
HIT-OR-JUMP: AN ALGORITHM FOR
EMBEDDED TESTING WITH
APPLICATIONS TO IN SERVICES

Ana Cavalli *, David Lee ° Christian Rinderknecht *, Fatiha Za'idi *
* Institut National des Telecommunications

9 rue Charles Fourier
F-91011 Evry Cedex
{Ana.Cavalli, Christian.Rinderknecht, Fatiha.Zaidi}@int-evry.fr

0 Bell Laboratories, Lucent Technologies
600 Mountain Avenue
Murray Hill, NJ 07974, USA
lee@research.bell-labs.com

Abstract This paper presents a new algorithm, Hit-or-Jump, for embedded testing
of components of communication systems that can be modeled by com­
municating extended finite state machines. It constructs test sequences
efficiently with a high fault coverage. It does not have state space ex­
plosion, as is often encountered in exhaustive search, and it quickly
covers the system components under test without being "trapped", as
is experienced by random walks. Furthermore, it is a generalization
and unification of both exhaustive search and random walks; both are
special cases of Hit-or-Jump. The algorithm has been implemented
and applied to embedded testing of telephone services in an Intelligent
Network (IN) architecture, including the Basic Call Service and five
supplementary services.

Keywords: conformance testing, embedded testing, communicating extended finite
state machines, IN.

1. INTRODUCTION
With the advanced computer technology and the increasing demand

from the users for sophisticated services, communication protocol sys-

J. Wu et al. (eds.), Formal Methods for Protocol Engineering and Distributed Systems
© Springer Science+Business Media Dordrecht 1999

42

terns are becoming more complex yet less reliable. Conformance testing,
which ensures correct protocol implementations, has become indispens­
able for the development of reliable communication systems. Traditional
testing methods tend to test these systems as a whole or to test their
components in isolation. Testing these systems as a whole becomes dif­
ficult due to their formidable size. On the other hand, testing system
components in isolation may not be always feasible due to the interac­
tions among the system components. Embedded testing or testing in
context has become one of the main focuses of conformance testing re­
search in recent years. The goal of embedded testing is to test whether
an implementation of a system component conforms to its specification
in the context of other components. It is generally assumed that the
tester does not have a direct access to the component under test; the
access is obtained through other components of the system. According
to the standard: "if control and observation are applied through one or
more implementations which are above the protocol to be tested, the
testing methods are called embedded" [9].

Different approaches for embedded testing have been proposed in the
published literature. They are based on fault models [15], on reducing
the problem to testing of components in isolation [16], on test suite
minimization [11, 13, 18, 1], on fault coverage [19], on the test of systems
with semicontrollable and uncontrollable interfaces [5], or on-the-fly [6].
Most of these approaches resort to reachability graphs to model the
joint behaviors of all the system components, and are exposed to the
well-known state space explosion.

Our goal is to test pre-specified parts of a system component that is
embedded in a complex communication system. The pre-specified parts
are determined by practical needs or by system certification require­
ments. For instance, for a given system component, we may want to test
all the transitions or certain boundary values of system variables. We
can first construct a reachability graph, which is the Cartesian product
of all the system components involved, and then derive a test that covers
all the pre-specified parts of the component under test. Unfortunately,
this exhaustive search technique is often impractical; it is impossible
to construct a reachability graph for practical systems due to the state
space explosion. To avoid this problem random walks have been pro­
posed; at any moment we only keep track of the current states of all
the components and determine the next step of test at random. This
approach indeed avoids the state space explosion but it may repeatedly
test covered parts and take a long time to move on to the untested parts.

We propose a new technique: Hit-or-Jump. It is a generalization
and unification of both the exhaustive search technique and random

43

walks, yet it does not have the drawbacks of the two approaches. The
essence of our approach is as follows. At any moment we conduct a
local search from the current state in a neighborhood of the reachability
graph. If an untested part is found (a Hit), we test that part and continue
the process from there. Otherwise, we move randomly to the frontier
of the neighborhood searched (Jump), and continue the process from
there. This procedure avoids the construction of a complete system
reachability graph. As a matter of fact, the space required is determined
by the user - the local search, and it is independent of the systems tmder
consideration. On the other hand, a random walk may get "trapped" at
certain part of the· component nnder test [11]. Our algorithm is designed
to "jump" out of the "trap" and pursue the exploration further.

