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Abstract In this paper, we study the performance of high-speed packet switches. where the 
switch fabric operates at a slightly higher speed than the links. i.e .• a speeded-up switch. 
As link speeds keep increasing, the speedup of N (number of links) needed for pure 
output queueing (which is the best) becomes a significant technical challenge. This 
is one of the main reasons for the renewed interest in moderately speeded-up switch 
fabrics. The aim of this paper is to highlight the result that only a moderate speed-up 
factor (less than two) is sufficient to achieve full input link utilization. In particular. we 
emphasize that this holds. even without relying on a central switch controller making 
intelligent decisions on which packets to schedule through the switch. As shown in 
recent works. i.e., [10. 12. 8, 2. Ill. there are clearly benefits to using intelligent 
controllers, but they do come at a cost. Instead. in this paper we focus on what can 
be achieved by relying simply on switch speedup. We do so by means of analysis 
and simulations for average queue length in switches with speedup. We also present 
simulation results on delay performance. 

Keywords: Packet Switch, Speedup Factor, HOL Blocking, Matrix Analytic 

1. BASIC SWITCH ARCHITECTURE 
Consider the packet switch of figure 1. This switch has N input ports and 

N output ports and employs a combination of input and output queueing. We 
assume a nonbLocking switch fabric so that all contentions inside the switch for 
packets destined to different output ports are avoided. Note that contention remains 
inevitable among packets addressed to the same output port. Fixed-length packets, 
or cells, arrive at the input ports of the packet switch. This cell structure is only 
internal to the switch, so that the links could carry variable size packets. However, 
in the rest of the paper, we focus on the case of fixed-size packets. Each packet 
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contains an identifier that indicates which output (we limit ourselves to the case of 
unicast flows) j, 1 <::: j <::: N, It is destined for. In this paper, we are concerned 
with the performance analysis of such a switch fabric when it is speeded-up. That 
is, the switch fabric runs at a speed greater than that of the input and output links. 
For simplicity, we assume in our analysis that all input and output links run at the 
same speed. 

Another important characteristic of the switch we consider is that each input 
makes independent decisions on which packet to send. As a result, the queueing 
structure at the inputs is a simple FIFO queue. This is in contrast to the switch 
fabrics of [10, 12, 8, 2, 11], which assume that packets are sorted according to their 
destination, and possibly priority, at the inputs, so that a central controller can make 
a selection based on the best possible combination of packets to send through the 
switch. 

The operation of the simple switch fabric which we consider assumes, therefore, 
independent transmission attempts from all inputs. The basic packet transmission 
time through the switch fabric is called a switch-slot, and switch-slot boundaries at 
all the links are synchronized. For our analysis, we assume that packet arrivals on 
all N links are statistically identical, and packet destinations are independent from 
packet to packet and uniformly distributed across all N outputs. We denote as a 
link-slot the time it takes for a packet to arrive on the link. We also assume that 
the statistics of packet arrivals on all input links are identical. Because of potential 
contentions, it may take several switch slots to transfer a packet through the switch, 
as only packets with distinct destinations can be transferred within a given switch­
slot. However, the impact on the inputs depends on the relation between switch-slots 
and link-slots, or in other words on the speedup of the switch. In switches with a 
speedup less than N, some queueing will occur on the inputs, and in our analysis we 
assume infinite buffers on inputs (and outputs), so that no packets are lost. In cases 
when packets from multiple inputs contend for the same destination in a switch-slot, 
one packet is chosen according to a contention resolution policy. 

