
J. D. Touch et al. (eds.), Protocols for High-Speed Networks VI
©IFIP International Federation for Information Processing 2000

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

SCHEDULING TCP IN THE NEMESIS
OPERATING SYSTEM*

Thiemo Voigt and Bengt Ahlgren
Swedish Institute of Computer Science

Box 1263, SE-164 29 Kista, Sweden
thiemo@sics.se, bengta@sics.se

Abstract

The Nemesis operating system is designed to provide Quality of Service
to applications. Nemesis also allows applications to reserve CPU time and
transmit bandwidth on network interfaces. We have implemented a TCP for
Nemesis that makes use of these guarantees.

We show that the Nemesis transmit scheduler rate-controls TCP traffic and
thus leads to predictable traffic behavior when applications choose not to uti­
lize non-allocated bandwidth. Applications that want to make use of the non­
allocated transmit bandwidth receive the guaranteed bandwidth plus a share of
the non-allocated bandwidth.

We also study the impact of the guaranteed fraction of CPU time on the
throughput that networked applications achieve. We measure the amount of
CPU time applications have to reserve in order to run the TCP protocol stack
and send data at a particular speed. We show that these values hold even when
several applications strive for CPU time and transmit bandwidth.

1 INTRODUCTION

Providing a deterministic service quality from a distributed application in­
volves ensuring service quality in a whole chain of systems. Both the commu­
nication network and the computer platform on which the application is imple­
mented have to provide service guarantees. In this paper we assume that the
network provides the necessary service quality and focus on the mechanisms
needed in the end-system computer platform to make it deliver the network

*This work is supported in part by the CEC DG III Esprit LTR project 21917 Pegasus II.

10.1007/978-0-387-35580-1 16

http://dx.doi.org/10.1007/978-0-387-35580-1_16

64 Part 3: OS and Middleware

quality of service to the application. These mechanisms include providing ser­
vice guarantees to the software implementing the communication protocols,
i.e., guaranteed CPU time, and the allocation of transmit bandwidth on the
network interface. In this paper we study CPU scheduling of a TCP/IP imple­
mentation, the scheduling of network interface transmit bandwidth and their
interdependence in the context of the Nemesis operating system.

The Nemesis operating system [6] is designed to provide guaranteed qual­
ity of service (QoS) to applications. In order to provide guarantees it is neces­
sary that all resources used by or on behalf of an application are accounted for
correctly. In this respect, shared servers are a problem since they make it hard
to charge the correct application for the resources used. In Nemesis the use of
shared servers is instead reduced to a minimum. This leads to the vertical struc­
ture of Nemesis. Besides CPU time and disk I/0 bandwidth, Nemesis regards
transmit bandwidth on network interfaces as a resource that can be reserved.

We present a set of experiments which demonstrate the ability of Nemesis
to provide the appropriate end-system communication guarantees for the ap­
plication. First we show that the scheduling of transmit bandwidth can both
be used as a rate limiter and to provide guaranteed transmit bandwidth. We
measure the amount of CPU time an application needs in order to be able run
the TCP/IP protocol stack and send data at a particular speed. Our experiments
show that the CPU time to run the protocol stack increases linearly with the
amount of data sent for a given packet size. We also show that the measured
values hold even when several applications strive for CPU time and transmit
bandwidth.

A possible usage of our scheme is an Internet service provider running
one Nemesis host with several web servers for a number of customers with
different performance requirements. Also other applications that need reliable
data transfer can be run concurrently with guaranteed progress according to
their reservations.

The contribution made in this paper is showing that the TCP/IP implemen­
tation in Nemesis can utilize the scheduling of CPU time and transmit band­
width to provide the application with a guaranteed communication service. The
scheduling of transmit bandwidth allows to rate-control TCP which can be use­
ful for not exceeding a given traffic contract. We believe that this is difficult to
achieve with traditional operating systems.

In the next section we briefly describe the features of Nemesis relevant
for our work. In section three we give an overview on the design and imple­
mentation of the Nemesis TCP. Section four presents results and performance
figures. In section five we discuss related work while section six concludes the
paper.