The Hit-or-Jump algorithm has been applied to the embedded testing
of services on a telephone network. With the aid of ObjectGEODE tool,
this case study is on a real system that has been specified using the SOL
language. It describes telephone services in an Intelligent Network (IN)
architecture. In addition to the Basic Call Services (BCSs), five other
services are included: Originating Call Screening (OCS), Terminating
Call Screening (TCS), Call Forward Unconditional (CFU), Call Forward
on Busy Line (CBL) and Automatic Call Back (ACB).

The paper is organized as follows. Section 2 introduces the basic
concepts and testability of embedded components. Section 3 describes
the test generation algorithm Hit-or-Jump for embedded components.
Section 4 discusses the implementations. Section 5 reports the experi­
mental results on IN. Section 6 concludes the paper with remarks on the
generalization and variations of the algorithm and on related issues.

2. BASICS
In this work we use extended finite state machines to model system

components: the environment, the components nnder test and their im­
plementations. It is only for the convenience of presentation; our tech­
nique can be adapted to other mathematical models, such as Transition
Systems [14], Petri Nets [17] and Labeled Transition Systems [2].

Definition 1. An extended finite state machine (EFSM) is a quintuple
M = (I, 0, S, x, T) where I, 0, S, x, and T are finite sets of input
symbols, output symbols, states, variables, and transitions, respectively;
Each transition t in the set T is a 6-tuple:

44

where st, qt, at, and Ot are the start (current) state, end (next) state,
input, and output, respectively. Pt(x) is a predicate on the current
variable values and At(x) defines an action on variable values.

Initially, the machine is in an initial state s<0) E S with initial variable
values X{O). Suppose that the machine is at state St with the current
variable values x. Upon input at, if xis valid for Pt, i.e., Pt(x) =TRUE,
then the machine follows the transition t, outputs Ot, changes the current
variable values by action x := At(x), and moves to state qt.

We model the environment and component under test by EFSM's.
During an execution the states and variable values can be determined
as in the construction of reachability graphs for EFSM's [8, 12]. From
now on we use the following notation : C is the environment EFSM,
A is the specification EFSM under test, and B is the implementation
of A. Machine C and A(B) communicate synchronously. We represent
A in the context of C by the following notation : C x A. We want to
test the conformance of B to A in the context of C where C and A are
known and B is a "black-box". It should be noted that C x A may not
be minimized or strongly connected even if C and A are. Also they can
be partially (incompletely) specified.

In general, it is not always possible to test for isomorphism of embed­
ded components, even in the case of FSM's. Assume that A and B are
FSM's. Denote machine isomorphism by A ~ B. Then we have:
Proposition 1. B Q:! A implies C x B Q:! C x A. However, the
converse is not true in general.

The first part of the proposition is trivial. We show the second part
by an example.
Example 1.

c.~
()wt

Ox,y/t

A: B:

Figure 1.1

ox/t
()y/u

In Figure 1.1, a and bare external inputs, 0 and 1 are external outputs,
and x, y, t, u are internal input/outputs. Obviously C x B ~ C x A. But
B ~ A. Therefore, it is impossible to test A ~ B in the context of C.

45

In practice, what we want is that B "behaves correctly" in the context
of C. That is, C x B ~ C x A. Therefore, the problem is reduced to
testing if C x B ~ C x A. However the real goal is to test the component
A, assuming that the environment machine C is correctly implemented.
Suppose that we test A in isolation. Then we may want to test all the
transitions of A. That is, we want to obtain a testing sequence such that
all the transitions of A are exercised. Similarly, in embedded testiug we
want to obtain test sequences (with external inputs) such that all the
transitions of the component A are exercised. Specifically, we want to
derive tests for C x A such that all the transitions of A are tested. We
may want different coverage of A than testing all the transitions. For
instance, we often want to test the boundary values of the variables. In
general, we want to obtain a test sequence for C x A, i.e., for testing
the component A in the context of C, such that the component machine
A is covered ·according to ·a pre-specified criterion. This criterion can
be specified by assigning a distinct color to each entity (transition or
variable value, for instance) to be tested and by covering all the assigned
colors by test sequences generated. On the other hand, we do not worry
about the coverage of C, since it is assumed to be correctly implemented.
For clarity, we assume that the system under test does not have deadlock
nor livelock, which are well studied topics in validation [8].