2. SWITCH THROUGHPUT 

Let us denote the transmission time of a packet on any of the links by 1/ Rl and 
the transmission time of a packet inside the switch by 1/ Rs. Thus Rs and R{ are the 
transmission rates (in packets per second) of the switch and input links, respectively. 
When the switch fabric is speeded up, R{ < Rs, and the ratio Rs/ R{ is termed 
the speed-up factor. Let us denote the expected number of packet arrivals on each 
input link per link-slot by p. We term p the input link utilization. The expected 
number of packet arrivals on each input link per switch-slot is then q = ~p. We 
say that a switch is saturated if it has a packet available for transmission through 
the switch fabric, in every switch-slot. We define the saturation throughput of a 
switch fabric as the expected number of packets per input link that is transmitted 
by the switch in each switch-slot, when all switch inputs are saturated. Clearly the 
saturation throughput will depend on the distribution of the packet destinations and 
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the speed-up factor. At one extreme, for a speed-up factor of 1, if all packets on 
all input links are destined to a single output port i, the saturation throughput is 
liN. When packets on input link i, 1 ~ i ~ N, are always destined for output 
port i, the saturation throughput is 1. The saturation throughput has been widely 
studied in the case when, for each packet, each output port is equally likely to be the 
destination. As stated in section 1, this is the case we assume in this paper. In this 
case, the saturation throughput can also be interpreted as the output link utilization 
when the input links are saturated. (Also recall our assumption of independent and 
statistically identical input links.) 

When the switch is not saturated we have to specify the process by which packets 
arrive on the links, in addition to the distribution of their destinations. The packets 
that cannot be transmitted through the switch immediately upon arrival, due to HOL 
blocking, are queued in an infinite buffer at each input link. We define the stability 
throughput as the maximum link utilization for which these input queues are stable. 
It has been implicitly assumed in much of the literature on input queueing that, 
as long as the arrival rate of packets on each input link is less than the saturation 
throughput of the switch, these input queues are stable [5]. However, that this 
is an assumption requiring proof has been recognized by Jacob and Kumar and 
their proof for the case of Bernoulli arrivals (successive packets have independent 
destinations) with identical rates on all input links may be found in [6]. 

Saturation-Stability Property: For a specified distribution of the packet destina­
tions, we will say that an arrival process satisfies the Saturation-Stability Property 
if the input link queues are stable whenever the expected number of arrivals on each 
input link per switch-slot is less than the saturation throughput of the switch. We 
will assume that the packet arrival processes arising in our discussion satisfy the 
Saturation-Stability property. 

We now ask: For a given input link speed Rl what is the switch speed Rs 
required in order to achieve an input link utilization of unity, i.e., 100% (stability) 
throughput? Note that, due to our assumptions, specifically the symmetry among 
the output links and the equality of the transmission speeds on the input and output 
links, the stability of the output queues is assured. Our answer is embodied in the 
following proposition. 

Proposition 1 The input link utilization of an input queueing switchfabric running 
at a rate Rs > Rz/" where Rl is the rate on the input links and, is the saturation 
throughput of the switch with the same distribution for the packet destinations as 
that of the packets arriving on any input link, can be made arbitrarily close to one, 
provided the arrival process satisfies the Saturation-Stability Property. 

Proof: The expected number of arrivals on each input link per switch-slot is 
q = ~p. If Rs > Rz/" q < ,p < ,for all p, and the input queues are stable since 
the arrival process satisfies the Saturation-Stability Property by assumption. Thus 
the input link utilization p can be made arbitrarily close to 1 and the switch achieves 
a (stability) throughput of 100%. 
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3. QUEUE LENGTH ANALYSIS 
In this section we analyze the queue lengths at various queueing points in a 

speeded-up switch fabric. The time it takes to transmit a packet fully on any link is 
called a link-slot. A link-slot consists of r switch-slots. The time it takes to transfer 
a packet from an input port to an output port, i.e., inside the switch fabric, is s 
switch-slots. In other words, the link speed is less by a factor of r / s than the switch 
fabric speed and we say that the speed-up factor of the switch fabric is r / s. Note 
that this type of model is applicable to any speed-up factor of the form r / s and is 
thus a general model. It can be seen that pure input-queued switches (r = s = 1) 
and pure output-queued switches (r = N, s = 1) are also special cases ofthe above 
model. 

3.1 PACKET ARRIVAL PROCESS 
We now describe the packet arrival process which is considered for analyzing 

the speeded-up switch fabric. This arrival process is a suitable adaptation of the 
uniform i.i.d. Bernoulli arrival process. Further, for analytical simplicity, the 
arrival process considered here is over synchronized switch-slots. Such a switch­
slot arrival process leads to the Markov chain of figure 2. An ON switch-slot 
corresponds to an arrival. An OFF switch-slot corresponds to no arrival. The state 
transition probabilities are given in figure 2. The destination output port of a packet 
is chosen uniformly randomly out of N output ports. The packet arrival rate, A, in 
packets per switch-slot can be obtained by solving for the steady-state vector of this 
Markov chain and we get, 

A = p 
1+(r-l)p 

(1) 

and the rate of packet arrivals in packets per link-slot is r A. 