Scheduling TCP in the Nemesis Operating System

Unpriviledged:

Appl.

shared
library
code

Appl.

shared
library
code

Priviledged:
(,...._K_e_rn_e_l ----.,

Figure 1 The Nemesis structure.

2 NEMESIS

Appl.

shared
library
code

65

The vertical structure of the Nemesis operating system is shown in Fig­
ure 1. Applications use shared library code to perform functionality usually
associated with the operating system.

The Nemesis kernel is very small, consisting of the scheduler and acti­
vations of domains, the interrupt and trap handlers, support for inter-domain
communication as well as some processor control. There are no kernel threads.
A domain is similar to a Unix process. Trusted domains, such as device drivers,
can register interrupt handlers and affect the processor mode. Despite having
extra rights, trusted domains are scheduled like all other domains.

Nemesis has a single virtual address space which makes it easy to share
data. Each domain still has its own memory protection on this address space,
making lightweight inter-domain communication possible. Shared memory is
used to transport the marshalled arguments and event counts synchronize the
shared buffers.

Shared libraries export one or more strongly-typed inteifaces which are
specified in an interface description language called MIDDL. Interface descrip­
tions comprise types, exceptions and methods. Having acquired a so-called
binding or inteiface reference [6], domains can call methods of interfaces ex­
ported by other domains.

QoS Guarantees and Scheduling

Applications can request a share of the CPU time. Application requests
consist of a tuple containing a period p, a time slice s and a flag x denoting

66 Part 3: OS and Middleware

0 10 20 30 time

Figure 2 Scheduling of an application over three periods

whether the application wants to use extra time, i.e., a fair share of the non­
allocated CPU time. If the reservation succeeds, the application is guaranteed
a portion of s time units in each period of length p. The application is not
guaranteed an atomic slice. The slice may be split up into several smaller parts.

An example is shown in Figure 2. An application has specified a period p of
10 time units, a slice times of 5 units and the extra time flag xis set to false.

In the first two periods the application receives one slice of 5 time units with
the slice starting at different times. In the third period the application receives
its slice time split up into two parts.

The scheduling is done using the Atropos scheduler [6] which internally
uses an Earliest Deadline First algorithm. The deadlines are not specified by
the applications but computed from the applications' specifications.

A similar scheme is used for the reservation of transmit bandwidth. Appli­
cations specify their reservations using the same tuple as described above, i.e.,
the reservations are expressed as transmission time and not as bandwidth. As
for CPU time, the deadlines are not specified by the applications but computed
from the applications' specifications. Setting the extra flag x to true means
that the application wants a fair share of the non-allocated part of the transmit
bandwidth.

Rbufs and 110 Channels

Nemesis deploys a mechanism called Rbufs [3] for the inter-domain trans­
port of bulk 110 through so-called 110 channels. Packets are formed using a
data structure called 110 Record or iorec. An iorec consists of a header and
a sequence of base pointer and length pairs similar to the iovec structure
in Unix, with the header denoting how many pairs belong to the iorec. The
base pointer points into a contiguous region of virtual address space called Rbuf

Data Area, which is always backed by physical memory.

Scheduling TCP in the Nemesis Operating System

Application

' :
_ _ : ,

-, '
/

/ InetMod

Flow
manager

'\packet filter
'_installation

J/0 channels

'' - __ -> packet filter/
user space device driver

kernel

Figure 3 Architectural overview

3 TCP DESIGN AND IMPLEMENTATION

67

In this section we briefly describe the design and implementation of the
Nemesis TCP, including some implementation problems that occurred due to
the buffer handling scheme.

Overview

The Nemesis TCP implementation is partitioned between a shared library
(lnetMod) executed in the application domain and a trusted domain called the
flow manager. The latter is responsible for both the synchronization of global
resources, such as TCP port numbers, and for various control tasks like in­
stalling and removing packet filters. The main task of the packet filters is to
demultiplex incoming packets to the right application at the lowest possible
level. The packet filter is part of the device driver domain (see Figure 3).