3. EMBEDDED TESTING
We first briefly survey three commonly used and related methods

and then present our Hit-or-Jump algorithm, which is a generalization
and unification of all these three methods. For clarity, we describe a
procedure that covers all the transitions of the c.omponent machine 1mder
test. This is a commonly used criterion in practice. As indicated earlier,
other coverage criteria can be reduced to color covering of the component
nnder test, and our procedure can be easily adapted to generating tests
for the color covering; it is only a marking process. We shall further
elaborate on this issue when describing the algorithm.

3.1 A STRUCTURED ALGORITHM
From the initial state we want to generate a test sequence such that

all the transitions of component machine A are covered at least once.
The algorithm includes three steps: (1) Assign a distinct color to each
transition of A; (2) Construct a reachability graph of C x A where each
edge of C x A is marked with a color from A if it is derived from that
transition of A; (3) From the initial node of C x A, find a path of minimal
length such that all the colors are covered at least once. This approach

46

requires a construction of the reachability graph of C x A, which leads t.o
the well-known state explosion. Even if we could obtain such a graph the
problem is still NP-hard. Consequently, unstructured algorithms surh
as random walks are considered, which do not require the construction
of reachability graphs.

3.2 RANDOM WALK
Starting from the initial node (s~>, s~), £<0)) where s~>, s~> and £{0)

are the initial state of C and A and initial variable values, respectively.
Among all the possible outgoing edges in the reachability graph from the
initial node, we select one uniformly at random, and follow that edge
to the next node in the reachability graph. Suppose that after k steps
we arrive at a node (s~~>,s~>,:f(k)). We examine all the outgoing edges
from this node and select one uniformly at random to follow. Meanwhile,
if there are colors associated with the chosen edges that have not been
marked (exercised), we mark them off. We repeat the process until all the
colors are marked off. During the walk, we only keep track of: (1) The
current node (s~>, s~), :f(k)); (2) The colors that have not been marked
off; and (3) The edges that have been walked through with the associated
external I/ 0 sequence, and that is the test sequence obtained from this
walk. Obviously, there is no need to construct a whole reaehability graph
ofG x A.

3.3 GUIDED RANDOM WALK
The procedure is the same as the random walk except for the follow­

ing. When we arrived at a node (s~~>,s~>,X(k)) among all the possible
outgoing edges, we classify them: {1) With transitions of A involved,
some of which are not marked; (2) With transitions of A involved and
all of them are marked; and (3) Without any transitions of A involved.
If the set (1) is not empty, we select one uniformly at random and follow
that edge; else if (2) ·is not empty, we select one uniformly at random
and follow that edge; and, finally, if none of the above is true, (3) must
be non-empty, and we select one tmiformly at random and follow that
edge. Guided random walks [11] favor transitions of the embedded com­
ponent under test, and among them give first priority to the transitions
that have not been tested.

3.4 IDT-OR-JUMP ALGORITHM
The problems with random walks are: (1} Th be "trapped" in a. small

neighborhood; (2) With a low probability to cross a "narrow bridge"

47

to test the parts beyond the bridge; and (3) To miss the unmarked
transitions of A even if they are nearby (more than one step from the
current node). The Hit-or-Jump algorithm is designed to avoid these
problems yet without the construction of a reachability graph. It does
not require a construction of a reachability graph of C x A either, and
performs better than pure random walks. Local search is used in the
procedure, and it can be Depth-first or Breadth-first search.

ALGORITHM HIT-OR-JUMP
initial condition. The environment machine C is in an initial state
s~), the component machine under test A is in an initial state s~), and
the system variables have initial values £(0).

termination. The algorithm terminates when all the colors (transi­
tions) of A have been marked off.

execution.

1. HIT From the current node (s~), s~), X(k)) conduct a search in
C x A until:

(a) Reach an edge which is associated with unmarked colors of
the component machine A: a Hit. Then:

1. Include the path from the current node to the edge (in-
clusive) in the test sequence under construction;

ii. Mark off the newly exercised colors of A;

iii. Arrive at a node (s~+l), s~+l), X(k+l));

iv. Erase the searched graph;
v. Repeat from 1.

or

(b) Reach a search depth or space limit without hitting any un­
marked colors of A. Then move to 2.