3.2 ASYMPTOTIC ANALYSIS OF SWITCH 
PERFORMANCE 

The packet switch with the input and output queues forms a complex queueing 
network. It seems that the exact queueing analysis of this complex queueing 
network is intractable for finite N. In order to get a handle on the problem, we 
follow the approach outlined in [7], and try to analyze the different parts of the 
network separately. For this, consider the travelogue of a tagged packet from the 
moment it arrived at an input queue to the moment it is transmitted fully on its 
destination output link. The tagged packet encounters queueing at three points in 
the network. It is first queued in the input queue where it has arrived. The packets 
in each input queue are transfered on a FIFO (first in first out) basis. When all the 
packets in front of this tagged packet in its input queue are transmitted across the 
switch, the tagged packet enters the HOL position of this input queue. At this point, 
there may be packets in the HOL position of other input queues whose destination is 
the same as that of the tagged packet. There may also be a packet which is already 
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in the transfer process to the destination of the tagged packet, in which case the 
destination is busy. The switch can start transferring only one of the former type 
of packets in a switch slot to the destination and then only if the destination is free. 
This is called HOL contention. This is the second queueing point in the network. 
Note that the HOL packets destined for a given output form a contention (or virtual) 
queue corresponding to that output. Therefore the tagged packet is queued in the 
HOL position, i.e., in its contention queue. Which packet from a given contention 
queue is to be transferred to the corresponding output (if it is free) in the next s 
switch-slots is decided by a contention resolution policy. The third queueing occurs 
in the output queue because the tagged packet is transmitted on the output link only 
when all the packets that arrived before it are transmitted fully on the output link. 

We analyze the queue-length of these three types of queues for infinite input and 
output queues, and for the asymptotic case (N -+ 00) in the following subsections. 
Contention at the HOL positions is resolved thus: If k HOL packets contend for a 
particular output in a switch-slot, one of the k packets is chosen uniformly randomly 
from those k packets. The other packets have to wait until that switch-slot in which 
the output becomes free and a new selection is made among the packets that are 
then waiting. The arrival process of section 3.1 is assumed to satisfy the saturation­
stability property of section 2. For this, the arrival rate, >., should be less than 
the saturation throughput of the switch. Observe that a switch with only input 
queues is exactly the same as a pure input-queued switch on a switch-slot basis. 
The saturation throughput is 0.586 for the uniform i.i.d. Bernoulli arrival model [7] 
and tends to 0.5 for bursty arrivals [9] over the switch-slots. Therefore as long as 
>. < 0.5, the switch input queues are stable and, due to the symmetry among the 
output links and the equality of the transmission speeds on the input and output 
links, the switch output queues are also stable. 

3.2.1 Contention Queue Analysis. The destination output of a packet is 
selected uniformly randomly among the N outputs as mentioned before. The 
situation at the HOL positions of the input queues is similar to that at the HOL 
positions of a pure input-queued switch. That is, in both cases packets encounter 
the HOL blocking phenomenon. We assume that each output contention process 
tends to be independent asymptotically (as N -+ 00). This is indeed the case 
for a pure input-queued switch with uniform i.i.d. Bernoulli traffic [7]. With this 
assumption the contention queues can be analyzed separately. 

We say that an input queue is unbacklogged in a given switch-slot, say mth, 
if and only if, either a packet transfer ended in the (m - l)th switch-slot or it 
was empty during the (m - l)th switch-slot. A packet occupying HOL position 
in mth switch-slot is said to be un backlogged if the corresponding input queue is 
unbacklogged. Otherwise the packet is said to be backlogged. Now consider any 
one contention queue, say corresponding to output i. In a given switch-slot, say 
mth, the contention queue contains backlogged as well as unbacklogged packets. 
A packet whose transfer is in progress in the mth switch-slot is also considered as 
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a backlogged packet. We denote the number of backlogged packets by B:n and the 
number of unbacklogged packets by A!n. We assume that, as N -+ 00, the steady­
state number of packets moving to the head of unbacklogged input queues in each 
switch-slot, and destined for output i, (Ai), becomes Poisson at rate, FIN = Po, 
where F is the mean steady-state number of new packets at the HOL positions. In 
other words, limN-too Pr{Ai = k} = ePopok Ik!, and Po = A below saturation. 
That this "Poisson process" assumption is correct, is substantiated by the simulated 
performance [4]. 