Our implementation is based on the TCPIIP implementation of BSD [15].
As is done in BSD Unix, applications call TCP functions indirectly via a socket
interface. For native Nemesis networking we provide two socket abstractions,
namely Socket and ServerSocket.

As other TCP user-space implementations, such as Thekkat et. al. [13], our
implementation uses threads, three for each connection. The receiver thread
receives and processes incoming packets. Packets that should be delivered to

68 Part 3: OS and Middleware

the application are queued in a FIFO queue (to_app) containing pointers to
iorecs. The timer thread's task is to trigger delayed acknowledgements, to
force retransmissions, window and keepalive probes and to drop connections
when the peer does not respond. The timer thread also prevents that the con­
nection stays in the FIN_WAIT _2 state forever and handles the deletion of the
control block in the TIME_WAIT state.

The third thread is the application's thread. When the application wants to
transmit data its thread also places the data into the send-queue and executes
tcp_output () as well as ip_output () and the link-level output function.
When the application asks to receive packets, the first packet(s) from the to_app
queue are returned. If there are no packets, the thread blocks if so specified.

Buffer Handling

The buffer handling scheme in Nemesis is different from kernel-space TCP
implementations. Applications need to supply the device drivers with empty
buffers to receive data in. They must also reclaim buffers from the device
driver when the corresponding packet has been sent.

Supplying the Device Driver with Empty Receive Buffers

On the arrival of a packet on a network interface, the packet filter deter­
mines the receiving application and the device driver copies the packet into
receive buffers provided by the application. Thus, applications must prime the
device driver, i.e., applications have to supply the device driver with empty re­
ceive buffers. In our TCP implementation, the receiver thread allocates receive
buffers for header and payload of incoming packets and sends them to the de­
vice driver. The receive buffers are allocated from shared memory between the
application and the device driver.

The application returns receive buffers to InetMod via an extended IIO
channel. We call this I/0 channel extended because it is an intra-domain exten­
sion of the I/0 channel between the device driver and InetMod to the appli­
cation program. InetMod then supplies the device driver with these receive
buffers.

The number of empty receive buffers at the device driver limits the number
of packets that a TCP connection can receive immediately. Thus, if the appli­
cation or InetMod return the receive buffers slowly the device driver will run
out of empty receive buffers and has to drop incoming packets. In our TCP
implementation this situation is avoided by basing the calculation of the win­
dow advertisement on the number of empty receive buffers at the device driver

Scheduling TCP in the Nemesis Operating System 69

and the number of empty slots in the to_app queue between InetMod and the
receiving application.

Reclaiming Used Transmit Buffers

After a packet has been transmitted, Nemesis applications must reclaim
the corresponding transmit buffers from the network interface. When transmit­
ting data, applications only allocate the memory for the payload. The memory
for the header is allocated by InetMod. Thus, when applications reclaim
used transmit buffers, InetMod only returns the payload buffer. Of course,
InetMod cannot return a transmit buffer to the application before the corre­
sponding packet has been acknowledged by the peer, in case the packet gets
lost and has to be retransmitted. When an application reclaims transmit buffers
and there are no transmit buffers available, the application's thread is blocked
if so specified.

Ine tMod itself needs to reclaim the transmit buffers from the device driver.
To achieve good performance it is important to do that at the right time. A naive
solution is that tcp_output () reclaims the transmit buffers from the device
driver after having called ip_output (). But this leads to bad performance
since the device driver cannot return the transmit buffers before the packet has
been put on the wire. Thus, it is advantageous to postpone this task until the
device driver can return the transmit buffers without blocking.

Transmit Scheduling

The transmit scheduling is not part of InetMod but part of the device
driver domain. It is implemented by a thread, the TX thread. The scheduled
entities are the 110 channels to the device driver. The reservations are made by
applications for each of their 110 channels by a method call.

The TX thread runs in an endless loop. It calls the Atropos scheduler to
determine the next 110 channel to be served. The scheduler chooses an 110
channel based on the reservations. If this 110 channel has nothing to send,
the scheduler searches for another suitable 110 channel. Thus, the call to the
Atropos scheduler will return an 110 channel if there is an 110 channel that has
pending packets and that has either a non-zero slice left in its current period or
the extra flag set to true.