2. JUMP

(a) We have constructed a search tree, rooted at (s~),s~),X{k)).
(b) Examine all the leaf nodes of the tree, and select one uni­

formly at random.

(c) Include the path from the root to the selected leaf node in
the test sequence.

(d) We arrive at the selected leaf node (s~+l),s~+l),X{k+l)): a
Jump.

(e) Repeat from 1.

48

Suppose that the local search depth is set to one. Then, obviously,
Hit-or-Jump becomes a Random Walk. If we enforce priorities thenit be­
comes a Guided Random Walk. On the other hand, ifwe do not set any
bound on the local search depth then we construct a reacbability graph
in the worse case; Hit-or-Jump boc.omes a structured algorithm. There­
fore, Hit-or-Jump is a generalization of Random and Guided Random
Walks and also the structured algorithm. Furthermore, this technique
unifies these three· apparently quite different approaches.

4. IMPLEMENTATIONS OF HIT-OR-JUMP

In this section. we describe the implementation of Hit-or-Jump. It
was not possible to use the ObjectGEODE tool (Verilog) alone because
our algorithm needed special handling of features of the tool that are
not widely used (and hence poorly documented). For our purpose, we
developed a software tool which drives the ObjectGEODE simulator.
Due to space limit we do not include the details here, and the interested
readers are referred to [3].

Our goal is to get a test sequence in the fully deployed automaton,
corresponding to a path starting at the initial state, that contains all
the transitions of the embedded component under test yet without con­
structing the fully deployed automaton.

Interface. We supply our tool with the following informations.· The re­
sult is a file containing the test sequence for the embedded component.
The sequence is a series of pairs of inputs and outputs. (1) A disjunc­
tive stop condition modeling the set of the embedded system component
transitions. It defines the embedded system. (2) A positive integer de­
noting a depth limit that will be passed along to the simulator; we stop
when a search (DFS, BFS or B-DFS) reaches it. (3) The inputs that
the simulator can fire from the environment in order to stimulate the
whole system (here opposed to the embedded system). (4) The protocol­
dependent variable for the simulator ("let" clauses, like number of users,
actions allowed, maximum number of actions per user, service subscrip­
tions etc.). (5) An initial scenario that starts all the processes and put
then in their initial state.
Configuration. The first step of our tool is to configure and pro­
duce three start-up files that will. be used to drive the simulator. (1)
main.startup. It loads the inputs that the simulator can fire from the en­
vironment, the protocol-dependent variables, the current scenario, and
specifies the exhaustive and B-DFS mode. Then it runs the simulator.
(2) stop..search.startup. It is devoted to the identification of the stop con­
dition in the disjunction that actually interrupted the simulation. (3)

49

final.startup. It loads the inputs that the simulator can fire from the
environment and replays the final scenario we got after hitting all the
colors (transitions) of the embedded component. As a result we get an
ObjectGEODE log file from which we extract the test sequence;
Simulation. We start the simulation with the main.startup file. There
are two possible situations: (1) The simulator outputs a scenario. This
file is output if and only if we Hit an uncovered transition of the em­
bedded system. Two cases can occur: (A) There was only one stop
conditions remaining. Then we have succ.essfully completed the algo­
rithm. We run the simulator with the final.startup and extract from the
log file the test sequence. (B) There were at least two stop conditions
remaining. Then we run again the simulator with the stop...search.startup
file in order to identify the stop condition that corresponds to the hit
transition among the current disjunction (i.e., the set of uncovered tran­
sitions). This start-up prints the stop condition statuses and identifies
the one assessed to true. (2) The simulator does not output a scenario.
This means that the simulator stopped after reaching the depth limit- a
Jump is to be made. In other words, it did not find any transition that
satisfies one of the stop conditions in the disjunction. We nevertheless
got a file, containing the partially deployed automaton, as a result of
the interrupted simulation, but we know neither the current state in the
EFSM (SOL specification), nor the path from the initial state. Thus we
parse the deployed automaton and conduct a DFS on it. We choose uni­
formly at random a leaf node and find a (shortest) path for the current
state to the selected leaf node. We append the path at the end of the
constructed scenario and resume the simulation.