(B:n) can be thought of as the system queue length in mth switch-slot. The above 
Poisson process assumption and the form of B:n suggest that the contention queue 
can be modeled as a discrete-time BPI D s I 1 queue with random order of service. 
BP represents discrete-time batch-Poisson process. Ds represents deterministic 
service time which, in this case, is s switch-slots (the transmission time of a packet 
inside the switch). This queueing model can be analyzed to get the steady-state 
queue-length distribution in a random switch-slot and the delay distribution of the 
packets in the queue. Each output contention process is assumed to be independent 
as N -+ 00 and all the output contention processes are identical. Hence it is 
sufficient to analyze anyone of them. Note that when the speed-up factor is of 
the form r/1, i.e., integer speed-up factor r, the contention queue is modeled as 
BPI Dt/1. This is the same queueing model as that of the contention queue in 
[7]. There this model is referred to as discrete MID 11 queue. Thus the analysis of 
this discrete MIDI 1 developed in [7] is directly applicable to the case of integer 
speed-up factors. The analysis of the contention queue in [7] is a special case of 
the analysis developed below. 

Distribution of Queue-length in a Random Switch-Slot. We cannot model the 
queue-length of the contention queue alone by a DTMC. If we know how many 
switch-slots of service time have been completed for the current packet in transfer 
out of the deterministic s switch-slots of service time, we can model the queue­
length by a DTMC. The switch status is To at the beginning of a switch-slot if 
the switch is not busy at a switch-slot boundary. In this status the switch is ready 
to serve any packet in this switch-slot. If a packet arrives when the status is To 
and the contention queue is empty, the packet starts service immediately from this 
switch-slot. If say, n packets are in the contention queue waiting for service, one 
of them starts service from this switch-slot according to the contention resolution 
policy if no packet arrives in this switch-slot. If a packet arrives in this switch-slot, 
one of the total (n + 1) packets starts service from this switch-slot. The status Ti , 

where 1 < i :::; s, at the beginning of a switch-slot indicates that there is a packet 
transfer in progress and that first i switch-slots of service have been completed. A 
packet is eligible to get service in the same switch-slot in which it arrives. 

We club the queue-length in a switch-slot and the switch-status of that switch­
slot to form a state. This state can be modeled by a 2-D DTMC over the state 
space {(i, j) : i ~ 0, j E {To. Tl,· .. ,Ts-d}. Then queue-lengths in successive 
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switch-slots follow this 2-D DTMC. It is assumed that the number of arrivals in the 
contention queue during each switch-slot has Poisson probabilities. Therefore the 
state transition probability matrix takes the form, 

p = 

Bo Bl B2 B3 
C Al A2 A3 
6 Ao Al A2 
6 6 Ao Al 

(2) 

where Bo is an 1 x 1 matrix, Bi, i > 0 are 1 x s matrices, C is an s x 1 matrix 
and Ai, i 2:: 0 are s x s matrices. Note that the P matrix is a structured M/G/l­
type of matrix. Please refer to [4] for calculation of the entries of the matrices. 
Algorithms to solve for the steady-state probabilities vector of such matrices by 
matrix analytic methods have been implemented in a software package called TEL­
PACK [1]. We have used TELPACK to compute the steady-state probability vector 
of the P matrix. The steady-state probability vector of the P matrix is of the form, 
71" = [71"071"171"2 .•. 7I"l ... J, where 71"0 = [qO,TIJ and, 7I"i = [qi,Toqi,T2 ... qi,T.J, : i > O. 
qi,Tj is the steady-state probability of the queue-length being i and the switch status 
being Tj in a random switch-slot. We now can compute the steady state probability 
vector of queue-length in a random switch-slot which is,l = [loltl2 .. ·li .. 'J, where 
li is the probability that the queue-length is i in a random switch-slot. The liS are 