Thereafter the TX thread takes one packet out of the scheduled 110 channel,
transmits the packet and charges the 110 channel for the transmission.

70 Part 3: OS and Middleware

4 EXPERIMENTS

The experiments in the first part of this section deal with scheduling of
interface transmission bandwidth only. In these experiments the applications
have sufficient CPU time to produce data and process outgoing and incoming
packets. Under heavier CPU load, however, solely reserving transmit band­
width is not enough. If an application needs to send at a particular bandwidth,
a sufficient part of the CPU time has to be reserved as well. Otherwise the
application might not be able to produce data and run the protocol stacks fast
enough. This is addressed in the experiments in the next part of this section that
deals with the reservation of transmit bandwidth and CPU time. In the final part
of this section we present performance results that show that the Nemesis TCP
achieves good throughput.

Reserving Transmit Bandwidth

In this section we present two experiments. In the first experiment, we
show how the choice of the period and slice time impacts TCP performance.
The second experiment includes several transmitters that strive for transmit
bandwidth. In this experiment we can also see the effect of the extra flag on the
throughput that connections receive.

We have implemented a TCP sender application that sends MTU-sized
packets as fast as possible to the peer. We have varied the QoS parameters
for the transmit network bandwidth. The transmitter was a Pentium 200 run­
ning Nemesis with a 10 Mb/s 3c509 Ethernet card. The transmission of one
MTU-sized packet (1500 bytes including TCP/IP headers) on a 10 Mb/s Ether­
net takes about 1.2 ms. Setting the slice time to, e.g., twice this time allows the
application to send two packets in every period.

One Transmitter

In our first experiment, the Nemesis box sends to a SPARCstation running
SunOS. Figure 4 shows a section of a TCP connection with the slice time set
to 2.4 ms (which allows to send up to two MTU-sized packets in one period)1

and the period set to 50 ms. The extra time flag xis set to false in order
to rate control TCP. The small lines with arrows represent the packets that are
sent. The dotted line under the packets is the highest sequence number that has

1When we set the slice time to e.g. 3 ms (which allows to send "2.5" MTU-sized packets
in every period), we will get periods with two mixed with periods with three packets sent. The
value 2.4 ms is thus chosen to get a very regular traffic pattern.

Scheduling TCP in the Nemesis Operating System 71

sequence number

126.6 126.8 127.0 127.2 127.4 127.6
time in seconds

Figure 4 QoS TCP transmitting (tcpdump plot)

been acknowledged by the peer. The solid line above the packets is the win­
dow offered by the receiver. We can see that the sender transmits two packets,
pauses almost 50 ms until the next two packets are sent and so on. Note that the
transmission of packets is not triggered by the arrival of the acknowledgements

but by the start of a new period.
From the period, slice time and the number of bytes to be sent per period we

can compute the throughput for a connection. We have measured the through­
put for a period of 200 ms and various slice times and compared the results
with the theoretical values. For slice times up to 9.6 ms (maximum 8 MTU­
sized packets per period) there are almost no discrepancies. However, for slice
times that are larger than 9.6 ms, we do get very varying results. The explana­
tion is that the receiver's window fills when the transmitter sends many packets

during some periods and then the window offered by the peer varies depending
on how fast the receiver acknowledges data. This prevents the transmitter from
utilizing the guaranteed transmit bandwidth. However, the aim of rate-control

is to set upper limits.
When transmitting over long distances or low-bandwidth connections, TCP

flow control determines the overall traffic pattern. However, when the peer ac­
knowledges several TCP segments, the Nemesis TCP does not reply by trans­
mitting immediately a bulk of data until the receiver's window is filled again,
but spreads out the packets depending on the chosen period and slice time.