5. CASE STUDY: IN TELEPHONE
SERVICES

In this section we report experimental results of applying the Hit-or­
Jump test generation technique to Intelligent Network (IN) telephone
services. The service integrates the supplementary services: Originate
Call Screening (OCS), 'Thrminal Call Screening (TCS), Call Forward
Unconditional (CFU), Call Forward on Busy Line (CBL) and Auto­
matic Call Back (ACB). The system has been described using the SOL
language [10] as far as call treatment, service invocation and user man­
agement are concerned [4]. It is located at the Global Functional Plane
(GFP), taking some concepts ofthe Distributed Functional Plane (DFP).
It consists of different functional entities that are represented by the Net­
work block. The Network block is composed by two blocks: the Basic
Service, which represents the Basic Call Service (BCS) and a Features

50

Block (FB) that represents the services. The BCS block contains three
processes: the Call Manager (deals with the management of a call); the
Call Handler (which takes in charge the call itself) and the Feature Han­
dler (which allows to access to services). The FB block is composed of
five processes that represent the services: Black List which is instanti­
ated twice in order to obtain a black list on calls start, the OCS service,
and a black list at calls arrival, the TCS. The other services are CFU,
CBL and ACB as mentioned above. This block includes also a process:
Feature Manager (which establishes a link between the Feature Handler
and the services). The architecture of this specification is depicted in
Figure 1.2.

System

Network

Basic Call Service Features

[Feature
iCFU l Handler

CFB }
I I

f Feature

Handler l Manager

I I I~·~
Call

[M~
ACB l

~(~
,.______ /

Users

[Users(5,5)]

Figure 1.2 Global architecture

The model is described in such a way that it allows the execution of
different calls in parallel and also calls initiated by the network.

The environment sends messages to the process Users, that are mod­
eled as SDL process instances that composed the Users Block. The user
process represents a combination of a phone line, a terminal and a user.
It is relatively complete with respect to the service-usage life-cycle, with
user-activations, deactivations, updates and invocations all modeled.

51

In order to provide a general idea of the complexity of the SDL system
specifications, we present in Figure 1.2 the global architecture of the
system and in Figure 1.3 some relevant metrics. The global system was
simulated using exhaustive simulation in a mood to obtain the complete
reachability graph. Figure 1.4 gives some information concerning the
numbers of states, transitions, etc, obtained after a manual stop of the
exhaustive search/simulation. It is impossible to construct the whole
reachability graph due to the formidable state space requirement.

Lines 3,098

Blocks 4

Process 9

Procedures 12

States 88

Signals 50

Macro definition 12

Timers 0

Figure 1.3 Metrics of the ser-
vice specification

#states 674,814

#transitions 2,878,800

Max depth reached 28

Duration 43mn 49s

Transition coverage 46.07%

States coverage 70.37%

Figure 1.4 Partial simulation of the complete
specification

We now report detailed results on test generation of OCS and CFU
services modules. It is a system component that is embedded in the
Features block and does not possesses any link with the environment.
For the embedded testing of this module, we want to traverse at least
once each of its branches, which is depicted in figure 1.5. Stop conditions
are used to represent the characteristics of each branch. To distinguish
each branch of the component, we hand-crafted the stop conditions.
Figure 1.6 illustrates the stop conditions of OCS module.

In order to perform the simulation of the system we configure a
startup, that initialize some variables and some services: the subscribers
that invocate the services and actions each subscribers can do (eg.
hangups, activations, disactivations, normal dialing). For this case study,
and the results obtained, we have set these variables around 80 actions
for each users.

The results are shown in Figure 1.7. The line "Number of transi­
tions" indicates the number of fired transitions at each simulation (i.e.,
the size of the deployed automaton). Hence it is aimed to be a mea­
sure of resource consumption, not of the size of the corresponding test

52

Figure 1.5 Blacklist process

I stop if I output continue from blacklist

I or I output clear _call from blacklist

or I output ready from blacklist

input addJist_elmnt to blacklist
output feature_op_ok from blacklist

or I trans blacklist : from_update_input_cut_connection

I or I and
input addJist_elmnt to blacklist
output msg_info from blacklist

Figure 1.6 Stop conditions of the Blacklist process

II #1

II #2

II #3

II #5

53

subsequence, which is a path in the deployed automaton. Note that
in the worst case, when finding the stop condition input addJist_elmnt
to blacklist and output msg_info from blacklist (stop #6), the simulator
only passed through 103 transitions. It clearly shows that Hit-or-Jump
algorithm effectively finds untested transitions without constructing the
reachability graph.

