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Abstract This paper presents a new self-similar traffic model derived from the arrival 
processes of M / G / 00 queue. It has a structure similar to that of a fractional 
ARIMA, with a driven process of ffim (fractional Brownian motion). The 
coefficients of the ffim are derived from the Pareto distribution of the active 
periods of the arrival process. When applied to a single server with self-similar 
input, the model results in an explicit buffer level equation which matches Norros' 
storage model. So this method can be also served as a verification of Norros' 
assumptions. The effectiveness of the proposed model has been verified by some 
practical examples. 
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1. INTRODUCTION 
Network traffic modeling is of primary importance for network design, per­

formance prediction, and control. It has been observed recently that packet loss 
and delay are more serious than expected because network traffic is more bursty 
and exhibits greater variability than previously suspected. This phenomenon 
has led to the discovery of network traffic's self-similar, or fractal, characteristic 
[6]. A covariance-stationary process X(t) is called self-similar if X(t) - X(O) 
and rH (X(u) - X(O)) are identical in distribution, where the time t is rescaled 
in the ratio r, i.e., U = tlr. Therefore the area of network traffic modeling, 
buffer design, and performance evaluation needs to be reexamined. 
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There are many investigations into self-similar models. The fractional Brow­
nian motion (fBm) and fractional Auto-Regressive Integrated Moving Average 
(f-ARIMA) model are the two popular mathematical models that are used to 
describe self-similar processes. F-ARIMA is much more flexible than fBm. 
But both can be only used to simulate short time series. Cox and Isham pro­
posed a model to describe an immigration-death process. Kosten applied this 
model to a multi-entry buffer in the general context of self-similarity. There 
are two other related models of asymptotically self-similar processes. One is a 
sum of short-range independent attenuated and weighted stationary processes. 
Another is taking the limit of the aggregated traffic of M individual On-Off 
sources, as M ----7 00, while keeping the source rate and the distribution of 
active period remain unchanged, but the distribution of idle period went to zero. 
The M / G / 00 and aggregated AR( 1) processes are the two models often used 
to generating asymptotically self-similar traffic although without analytical ex­
pressions. Other self-similar models are heavy tailed On-Off process, stable 
self-similar process, fractal shot-noise (point process approaches), fractal re­
newal process (point process approaches) [3], deterministic nonlinear chaotic 
map models, and stochastic difference equations. 

The complexity of self-similarity has rendered existing traffic and perfor­
mance models to be either analytically intractable in the evaluation of perfor­
mance, or usually inaccurate with respect to dynamic queueing behavior. In 
order to investigate the impact of self-similar traffic modeling parameters on 
network performance, it is necessary to develop new analytic traffic models. 

2. CONSTRUCTION OF SELF -SIMILAR TRAFFIC 
Consider a stationary random process Y = {yt}, where t E Loo = 

{ ... , -1,0,1, ... }. We assume that there are ~t traffic sources which begin 
their active periods at time t, where ~t is independent and Poisson with mean 
AI. A source s is associated with its active period s, where s E Loo. The 
beginning instant of active period s is denoted by W 8 • The length of active 
period s is denoted by Ts E It = {1, 2, ... }. The number of cells generated by 

source s at time instant t is denoted by '!9~s), which is also called the source rate 
of source s. In this section, we will focus on the derivation of our self-similar 
traffic model instead of the procedure of traffic construction. Details can be 
found in [7]. The number of new cells yt that appeared in traffic Y at time 
t is the sum of numbers of cells generated by all active (at time t) sources, 
including those sources began at time t and those began before time t but still 
in active at time t, 

00 

yt= L 
8=-00 

.o(s) 
'1ft • (1) 
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If the source rate is constant. t9~s) = R E It. the distribution ofyt for given 

t is Poisson. If the source rate is Poisson. t9~s) are independent (for all s and t) 
and Poisson with mean .A2. The intensity ofthis traffic is E{yt} = .Al.A2E{ T}. 
However. the distribution of yt is not Poisson (since the sum of a random 
number of Poisson random variables is not necessarily a Poisson variable). 
Moreover, yt are dependent variables. We will find a mathematical model for 
this process for the purpose of queueing analysis and prove its self-similarity. 

The number of new cells yt at time t can be expressed by 

t 

yt = L R~nP;:~{T > t - n) (2) 
n=-oo 

where P;:~ (T > l) is the distribution of the length of active period at time n. 

If P;:~ = Prob, for all n; let t - n = l, then we have 

00 

yt = L R~t-IProb{T > l) (3) 
1=0 

The above model can be rewritten as 

After some rearrangement, we have 

1 1 
Ryt+l - Ryt = ~t+l - al~t - a2~t-l - ... - a_oo~-oo (5) 

where aj = Prob{T > j - 1) - Prob{T > j) = Prob{T = j), j = 1,2,3, ... , 
{ ~j} is Poisson. Suppose the distribution Prob (T ~ 1 + 1) is Pareto-type, 

Prob{T ~ 1 + 1) = ~T /1{1- /1)(2 - /1)l-({3+1),/1 --+ 00. (6) 

the process yt will be proven to be self-similar with H = 1 - ~, 0 < /1 < 1 
(see next section). 