72 Part 3: OS and Middleware

"c2" ----·
.. "c3" ·-

\

6 \
\
\
\
\

\ ..
·•· \ .. ____________ _

10 12 14 16 18 20
t1me (seconds)

Figure 5 Time-throughput graph for 3 connections

Several Transmitters

In our second experiment, the Nemesis machine sends to a SPARCsta­
tion called kay and another SPARCstation (called garuda) running NetBSD.
Garuda is equipped with a 10 Mb/s Ethernet card and sits on the same LAN
as the Nemesis machine. The result is shown in Figure 5. First we start a TCP
connection (cl) to kay with a period of 200 ms, a slice time of 3.6 ms and
the extra flag set to false. This connection consistently receives the same
bandwidth (about 0.17 Mb/s) which conforms to its guarantees.

About three seconds later, we start a second TCP transmitter (c2) to garuda
with a period of 10 ms, a slice time of 1.2 ms and the extra time flag set to
true. This means that c2 wants to make use of the non-allocated part of the
transmit bandwidth but also has some guaranteed transmit bandwidth. Since cJ
only consumes a small part of the available bandwidth, c2 initially receives a
throughput of about 7.5 Mb/s, with some variation due to how fast the receiver
acknowledges the data. Some seconds later the third connection (d), also to
garuda, is started. It specifies a period of 10 ms, a slice time of 6 ms and
the extra flag is set to false. The large slice time is chosen to reserve a
large fraction of the available transmit bandwidth. As soon as c3 has started,
the non-allocated part of the transmit bandwidth decreases, and c2 therefore
receives much less transmit bandwidth (about 3.5 Mb/s).

Unfortunately, c3 does not receive the guaranteed bandwidth of 5.6 Mb/s

Scheduling TCP in the Nemesis Operating System 73

but only 4.2 Mb/s. The reason for this lower than expected throughput is that,
quite often, the sender is not allowed to transmit since the receiver's window
is closed. This happens because the acknowledgements that the receiver sends
are often delayed and arrive in bursts instead of arriving regularly (we saw a
similar behavior when we ran Linux on both the sender and a receiver on the
same LAN and transmitted as fast as possible). The delay is most likely caused
by contention for the Ethernet media. We use a 10 Mb/s hub and have two fast
connections. Under these conditions the shared Ethernet becomes a bottleneck.
On the other hand, since c2 has the extra flag set, the overall throughput does
not decrease because c2 makes use of the bandwidth that c3 cannot utilize due
to the closed window.

Reserving Transmit Bandwidth and CPU Time

In this section we present experiments that show the impact of CPU reser­
vations on the achieved bandwidth of TCP applications. All connections are
on a LAN with both transmitter and receiver running de4x5 100 Mb/s Ethernet
cards. The transmitter is a Nemesis machine while the receiver runs Linux. In
the following experiments we run a TCP application called tcpJend that trans­
mits MTU-sized packets as fast as possible. We also run an application called
carnage. This application has the property that it makes use of all its reserva­
tions. If it is guaranteed a certain fraction of the CPU time, it will make use of
this fraction.

Impact of CPU Time on Achieved Throughput

In this experiment tcp..send reserves a large fraction of the network transmit
bandwidth and has the extra time flag x set to true. Since tcpJend is the only
transmitting application it will receive almost all the available transmit band­
width. The CPU reservation request of tcpJend specifies a period of 10 ms, a
slice time of 2 ms and the extra time flag is set to true. Thus tcpJend will
receive a fraction of about 20 % of the CPU time and a fair share of the CPU
time not used by other applications. carnage has specified a period of 20 ms,
the extra flag is set to false and we vary the slice time to control the fraction
of the CPU time that carnage receives. The more CPU time carnage receives
the less CPU time is left for tcpJend. tcpJend will receive its slice time every
period but the non-allocated part of the CPU time will decrease when carnage's
slice time increases.

Figure 6 shows how the decreasing fraction of the CPU impacts the through­
put that tcpJend achieves. Since tcpJend reserves 20% of the CPU time, we

74 Part 3: OS and Middleware

50

40

! 30

= a..
20

10

o ro 30 40 50 oo ro
CPU fraction carnage (%)

Figure 6 Impact of carnage application on TCP bandwidth

set the maximum reservation for carnage to 72 %. We do not make a reserva­
tion of 80 % for carnage since there are also other domains running such as the
flow manager and several device drivers. In particular the Ethernet driver con­
sumes a non-negligible part of the CPU time in the experiments in this section.