Furthermore, the total test sequence is short. Note that the time
corresponds to the CPU real user time (Sun Spare Ultra-1).

I Stops I #1 I #2 I #3 I #4 I #5 I #6 I
I Number of transitions I 11 I 65 I 95 I 3 I 4 I 103 I
I Max depth reached 11 I 50 I 50 I 3 I 4 I 50 I
I Duration (seconds) 1 2.5 1 4.4 1 6.7 1 8.6 1 10.4 1 11.1 1

Figure 1. 7 Simulation results for each stop condition

Once all the transitions of the embedded component OCS module have
been traversed, we obtain a single test sequence, which corresponds to
the total path that has been traversed from the environment to the last
transition of the module. The obtained sequence is of length 150; we
only need to take 150 transitions to cover the whole OCS module in the
context.

We have exercised a Random Walk (see section 3.2) and got a test
sequence of 1.402 transitions. It is clear that Hit-or-Jump produces a
test sequence with a same fault coverage as a Random Walk but is an
order of magnitude shorter.

We have also performed experiments on the embedded testing of the
service CFU. Figure 1.8 illustrates the results obtained for OCS and
CFU services. Moreover we have also applied the Hit-or-Jump algorithm
to the process Responder of the INRES protocol [7]. The results for
the module Responder of the INRES protocol are relevant, in fact we
obtained a sequence of length 44 in a BFS mode. We have also obtained
various test sequence lengths with hit-or-jump algorithm in different
modes ofsearch and a Random Walk (RW).

54

Modules ocs I CFU

Modes I DFS I 8FS I 8-DFS I RW II DFS I 8FS I 8-DFS I RW I
Depths I 50 I 50 I 50 I II 100 100 100 -

I #Stops I 6 I 6 I 6 I 6 II 6 6 6 6

I Sequences I 834 I 150 I 167 I 1402 II deadlock I 137 261 586

I #Jumps 18 I 1 I 0 I II < 70 I 0 0 -

Figure 1.8 Results of the Modules OCS and CFU

6. CONCLUSION
We have presented a new algorithm Hit-or-Jump to perform testing

of components that are embedded in a complex communication system.
It is a generalization and unification of Random and Guided Random
Walks and also the structured algorithm. Yet it does not have the state
space explosion problem as is encountered by the structured algorithms,
and it generates high coverage test sequences that are much shorter than
that from random walks.

Hit-or-Jump is a new technique for system state search. We have
applied it for embedded testing. It can also be used for verification and
validation, which depend on system state search, and our method could
help dealing with the state explosion problem there.

For clarity we have presented a straightforward version of Hit-or-Jump
algorithm. It has a number of variations and generalizations, and their
implementations are simple modifications of the version presented. We
briefly describe a few here. For a Jump we select uniformly at random
a leaf node of the locally searched graph (tree) and proceed from there.
Instead, we can enforce certain priorities in selecting the leaf nodes as
in a Guided Random Walk [11], and then conduct a "Guided Jump"
according to the leaf node priorities as in a Guided Random Walk. An­
other variation is: if there has been no Hit for a large number of Jumps,
one might "backtrack" to the previous Hit, and Jump to a different
node to proceed with testing. The idea behind is: get back when one
has gone "astray". Even though in our experiments with IN we have not
encountered such problem, it might not be a surprise for testing compo­
nents that are embedded in a complex system. Also when constructing
a search tree on-line, we can compress internal transitions of C x A [13]
to further save space.

55

We have been focused on covering all the transitions of A. The algo­
rithm can be easily extended to: (A) Covering some (not necessarily all)
transitions of A, which are specified by users or the testers; (B) Cover­
ing some states of A; and (C) Covering some transitions and states of
A along with specified variable values such as boundary values. We can
assign a distinct color to each entity to be covered, and run Hit-or-Jump
until all the colors are oovered. Several approaches [16], [15] use fault
models. We have a general procedure, independent of any fault models.
However, we can assign colors to the entities of the component machine
under test for the coverage from fault models, and our procedure can be
used for test generation associated with fault models.