A Poisson process N{t) with parameter m can be approximated by a diffu­
sion process 

N{t) ~ mt + v'amW{t) (7) 

Substitute ~ in Eqn. (5) for N{t) in Eqn. (7), and note that l:~o at-j = 1, 
and l:~1 at-jj = ET, we have 

yt+l - yt = mRET + Rv'amz{t + 1), (8) 
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where m is the diffusion approximation parameter; a is the ratio of the variance 
to the mean of the traffic process; T is the length of an active period; z(t) is a 
fractional Brownian motion which can be expressed as 

z(t + 1) = W(t + 1) - atW(t) - at-l W(t - 1) - ... - a_co W( -00), 
(9) 

where the coefficients at are the probabilities of the lengths of the active periods; 
and W(t) is the standard Brownian motion. 

3. SELF -SIMILARITY OF THE NEW MODEL 
In this section, we attempt to give a rough proof of the self-similarity of 

the traffic process yt represented by the new model developed in the previous 
section. Before we present our proof, we need to introduce an LRD property: 

A covariance-stationary process X = (Xi i = 1,2,3, ... ) with mean fJ., 
variance 0-2 and autocorrelation function r(k), k ~ 0, is self-similar iff X is 
long-range dependence (LRD), i.e., for some! < r < 1, 

r(k) '" ck2H- 2 as k -+ 00 (10) 

where c is a finite positive constant. This property can be derived from the 
definition fo LRD and its relationship to self-similarity. 

Define the auto-covariance function of yt, 

w(k) = cov{yt, yt+k} = E{(yt - E{yt} )(yt+k - E{yt+k})} (11) 

because of its stationary, we have w(k) = r(k) - (E{yt} )2. Therefore w(k) 
and r(k) will have the same asymptotic property for large k. Now the problem 
becomes to prove that w (k) will have the form of Eqn. (10) for large k. What 
we know is that yt has the form of Eqn. (8) and z(t) is fBm which can be 
expressed by W(t), standard Bm. 

From ytH = yt + mRr + RJamz(t + 1), we have 

yt+k = yt + kmRr + RJam[z(t + 1) + z(t + 2) + ... + z(t + k)] (12) 

yt+k - Eyt+k = yt - Eyt + JamR[z(t + 1) + z(t + 2) + ... 

+z(t + k) - z(t + 1) - z(t + 2) - ... - z(t + k)] (13) 

w(k) = E{(yt - Yt)2} + maR2[wz(0) + wz(1) + ... + wz(k)] (14) 

where wz(k) = E{[z(t) - z(t)][z(t + k) - z(t + k)]}. Note that z(t + i) = 
O,i = 0,1,2, ... ,k. We have 
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z(t+i) = W(t+i)-a1W(t+i-l)-a2W(t+i-2)-a3W(t+i-3)- ... 

-ai-1 W(t + 1) - aiW(t) - ai+1 W(t + 1) - ... - a_ooW( -(0), (15) 

Also note W(i)W(j) = dija2 Suppose a2 = 1, we have 

wz(i - 1) = E{z(t + l)z(t + in = 1ai-1 + alai + a2ai+1 + a3ai+2 + ... 
(16) 

Because of the Pareto-type distribution of the active periods: ai = ci-o - 1, 

where c is constant, which can be determined from f and (3. Thus 
00 

( .) ·-0-1 + ~ 2 -0-1(. + )-0-1 W z Z = cz ~ c n z n , 
n=l 

We know E{(yt - Eyt)2} = R2(E~)(ET) = R2mf therefore 

k 

w(k) = mR2f + amR2 ~ wz(j) 
j=O 

when no is large, using 

00 -0+1 
~n-O::::::~ 
~ a-I' 

n=no 

therefore when k is large we have 

f)nk + n2)-(0+1) :::::: (k + 1)-0, 
n=l a 

c2 
w(k) :::::: (k + 1)1-0 

a(a - 1) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

That is, w(k) has the form of Eqn. (10). Therefore yt is a self-similar process, 
with Hurst parameter H = (3 - a)/2 according to the LRD property. So far, 
we've developed a new self-similar traffic model and proven that the traffic 
sequences of {yt} is self-similar with parameter H = (3 - a)/2, which will 
be used to analytically investigate the queueing behavior of networks with 
self-similar traffic input. 
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4. QUEUEING ANALYSIS 

4.1 BUFFER LEVEL EQUATION 
While there are several excellent papers dedicated to the queueing analysis 

for self-similar traffic, there is still a lack of exact results concerning queueing 
analysis such as queue length distributions. Interested readers may check the 
references [4; 1; 2; 5]. Norros' storage model has been widely used to estimate 
asymptotic performance bounds in the case of large buffers, although it has not 
been proven because of the complexity of the problem. In this Section, we will 
apply the new traffic model to develop a buffer level equation that can be used 
to determine the multiplexing behavior of self-similar traffic and the bounds of 
the queue length. This development can be also served as a proof of Norros' 
model. 