When only tcp..send is running, it achieves a throughput of about 53 Mb/s.
The figure shows that the throughput decreases proportionally to the fraction
of CPU time used by carnage.

Reserving CPU Time to Achieve Throughput

In this experiment we assume that we have an application that wants to
transmit data with a desired throughput. The goal is to determine the fraction
of the CPU time an application needs in order to produce data and run the
protocol stack fast enough to be able to transmit the desired amount of data.
This can be important when you have reserved network bandwidth and you
want to make sure that your application really achieves the bandwidth you pay
for but you still want to have your text editor and other applications running.

The application tcp..send reserves the desired transmit bandwidth on the
network interface. When the desired throughput is e.g. 10 Mb/s, tcp..send
specifies a period of 1 ms, a slice time of 110 f..J,S and sets the extra flag to
false. The transmission of one MTU-sized packet (1500 bytes including
TCPIIP headers) takes about 120 f..J,S on a 100 Mb/s Ethernet. Since we need
to send slightly less than one packet per millisecond to achieve a throughput of

Scheduling TCP in the Nemesis Operating System 75

"bw"-$--

30

25

"0

20
:g

!"
::>
a.
(.)

15

0
c
Q

£ 10

10 15 20 25 30 35
des.red throughput (Mb/s)

Figure 7 Fraction of CPU necessary to send particular amount of data

10 Mb/s, setting the slice time to 110 J.LS seems to be reasonable. This has been
confirmed by measurements.

In Figure 7 we show the fraction of the CPU time the application tcp...send
needs to reserve to be able to transmit the desired amount of data. Since
tcp...send does not do any data processing and mainly sends and retrieves buffers
this can be seen as a minimum CPU fraction necessary to run the TCP proto­
col stack. However, the exact fraction of the CPU time needed depends on the
packet length, the CPU, the network adapter and other system components.

Figure 7 shows that the CPU fraction needed increases linearly with the
amount of data sent.

Several Applications Reserving Transmit Bandwidth and CPU Time

In the next experiment we run three tcp_send applications (sl, s2 and s3).
s 1 and s2 both want to transmit data at a speed of 10 Mb/s and s3 at a speed of
5 Mb/s. The applications set the corresponding QoS-parameters (see Table 1)
using the tuple (period, slice time, extra flag).

The fractions of the CPU share are the ones we determined in the previous
experiment (see Figure 7), i.e., 10% for sl and s2 (sl and s2 have different
period and slice times but reserve the same fraction of CPU time and transmit
bandwidth) and 5% for s3. We also run a carnage application that has the extra
flag set to true and thus consumes all the non-allocated CPU time.

Table 1 also shows that all applications receive their desired throughput.

76 Part 3: OS and Middleware

Table 1 Experiment with three transmitting applications

I app. II aim TXQoS CPU QoS I Throughput I
sl 10Mb/s 1 ms, 110 Jl-S, F 10 ms, 1 ms, F 10.1 Mb/s
s2 10Mb/s 2 ms, 220 Jl-S, F 20ms,2ms,F 10.1 Mb/s
s3 5Mb/s 2 ms, 110 Jl-S, F 20ms, 1 ms, F 5.1 Mb/s

Performance

Nemesis and its network architecture are primarily designed to support
QoS. Raw throughput performance is secondary. We nevertheless think that
the throughput we achieved with the TCP is reasonable. We have run tcp...send
between a Pentium 200 Nemesis machine and another Pentium 200 machine
running Linux. Both machines are equipped with 100 Mb/s de4x5 Ethernet
cards. We received a throughput of more than 58 Mb/s. This is lower than
the 81 Mb/s we received when running Linux on both machines but we still
think this is reasonable considering the primary goal with Nemesis. We believe
that it is possible to optimize the Nemesis TCP a lot more. A problem in our
architecture is that the transmitting application and the device driver run as dif­
ferent domains and are thus scheduled separately. The deployment of a path
mechanism as in Scout [10] would probably increase throughput performance.

