Diot, W. Dabbous, J. Crowcroft, "Multipoint communication: a survey of protocols,
functions, and mechanisms", IEEE Journal on Selected Areas in Communications, Vol.
15, No. 3, April 1997.

[7] M. Donahoo, M. Ammar, E. Zegura, "Multiple-Channel Multicast scheduling for scal­
able bulk-data transport", Proceedings of IEEE INFOCOM'9g, March 1999.

[8] S. Floyd, V. Jacobson, S. McCanne, C. Liu, L. Zhang, "A reliable multicast frame­
work for light-weight sessions and application level framing", Proceedings ACM SIG­
COMM'95, 1995.

[9] A. Fox, S. Gribble, Y. Chawathe, E. Brewer, "Adapting to network and client variation
using infrastructural proxies: lessons and perspective", IEEE Personal Communica­
tions, Vol. 5 No. 4, August 1998.

[10] B. Levine, JJ. Garcia-Luna-Aceves, "Improving Internet multicast with routing labels",
Proceeding of IEEE ICNP'97, October 1997.

Packet Scheduling for Heterogeneous Multicast Transmissions 115

[11] M. Luby, L. Vicisano, T. Speakman, "Heterogeneous multicast congestion control based
on router packet filtering", Work in progress, presented at RMRG meeting, June 1g99.

[12] S. McCanne, V. Jacobson, M. Vetterli, "Receiver-driven layered multicast", Proceedings
ACM SIGCOMM'96, October 1996.

[13] S. Pingali, D. Towsley, J.F. Kurose, "A comparison of sender-initiated and receiver­
initiated reliable multicast protocol", IEEE Journal on Selected Areas in Communica­
tions, April 1997.

(14] T. Pusateri, "Distance Vector Multicast Routing Protocol", Internet Dmft <dmft-ietf­
idmr-dvmrp-v3-06.txt>, March 1998.

[15] V. Roca, "Design of a library for the heterogeneous multicast distribution of data flows
generated on the fly", Submitted, July 1999.

[16] L. Vicisano, "Notes on a cumulative layered organisation of data packets across multiple
streams with different rates", Work in progress, May 1998.

(17] L. Vicisano, L. Rizzo, J. Crowcroft, "TCP-like congestion control for layered multicast
data transfer", Proceedings of IEEE INFOCOM'98, February 1 gg8.

[18] ''wb - LBNL Whiteboard Tool", available at URL http:/ jwww-nrg.ee.lbl.9ovjwbj

(19] R. Wittmann, M. Zitterbart, "Active multicasting for heterogeneous groups", Proceed­
ing of 4th IFIP Broadband Communications, BC'98, April1998.

(20] Hussein Abdel-Wahab, Mark Feit, "XTV: A Framework for Sharing X Window Clients
in Remote Synchronous Collaboration", Proceedings, IEEE TriComm '91: Communi­
cations for Distributed Applications and Systems, Apri/1991.

A Two SUBOPTIMAL ALGORITHMS

This section explains why the first two algorithms mentioned in section 3
have not be selected.

Send ADUs Independently to One Another

[1;6] [7;12]
I I

L1 V 1
L2 4

2 v 3 4 5 6
5 6 10 11 12

7 8 9 10 11 12

Figure 9: Scheduling with ADUs sent independently to one another.

Figure 9 illustrates the first strategy using a simple scenario: two
AD Us, each of them segmented into six packets, are submitted at times
0.5 and 2.5. Here, S sends the packets 1 to 6 (first ADU) without taking
into account the availability of packets 7 to 12 (second ADU). Then S

ll6 Part 4: Quality of Service

send the upper half of the packets of the second ADU on level 2 as if
it was an isolated ADU. Because transmissions are performed blindly,
reception only finishes at time 9 with both layers.

Table 4: Evaluation of solution 1.
I layers I end spreading I nb of pkts/ratio throughput ratio I
I L1 only I 12 6, 12 I 12 / 1.0 ratio 1.0 ratio I

L1+2 9 3, 9 18 /1.5 ratio 2.0 ratio

Renegotiate Packet 'fransmission at Each ADU Submission

[1;6) [7;12)
I I

L1 V 1
L2 4

2 v 3
5 8

4 5 6 I 7 8 9 10 11 12
9 10 11 I 12

Figure 10: Scheduling when reconsidering transmission at each ADU.

An opposite solution is possible, taking into account the availability
of the second ADU immediately (figure 10). Here, the whole transmission
planning is reconsidered at time 3 and the transmission of packet 6 on
layer 2 is given up. As packets 3 to 12 remain to be sent, S continues
with the transmission of the upper half of the remaining packets on layer
2. It is packet: 3 + floor((12- 2)/2) = 8. The reception is faster than
with solution 1, but the first ADU is only available at time 6. Besides,
the total number of packets is higher because packets 4 and 5 have been
sent pointlessly on layer 2. The problem is that this solution does not
take the ADU boundaries into account.

Table 5· Evaluation of solution 2
layers end spreading nb of pkts/ratio throughput ratio
L1 only 12 6, 12 12 /1.0 ratio 1.0 ratio
L1+2 7 6,7 19 /1.6 ratio 2.0 ratio

	PACKET SCHEDULING FOR HETEROGENEOUS MULTICAST TRANSMISSIONS
	1 INTRODUCTION: THE NEEDS
	2 LIMITATIONS OF CURRENT SOLUTIONS
	3 THE GMMG (GENERALIZED MMG) APPROACH
	4 PRELIMINARY SIMULATION RESULTS
	5 ADDITIONAL ASPECTS AND RELATED WORK
	6 CONCLUSIONS
	Acknowledgments
	References