The new self-similar traffic model can be expanded as 

Define the coefficients using the notation 

(25) 

then, we have 

(26) 

Similar to Section 2, the Poisson process e(t) with parameter m can be written 
in the form 

e(t) = mt + W(t), (27) 

where W(t) is the martingale e(t) - mt. It is well known that e(at) -
amt) / .jam converges towards the standard Brownian motion W (t) as a --t 
00. This suggests the approximation of e(t) by a diffusion process 

e(t) ~ mt + .jamW(t) (28) 

and upon substitution into our model, we have 

00 00 00 

yt = R 2: bjmt - Rm 2:jbj + R.jam 2: bjW(t - j). (29) 
j=O j=O j=O 

Note that 

(30) 



125 

and also 
00 

Ljbj = D{f,(3) (31) 
j=O 

is a constant which is related the distributions of the length of active periods. 
Therefore the model can be simplified as 

Y{t) = mt - D{f,(3)/f + JamZ{t) (32) 

where Y{t) = Yt/ Rf being defined as the normalized traffic process; Z{t) 
being defined as 

00 b. 
Z{t) = L ! W{t - j) 

T 
j=O 

(33) 

is a normalized version of the fractional Brownian motion z{t) in the new 
model. Suppose the system has a constant leak rate C, the net input process is 

X{t) = Y{t) - Ct. (34) 

Thus, the stationary storage model with fractional Brownian net input is the 
stochastic process V (t), where 

V{t) = sUPs:St{Y(t) - Y(s) - C(t - s)), t E (-00, (0), (35) 

That is equivalent to the process 

V(t) = sUPs:::;t(A(t) - A(s) - C(t - s)), t E (-00, (0), (36) 

with an arrival process of 

A(t) = mt + JamZ(t) (37) 

It is similar to the well-known expression for the amount of work (or virtual 
waiting time) in a queueing system with service rate C and cumulative work 
arrival process A (t) [4]. 

4.2 PERFORMANCE EVALUATIONS 

The performance requirement in telecommunication applications can be 
described by following relation 

(38) 

that the probability that the queue length exceeds a certain level x is required 
to be at most equal to a "Quality of Service" parameter Eo Norros' lower 



126 

bound is asymptotically (in a logarithmic sense) exact for the Brownian model. 
Massoulie and Simonian have reported a tighten lower and upper bounds which 
have only a constant underdetermined. Recently, Narayan found an exact 
asymptotic queue lenght distribution for 1/2 < H < 1. For case of H = 1, 
Norros' lower bound is the exact probability. In this paper we will apply these 
bounds to a practical example to verify our models. 

5. EXAMPLES 

Example 1 A set of practical traffic data we collected from a large-scale data 
network was plotted in Fig.I. The Pox diagram of the traffic data is shown in 
Fig.2. Fig.3 is the power spectrum. 

The traffic Yt can be modeled by 

Yt+l - Yt = mRE{T} + Rv'amz(t + 1), (39) 

where m = 0.5709 is a diffusion approximation parameter; a = 1.4194; 
T = 1.9977 is the length of an active period; the source rate R = 1.0; z(t) is a 
fractional Brownian motion which can be expressed as 

z(t + 1) = W(t + 1) - atW(t) - at-l W(t - 1) - ... - a_co W( -00), 
(40) 

where the coefficients at = eta-I, c = 0.7188, a = 3 - 2H = 1.3800, H = 
0.81; and W(t) is the standard Brownian motion. This model has been suc­
cessfully used to design an alarm processor in a larg-scale network. Fig.4 is 
the Pox diagram of the traffic generated by this model. 

Example 2 The performance bound has been calculated from the proposed 
buffer level equation when a single sever fed by the above traffic data. In 
order to compare the bound with other performance bounds, it is plotted in 
Fig.5 (lower line) against the bound derived from Reference [2]. The traffic 
would be modeled as Poisson arrival process if self-similarity was ignored. 
The resulted performance bound was shown in Fig.6 also against the bound 
derived from Reference [2]. It can be seen that the performance will be much 
worse than predicted by Poisson models. This has also demonstrated the need 
of self-similar traffic model. 

6. CONCLUSION 

In this paper, we developed a new tractable model for self-similar traffic 
processes. We also derived an explicit buffer level equation based on the 
proposed traffic model, which matches Norros' storage model. So this method 
can be also served as a verification of Norros' assumptions. The queueing 
behavior of a single server to self-similar input can be analytically investigated 
with the proposed model with respect to each of the model parameters. This 
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Fig.1 A Set of Traffic Data 
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will be our future work. Finally, we presented some practical examples to 
demonstrate the effectiveness of the proposed methods. 
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