5 RELATED WORK

Satyavolu et. al. [12] have investigated in methods for controlling the
rate of TCP applications. Our work deals with the end system, whereas their
techniques can be applied in ATM edge devices and Internet routers. Crowcroft
and Oechslin [4] do not rate control TCP traffic but limit the throughput of TCP
connections by decreasing the size of the receive buffer in order to achieve
weighted proportional fairness. Black et. al. [2] have used Nemesis and the
Atropos scheduler for UDP. In contrast to TCP, UDP does not have schemes for,
e.g., congestion and flow control which can prevent a transmitter from sending
although there are packets ready for transmission. Stride scheduling [14] has
been used for both CPU and device driver scheduling but the authors do not
report on any results of an integrated use.

Other architectures than Nemesis for providing QoS in an end system have
been proposed. Yau and Lam [16] propose an end system architecture that
supports networking with quality of service guarantees. They also use schedul­
ing for both CPU and network interface access by deploying an adaptive rate-

Scheduling TCP in the Nemesis Operating System 77

controlled (ARC) scheduler. The AQUA framework ofLakshman and Yavatkar
[8] is used to manage CPU and network 110 resources in an integrated fashion.
Their scheme is adaptive while we use reservations to provide QoS. Both Yau's
and Lakshman's architectures have been implemented in Solaris whereas we
use the Nemesis operating system which is designed from scratch to support
quality of service. Gopalakrishnan and Parulkar [5] have implemented an ef­
ficient user-space protocol that supports QoS using real-time upcalls (RTU's).
They achieve impressive performance running TCPIIP over ATM. Their mech­
anisms also allow to minimize delay or maximize throughput. The architecture
the authors present in their paper deals with protocol processing only. In our
scheme, the binding between an application and the underlying protocol pro­
cessing unit is more explicit because protocol processing is performed by the
application itself using shared libraries. Rajkumar et. al. [9] aim for predictable
communication protocol processing in Real-Time Mach by using processor re­
serves. As in Nemesis, library code in the application implements protocol pro­
cessing. In contrast to Nemesis, their scheme relies on processor reservations
only. Thus, it is possible that an application that is able to produce data faster
can achieve higher throughput than an application that has higher processor
reserves but needs more time to produce the data that it transmits. Another dif­
ference is that processor reserves are made per thread and the real-time socket
library comprises at least four threads.

The Rialto operating system [7] supports coexisting independent real-time
and non-real-time programs by sharing the limited physical resources available
to them. In one of their experiments, the authors study the influence of CPU
reservations over video rendering fidelity. Due to the interdependency between
frames there is no linear relationship between the CPU reservation and the
frames not rendered.

A different way of providing quality of service in an end-system are feed­
back-based approaches such as G. Beaton's [1]. One of the goals of this ap­
proach is to avoid the complexity of other architectures like Nahrstedt's and
Smith's QoS Broker [11].

6 CONCLUSIONS

We have designed and implemented a TCP for Nemesis, a vertically inte­
grated operating system that can guarantee resources such as CPU time, disk
110 bandwidth and transmit network bandwidth to applications. Our experi­
ments show that the Nemesis transmit scheduler rate-controls TCP traffic when
applications choose not to utilize non-allocated bandwidth. Applications that

78 Part 3: OS and Middleware

want to make use of the non-allocated transmit bandwidth receive the guaran­
teed bandwidth plus a share of the non-allocated bandwidth. We show that the
CPU time needed to run the protocol stack increases linearly with the amount of
data sent for a given packet size. When networked applications reserve enough
CPU time and transmit bandwidth they receive sufficient resources even when

several applications strive for both CPU time and transmit bandwidth.
Thus, Nemesis allows us to run several applications, which require both

CPU time and transmit bandwidth, concurrently, making sure each of them
receives the guaranteed resources. Possible applications include concurrently
running web servers with different performance requirements as well as other
applications requiring reliable data transfer.

7 FUTURE WORK

After having optimized the Nemesis TCP we plan to investigate how Neme­
sis can be extended to perform as an end-host in a differentiated services plat­

form. We believe that we might benefit from the Nemesis architecture here. An
obvious advantage is that applications that have reserved enough resources can
produce their data in time, independent of other applications.