We have not specified the depth of local search for a Jump in case
there is no Hit. For IN we tested on a few depth values, i.e., 50 and 100.
Intuitively, a larger depth value increases the probability of hitting an
uncovered part of the component under test. However, it requires more
space and time for each step. Furthermore, a long "Jump" implies a
longer subsequence in the test for this step. We believe that it depends
on the system under test to choose a good depth value. As indicated
earlier, one can always choose a depth value that is within the limit of
affordable memory space. As local search for a Hit-or-Jump, we have
tested both Breadth-first-search and Depth-first-search. Breadth-first­
search seems to perform better; it is "unbiased" and makes an "equi­
distance" random Jump.

References

[1] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico. A guided
incremental test case generation procedure for conformance test­
ing for CEFSM specified protocols. In IWTCS'98, Tomsk, Russia,
August 1998.

[2] E. Brinksma. A theory for the derivation of tests. In Proc. IFIP
WG6.1 8th Int. Symp. on Protocol Specification, Testing and Veri­
fication. ·North-Holland, 1988.

[3] A. Cavalli, D. Lee, C. Rinderknecht, and Fatiha Zaidi. Hit-or-jump:
An algorithm for embedded testing with applications to in services.
In Tech. Memo, Bell Laboratories, May 1999.

[4] P. Combes and B. Renard. Service validation, tutorial. In SDL
Forum'97, France, 1997.

[5] M. A. Fecko, U. Uyar, A. S. Sethi, and P. Amer. Issues in confor­
mance testing: Multiple semicontrollable interfaces. In Proceedings
of FORTE/PSTV'98, Paris, France, November 1998.

56

[6] J.-C. Fernandez, C. Jard, T. Jeron, and C. Viho. Using on-the-fly
verification techniques for the generation of test suites. In CA V,
LINGS 1102, USA, July 1996.

[7] D. Hogrefe. Osi formal specification case study: the inres proto­
col and service, revised. Technical report, Institut fiir Informatik
Universitat Bern, may 1992.

[8] G. J. Holzmann. Design and Validation of Computer Protocols.
Prentice Hall, New Jersey, 1991.

[9] ISO. Information Technology, Open Systems Interconnection, Con­
formance Testing Methodology and Framework, International Stan­
dard IS-9646, 1991.

[10] ITU. Recommendation Z.100 : CCITT Specification and Descrip­
tion Language (SDL), 1992.

[11] D. Lee, K. Sabnani, D. Kristol, and S. Paul. Conformance testing
of protocols specified as communicating finite state machines - a
guided random walk based approach. In IEEE Transactions on
Communications, volume 44, No.5, May 1996.

[12] D. Lee and M. Yannakakis. Principles and methods of testing finite
state machines - a survey. Proc. of the IEEE, 84(8):1090-1123,
August 1996.

[13] L. P. Lima and A. Cavalli. A pragmatic approach to generating
test sequences for embedded systems. In Proceedings of IWTCS'97,
Cheju Island, Korea, September 1997.

[14] R. Milner. Communication and Concurrency. Prentice-Hall, Engle­
wood Cliffs, New Jersey, 1989.

[15] A. Petrenko, N. Yevtushenko, and G. V. Bachmann. Fault models
for testing in context. In Proceeding of FORTE/PSTV'96, Kaiser­
slautern, Germany, October 1996.

[16] A. Petrenko, N. Yevtushenko, and G. V. Bachmann. Testing faults
in embedded components. In Proceedings of IWTCS'97, Cheju Is­
land, Korea, September 1997.

[17] A. A. Petri. Kommunikation mit Automaten. Ph. D. thesis, Uni­
versitat Bonn, 1962.

[18] N. Yevtushenko, A. Cavalli, and L. P. Lima. Test suite minimization
for testing in context. In IWTCS'98, Tomsk, Russia, August 1998.

[19] J. Zhu and S. T. Vuong. Evaluation of test coverage for embedded
system testing. In IWTCS'98, Tomsk, Russia, August 1998.