s 
given by, lo = qO,To and li = L qi,Tj' 

j=O 

Distribution of Delay. Karol et at [7] have developed a simple numerical method 
for computing the delay distribution of a discrete-time B P / Dl / 1 queue, with 
packets served in random order (Appendix III of [7]). In this section we extend 
this scheme to the case of a discrete-time B P / D s / 1 queue, with packets served 
in random order. The number of packet arrivals at the beginning of each switch­
slot is Poisson distributed with rate A and each packet requires s switch-slots of 
service time. We focus our attention on a particular "tagged" packet in the system, 
during a given switch-slot. Let Pk,Tj denote the probability, conditioned on there 
being a total of k packets in the system and the switch status being Tj during the 
given switch-slot, that the remaining delay is m switch-slots until the tagged packet 
completes service. 
The prT can be obtained by recursion on m as follows, 

, J 

pfTo = { 
1 : m=s (3) 
0: m =I- s 

PkT. = 
1 

k2::1 (4) 
, 0 k' 
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OG e- S ). (sA)j 
m (k 1) S '\'" m-s 

Pk,To = - Pk,To' ,L. Pk-I+j,To . J" }=o . 

Averaging over k. the delay D has probabilities as follows: 
For m = S . i such that i 2: 1 and i integer, 

{ 
m=x·s 
x> 1, 
k> 1 

OG 00 A.>.k-n-I 

Pr{ D = m} = L Pk,To . L qn,To . (: _ n _ 1) ! 
k=l n=O 

For m = s . i + j such that i 2: 1 and 1 :s: j :s: (s - 1) and i, j integers, 

(5) 

(6) 

00 m-j 00 e(s-j+I).((s _ j + l)A)k-n 

Pr{D = m} = {;Pk,T] . ~ qn,TJ • (k _ n)! (7) 

For all the remaining m, the delay probability is zero. The qi,Tj are obtained in 
section 3.2.1. With (6)-(7) we get the delay distribution of a packet in the system. 
The moments of the delay distribution are determined numerically from the delay 
probabilities in (6)-(7). 

3.2.2 Input Queue Analysis. As N -t 00, successive packets in an input 
queue i experience the same service time distribution because their destination 
addresses are independent and are equiprobable. The number of switch-slots elapsed 
between the entry of a tagged packet in the HOL position of its input queue and the 
exit of that packet from the input queue, is equal to the delay of the packet in the 
contention queue. It is as if the tagged packet is served for that many switch-slots 
in its input queue. In other words, the service time distribution of a packet in an 
input queue is the delay distribution of a packet in the contention queue. With the 
arrival process of section 3.1 and the service time distribution of section 3.2.1, we 
can model the input queue as a G / G /1 queue. The transition matrix P of the 2-D 
DTMC has the form, 

P 

B2 B3 
A2 A3 
Al A2 
Ao Al 

(8) 

Please refer to [4] for calculation of the entries of the matrices. To get the steady-state 
probability vector of the P matrix, we need to solve the set of equations, ir = irP 
and Ilirll = 1. where ir is a vector of the form, ir = [7r0 7r I 7r2 ... 7r i ... ] and 7ri is a 
vector of the form, 7ri = [7ri,07ri,I7ri,3'" 7ri,r-I]' 7ri,j is the steady-state probability 
of the state (i, j) of the 2-D DTMC. Note that the P matrix is a structured M / G /1-
type of matrix. We use TELPACK [1] to compute the steady-state probability vector 
ir of our P matrix. The steady-state probability vector ir enables us to compute the 
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steady-state distribution of queue-length as seen by a departing packet. The steady­
r-l 

state queue-length vector is of the fonn, ij = [QOqlq2· .. qi···] where, qi = E 7ri,j. 
j=O 

The moments of the distribution of the queue-length as seen by a departing packet 
are then numerically computed using the above equations. The transition rates into 
and out of each state in a discrete-state stochastic process must be identical. By using 
the time-average interpretations for the steady-state queue-length probabilities, we 
see that the distribution of queue-length as seen by a departing packet is the same 
as the distribution of queue-length as seen by an arriving packet [13, pp. 387-388]. 
Note that in [13, pp. 387-388], the Markov chain is one-dimensional. In our case it 
is two-dimensional. But as we are interested in the steady-state probability vector 
of levels (i.e., queue-lengths), the arguments are applicable in this case also. We 
compare the results of the above analysis with the results of simulations in section 5. 
As it is not possible to compute the distribution of queue-length in a random slot, 
we cannot analyze the delay of a packet in the input queue. In section 5, we show 
simulation results for the delay of a packet in the input queue. 