8 ACKNOWLEDGEMENTS

Many people have contributed to Nemesis during the last years. Without
their work we could not have written this paper. In particular Austin Donnelly's

work has been of importance to us.
The authors would also like to thank Per Gunningberg for valuable com­

ments on an earlier draft of this paper.

References

[1] Gordon Beaton. A feedback-based quality of service management scheme. In Third Inter­
national Workshop on High Performance Protocol Architectures (HIPPARCH '97), Upp­
sala, Sweden, June 12-13 1997.

[2] Richard Black, Paul Barham, Austin Donnelly, and Neil Stratford. Protocol implemen­
tation in a vertically structured operating system. In IEEE 22nd Annual Conference on
Computer Networks (LCN), pages 179-188, November 2-5 1997.

[3] R.J. Black. Explicit network scheduling. Technical Report 361, University of Cambridge
Computer Laboratory, December 1994. Ph.D. Dissertation.

Scheduling TCP in the Nemesis Operating System 79

[4] J. Crowcroft and P. Oechslin. Differentiated end-to-end internet services using a weighted
proportional fair sharing tcp. ACM SIGCOMM Computer Communication Review,
28(3):53--69, July 1998.

[5] R. Gopalakrishnan and G. M. Parulkar. Efficient user space protocol implementations
with qos guarantees using real-time upcalls. IEEEIACM Transactions on Networking,
6(4):374-388, August 1998.

[6] I.M.Leslie, D.McAuley, R.Black, T.Roscoe, P.Barham, D.Evers, R.Fairbanks, and
E.Hyden. The design and implementation of an operating system to support dis­
tributed multimedia applications. IEEE Journal on Selected Areas in Communications,
14(7):1280-1297, September 1996.

[7] M. B. Jones, J. S. Barrera III, A. Forin, P. J. Leach, D. Rosu, and M. Rosu. An overview
of the rialto real-time architecture. In Seventh ACM SIGOPS European Workshop, pages
249-256, Connemara, Ireland, September 1996.

[8] K. Lakshman, R. Yavatkar, and R. Finkel. Integrated cpu and network-i/o qos management
in an endsystem. In Int. Workshop on Quality of Service (IWQoS), pages 167-178, 1997.

[9] C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar. Predictable communication protocol
processing in real-time mach. In Proceedings of the Real-Time Technology and Application
Symposium, pages 115-123, June 1996.

[10] D. Mosberger and L. L. Peterson. Making paths explicit in the scout operating system. In
Symposium on Operating Systems Design and Implementation, pages 153-167, October
1996.

[11] K. Nahrstedt and J. Smith. The qos broker. IEEE Multimedia, 2(1):53--67, 1995.

[12] Ramakrishna Satyavolu, Ketan Duvedi, and Shivkumar Kalyanaraman. Explicit rate con­
trol of tcp applications. ATM Forum Document, February 1999. ATM Forum Document
Number: ATMJ'orurni98-0152Rl.

[13] Chandramohan A. Thekkath, Thu D. Nguyen, Evelyn Moy, and Edward D. Lazowska.
Implementing network protocols at user level. IEEEIACM Transactions on Networking,
1 (5):554-565, October 1993.

[14] C.A. Waldspurger and W.E. Weihl. Stride scheduling: Deterministic proportional-share
resource management. Technical report, MIT Laboratory for Computer Science, 1995.

[15] G.R. Wright and W.R. Stevens. TCP/IP Illustrated, Volume 2. Addison-Wesley Publishing
Company, 1995. ISBN 0-201-63354-X.

[16] David K. Y. Yau and SimonS. Lam. Migrating sockets- end system support for networking
with quality of service guarantees. IEEE/ACMTransactions on Networking, 6(6):700-716,
December 1998.

	SCHEDULING TCP IN THE NEMESISOPERATING SYSTEM*
	1 INTRODUCTION
	2 NEMESIS
	3 TCP DESIGN AND IMPLEMENTATION
	4 EXPERIMENTS
	5 RELATED WORK
	6 CONCLUSIONS
	7 FUTURE WORK
	8 ACKNOWLEDGEMENTS
	References