3.2.3 Output Queue Analysis. We have assumed that, as N ~ 00, all con­
tention queue processes are identical and independent. It then follows that all output 
queue systems are also identical and independent. It is sufficient to analyze only 
one output queue. It is difficult to characterize the departure process of a contention 
queue due to its general queueing model structure. The exact arrival process at the 
output queue is then unknown. We use an approximate ON-OFF type of arrival 
model to analyze the output queue. An exact analysis like that of input queues may 
be difficult in this case. A packet arrives in the output queue after s switch-slots in 
a busy period. This is because the contention queue service time is s switch-slots. 
Therefore we model the arrival process as follows: A packet arrives at output queue 
i in a switch-slot only if the switch status is Ts-l at the beginning of the switch-slot 
(section 3.2.1). There are always (s - 1) idle switch-slots (corresponding to the 
switch status To to Ts-2) before an arrival in the output queue. The group of all 
these switch-slots is called a busy cluster. In the busy period of the contention 
queue, packets depart regularly at the end of the busy clusters. When the con­
tention queue is empty in a switch-slot, no packet arrives in output queue i in that 
switch-slot. We construct the ON-OFF arrival model such that, E[B], the mean 
busy period of the contention queue is equal to s times the mean number of busy 
clusters. The mean OFF period is equal to, E[I], the mean idle period of contention 
queue i. The ON-OFF Markov process is depicted in figure 3. The ON state and 
the series of associated OF Fj, 1 :S j :S s - 1 form a busy cluster. It is easy to 
see that p = 1 - s / E[ B] and p = 1 - 1/ E[ I] since the mean busy period of the 
contention queue is equal to s times the mean number of busy clusters. The mean 
OFF period is equal to the mean idle period of contention queue i. Note that for 
integer speed-up factors s = 1. There are no idle slots in a busy cluster and a busy 
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cluster consists of only ON slot. The ON-OFF Markov chain of figure 3 reduces to 
the simple ON-OFF Markov chain of figure 4. 

The service time of the output queue is r switch-slots and is deterministic 
(the transmission time of a packet on the output link). We analyze this out­
put queue model. The queue-length in a random switch-slot cannot be mod­
eled by a DTMC. We look at the departure-switch-slots. The output queue­
length as seen by a departing packet in a switch-slot together with the ON­
OFF chain status in that switch-slot form a 2-D DTMC over the state space 
{(i,j) : i ~ O,j E {ON,OFF1 ,OFF2,"',OFFs_l,OFF}} where i is the 
queue-length in a departure-switch-slot and j is the state of the ON-OFF process. 
Let ON == s and OFF == 0 and OFFi == i. We say that i is the level of the 2-D 
DTMC and j is the phase of the 2-D DTMC. Let m = I r I s 1. The state transition 
matrix is of the form, 

B o Bl B2 Bm 6 6 6 
C Al A2 Am 6 6 6 

p 6 Ao Al Am-l Am 6 6 (9) 
6 6 Ao Am-2 Am-l Am 6 

Note that the P matrix is a structured MIG/I-type matrix. Please refer to [4] for 
calculation of the entries of the matrices. The steady-state probability vector of the 
P matrix is computed by using TELPACK. The steady-state probability vector is 
of the form, 7r = [7r0 7r1 7r2 ... 7r i ... J where, 7ri = [7ri,07ri,1 ... 7ri,sJ The steady-state 
probability vector of queue-lengths as seen by a departing packet is of the form, 
ij = [QOQlq2 ... Qi ... J where Qi = 7ri,O + 7ri,1 + ... + 7ri,s' The results of the above 
analysis are compared with the results of simulations in the next section of this 
chapter, We are unable to analyze the delay performance of this output queue. 
Nevertheless, in section 5 of this chapter, we show the results of simulations for the 
delay of a packet in the output queue. 

4. MEAN DELAY SIMULATIONS 

In this section we study the simulation results of the mean delay of the speeded­
up packet switches for the arrival process of section 3.1. We have considered a 
64 x 64 nonblocking speeded-up switch fabric. We plot the total average delay of 
a packet in the switch obtained through simulations in figure 5. The average delays 
for the cases of pure input-queued and pure-output queued switches are also plotted 
in figure 5, It can be seen from the plot that the delay curves for speed-up factors 
2 and 3 are close to the delay curve of the pure output-queued switch. So even 
a moderate speed-up of 2 quickly overcomes the HOL blocking phenomenon of 
pure input-queueing. To illustarte this, we have plotted the input and output queue 
delays separately for a speed-up factor of 2 in figure 6. We also consider bursty 
traffic for delay simulations with the following model. A burst of successive packets 
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is destined to the same output port but the destinations of each burst are chosen 
uniformly from among the N output ports. The burst sizes have the following 
modified geometric distribution: If the mean burst size is b, the size of a burst is 
1 + B where B is a geometric r. v. with mean b - 1. The mean queueing delays 
achieved by output queueing and input queueing with a speedup factor of 2 are 
shown in Fig 7. Fig 8 shows the mean queueing delays for an average burst size 
b = 50. This emphasizes the fact that speed-up of 2 is sufficient even for bursty 
traffic. 

5. QUEUE LENGTH ANALYSIS VS SIMULATION 

Results for three speed-up factors are studied: 1.5(= 3/2), 2(= 2/1} and 
3(= 3/1). The analysis of the input and output queues gives the mean queue­
length as seen by a departing packet. We obtain the same data from simuation 
for comparison. We plot the mean input queue-length obtained by analysis and 
simulation in figure 9. It can be seen that the results are in good agreement. Note 
that even though the input queue analysis is exact, it is asymptotic, and thus we 
compare it with simulations to judge the effect of finite switch size (64 x 64). The 
mean output queue-length as seen by a departure is plotted in figure \ O. The reason 
for a slight discrepancy here is the approximation of the arrival process to the output 
queue by the ON-OFF process. Observe that the discrepancy is more pronounced 
for the speed-up factor 1.5. For speed-ups of 2 and 3 the results of both cases are in 
good agreement. Thus the approximation works better for higher speed-up factors. 
Overall, the asymptotic analysis results conform well with the simulation results. 

6. CONCLUSIONS 
In this paper, we have used matrix-geometric techniques to investigate the impact 

of speedup on the performance of combined input and output queueing packet 
switches. The important observation is that only a moderate speedup factor (about 
two) is necessary to approach not only the throughput but also the delay performance 
of pure output -queued switches. Moreover, these results hold for random scheduling 
of the head-of line packets; no complex scheduling and/or matching algorithms 
are required within the switch. This is practically significant for the design and 
operation of high speed switch fabrics, especially with the continued increase in 
link speeds and switch sizes. 
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Figure 2 Markov chain modeling the arrival pro­
cess in the input queues of the packet switch. 
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Figure 3 Approximate model of the arrival process 
in the output queues for a rational speed-up factor r / s. 
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Figure 6 Mean delay in input queue and the 
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of a packet for a speed-up factor of 2. 
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Figure 5 Mean total packet delay results for 
switches with speed-up factors of 1.5, 2 and 3 
and delay results of pure input-queued and pure 
output-queued switches. 
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Figure 7 Delay performance of a switch with 
speed-up of 2 and delay performance of pure 
output-queued switch. mean burst size b = 10. 
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speed-up of 2 and delay performance of pure 
output-queued switch. mean burst size b = 50. 
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Figure 9 The mean input queue-length as seen 
by a departure obtained by analysis is compared 
to that obtained by simulation. (top) speed-up of 
1.5. (middle) speed-up of2. (bottom) speed-up of 
3. The input link utilization is d. see (I). The 
arrival process is of section 3.1. 
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Figure 10 The mean output queue-length as 
seen by a departure obtained by analysis is com­
pared to that obtained by simulation. (top) speed­
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